pool_op.cc 9.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/pool_op.h"

namespace paddle {
namespace operators {

C
chengduoZH 已提交
20
int OutputSizePool(int input_size, int filter_size, int padding, int stride) {
21 22 23 24
  int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  return output_size;
}

25 26 27 28 29 30 31
void PoolOp::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"), "X(Input) of Pooling should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Out"),
                 "Out(Output) of Pooling should not be null.");

  auto in_x_dims = ctx->GetInputDim("X");

C
chengduoZH 已提交
32
  std::string pooling_type = ctx->Attrs().Get<std::string>("pooling_type");
33 34 35 36 37
  std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");

  PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
C
chengduoZH 已提交
38
                 "Pooling intput should be 4-D or 5-D tensor.");
39

C
chengduoZH 已提交
40
  if (ctx->Attrs().Get<bool>("global_pooling")) {
41
    ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
C
fix bug  
chengduoZH 已提交
42 43
    for (size_t i = 0; i < ksize.size(); ++i) {
      paddings[i] = 0;
44
      ksize[i] = static_cast<int>(in_x_dims[i + 2]);
C
fix bug  
chengduoZH 已提交
45
    }
46
  }
47 48 49 50 51 52 53 54 55 56 57 58

  PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
                 "Input size and pooling size should be consistent.");
  PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
                    "Strides size and pooling size should be the same.");
  PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
                    "Paddings size and pooling size should be the same.");

  std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
  for (size_t i = 0; i < ksize.size(); ++i) {
    output_shape.push_back(
        OutputSizePool(in_x_dims[i + 2], ksize[i], paddings[i], strides[i]));
59
  }
60 61 62 63 64 65 66 67 68 69
  ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
}

void PoolOpGrad::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
  PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                 "Input(X@GRAD) should not be null.");
  ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}

70
Pool2dOpMaker::Pool2dOpMaker(OpProto *proto, OpAttrChecker *op_checker)
71 72 73
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "X",
C
chengduoZH 已提交
74
      "(Tensor) The input tensor of pooling operator. "
K
kexinzhao 已提交
75 76 77
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
78
  AddOutput("Out",
K
kexinzhao 已提交
79 80 81 82 83
            "(Tensor) The output tensor of pooling operator. "
            "The format of output tensor is also NCHW, "
            "where N is batch size, C is the number of channels, "
            "H is the height of the feature, "
            "and W is the width of the feature.");
84

C
chengduoZH 已提交
85
  AddAttr<std::string>("pooling_type",
C
chengduoZH 已提交
86 87
                       "(string), pooling type, can be \"max\" for max-pooling "
                       "and \"avg\" for average-pooling.")
88
      .InEnum({"max", "avg"});
C
fix bug  
chengduoZH 已提交
89
  AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
90 91
                            "(vector<int>) The pooling window "
                            "size(height, width) of the pooling operator. "
C
chengduoZH 已提交
92
                            "If global_pooling = true, ksize and paddings will "
C
fix bug  
chengduoZH 已提交
93 94
                            "be ignored.");  // TODO(Chengduo): Add checker.
                                             // (Currently,
C
fix doc  
chengduoZH 已提交
95
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
96
  AddAttr<bool>("global_pooling",
K
kexinzhao 已提交
97
                "(bool, default false) Whether to use the global pooling. "
C
chengduoZH 已提交
98
                "If global_pooling = true, ksize and paddings will be ignored.")
99
      .SetDefault(false);
K
kexinzhao 已提交
100 101 102
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default {1, 1}), strides(height, "
                            "width) of pooling operator.")
103
      .SetDefault({1, 1});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
104 105 106
  // TypedAttrChecker don't support vector type.)
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
107
      "(vector<int>, default {0,0}), paddings(height, width) of pooling "
K
kexinzhao 已提交
108
      "operator."
C
chengduoZH 已提交
109
      "If global_pooling = true, paddings and ksize will be ignored.")
110
      .SetDefault({0, 0});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
111
  // TypedAttrChecker don't support vector type.)
112 113

  AddComment(R"DOC(
K
kexinzhao 已提交
114 115
Pool2d Operator.

C
chengduoZH 已提交
116
The pooling2d operation calculates the output based on
C
chengduoZH 已提交
117
the input, pooling_type and ksize, strides, paddings parameters.
K
kexinzhao 已提交
118 119
Input(X) and output(Out) are in NCHW format, where N is batch size, C is the
number of channels, H is the height of the feature, and W is the width of the feature.
C
fix doc  
chengduoZH 已提交
120 121
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
C
chengduoZH 已提交
122 123
The input(X) size and output(Out) size may be different.

