pool_op.cc 7.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/pool_op.h"

namespace paddle {
namespace operators {

C
chengduoZH 已提交
20
int outputSize_pool(int input_size, int filter_size, int padding, int stride) {
21 22 23 24 25 26 27 28 29 30
  int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  return output_size;
}

class PoolOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
31 32 33 34 35
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
                            "X(Input) of Pooling should not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
                            "Out(Output) of Pooling should not be null.");
    //    PADDLE_ENFORCE_NOT_NULL(Attr<std::string>("poolingType"),
36 37 38
    //                            "pooling_type should not be null.");
    //    PADDLE_ENFORCE_NOT_NULL(Attr<std::vector<int>>("ksize"), "ksize should
    //    not be null.");
39
    auto in_X = ctx.Input<Tensor>("X");
C
chengduoZH 已提交
40
    auto out = ctx.Output<Tensor>("Out");
41 42
    int global_pooling = Attr<int>("globalPooling");
    std::string pooling_type = Attr<std::string>("poolingType");
43 44 45 46 47 48
    std::vector<int> ksize = Attr<std::vector<int>>("ksize");
    std::vector<int> strides = Attr<std::vector<int>>("strides");
    std::vector<int> paddings = Attr<std::vector<int>>("paddings");

    PADDLE_ENFORCE(pooling_type == "max" || pooling_type == "ave",
                   "pooling_type should be 'max' or 'ave'");
C
chengduoZH 已提交
49 50
    PADDLE_ENFORCE(in_X->dims().size() == 4 || in_X->dims().size() == 5,
                   "Pooling intput should be 4-D or 5-D");
51 52

    if (global_pooling == 1) {
C
chengduoZH 已提交
53 54 55
      ksize.resize(static_cast<size_t>(in_X->dims().size()) - 2);
      for (size_t i = 0; i < ksize.size(); ++i)
        ksize[i] = static_cast<int>(in_X->dims()[i + 2]);
56
    }
C
chengduoZH 已提交
57

58 59 60 61 62 63 64
    if (ksize.size() == 2) {
      PADDLE_ENFORCE_EQ(strides.size(), 2, "Pool2DOp strides should be 2-D.");
      PADDLE_ENFORCE_EQ(paddings.size(), 2, "Pool2DOp paddings should be 2-D.");
    } else {
      PADDLE_ENFORCE_EQ(strides.size(), 3, "Pool3DOp strides should be 3-D.");
      PADDLE_ENFORCE_EQ(paddings.size(), 3, "Pool3DOp paddings should be 3-D.");
    }
65
    std::vector<int64_t> output_shape({in_X->dims()[0], in_X->dims()[1]});
66
    for (size_t i = 0; i < ksize.size(); ++i) {
67
      output_shape.push_back(outputSize_pool(in_X->dims()[i + 2], ksize[i],
C
chengduoZH 已提交
68
                                             paddings[i], strides[i]));
69
    }
70
    out->Resize(framework::make_ddim(output_shape));
71 72 73 74 75 76 77 78 79
  }
};

class PoolOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
80
    auto in = ctx.Input<Tensor>("X");
C
chengduoZH 已提交
81
    auto d_in = ctx.Output<Tensor>(framework::GradVarName("X"));
82 83 84 85 86 87 88 89 90
    if (d_in) d_in->Resize(in->dims());
  }
};

class Pool3dOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  Pool3dOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(
91
        "X",
92 93 94 95
        "The input tensor of pooling operator. "
        "The format of input tensor is NCDHW. Where N is batch size, C is the "
        "