C
chengduoZH 已提交
124
Example:   
C
chengduoZH 已提交
125
  Input:
K
kexinzhao 已提交
126
       X shape: $(N, C, H_{in}, W_{in})$
C
chengduoZH 已提交
127
  Output:
K
kexinzhao 已提交
128
       Out shape: $(N, C, H_{out}, W_{out})$
C
chengduoZH 已提交
129
  Where
K
kexinzhao 已提交
130
       $$ 
C
chengduoZH 已提交
131 132
       H_{out} = \frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
K
kexinzhao 已提交
133 134
       $$

135
)DOC");
136 137
}

138
Pool3dOpMaker::Pool3dOpMaker(OpProto *proto, OpAttrChecker *op_checker)
139
    : OpProtoAndCheckerMaker(proto, op_checker) {
K
kexinzhao 已提交
140 141 142 143 144 145
  AddInput("X",
           "(Tensor) The input tensor of pooling operator. "
           "The format of input tensor is NCDHW, where N is batch size, C is "
           "the number of channels, and D, H and W is the depth, height and "
           "width of "
           "the feature, respectively.");
146
  AddOutput("Out",
C
chengduoZH 已提交
147
            "(Tensor) The output tensor of pooling operator."
K
kexinzhao 已提交
148 149 150 151
            "The format of output tensor is also NCDHW, "
            "where N is batch size, C is "
            "the number of channels, and D, H and W is the depth, height and "
            "width of the feature, respectively.");
152

C
chengduoZH 已提交
153
  AddAttr<std::string>("pooling_type",
K
kexinzhao 已提交
154
                       "(string) Pooling type, can be \"max\" for max-pooling "
C
chengduoZH 已提交
155
                       "and \"avg\" for average-pooling.")
156
      .InEnum({"max", "avg"});
K
kexinzhao 已提交
157 158 159 160
  AddAttr<std::vector<int>>(
      "ksize",
      "(vector<int>) The pooling window size(depth, height, "
      "width) of pooling operator. "
C
chengduoZH 已提交
161
      "If global_pooling = true, ksize and paddings will "
K
kexinzhao 已提交
162 163
      "be ignored.");  // TODO(Chengduo): Add checker.
                       // (Currently,
C
fix bug  
chengduoZH 已提交
164
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
165 166 167 168
  AddAttr<bool>(
      "global_pooling",
      "(bool, default false) Whether to use the global pooling. "
      "If global_pooling = true, ksize and paddings wille be ignored.")
169
      .SetDefault(false);
K
kexinzhao 已提交
170 171 172 173
  AddAttr<std::vector<int>>(
      "strides",
      "(vector<int>, default {1,1,1}) Strides(depth, height, "
      "width) of the pooling operator.")
174 175
      .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
176 177
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
178
      "(vector<int>, default {0,0,0}), paddings(depth, height, "
K
kexinzhao 已提交
179
      "width) of pooling operator. "
C
chengduoZH 已提交
180
      "If global_pooling = true, ksize and paddings will be ignored.")
181 182 183 184
      .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)

  AddComment(R"DOC(
K
kexinzhao 已提交
185 186
Pool3d Operator.

C
chengduoZH 已提交
187
The pooling3d operation calculates the output based on
C
chengduoZH 已提交
188
the input, pooling_type, ksize, strides, and paddings parameters.
K
kexinzhao 已提交
189 190 191 192 193
Input(X) and output(Out) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
width of the feature, respectively. Parameters(ksize, strides, paddings) 
are three elements. These three elements represent depth, height and 
width, respectively. The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
194 195 196

Example:
  Input:
K
kexinzhao 已提交
197
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
198
  Output:
K
kexinzhao 已提交
199
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
C
chengduoZH 已提交
200 201 202 203 204 205
  Where
  $$
       D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
  $$
K
kexinzhao 已提交
206

207
)DOC");
208
}
209 210 211 212 213 214 215 216
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP(pool2d, ops::PoolOp, ops::Pool2dOpMaker, pool2d_grad,
            ops::PoolOpGrad);

Q
QI JUN 已提交
217 218 219 220 221 222
REGISTER_OP_CPU_KERNEL(
    pool2d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool2d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>)
223 224 225 226

REGISTER_OP(pool3d, ops::PoolOp, ops::Pool3dOpMaker, pool3d_grad,
            ops::PoolOpGrad);

Q
QI JUN 已提交
227 228 229 230 231 232
REGISTER_OP_CPU_KERNEL(
    pool3d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool3d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);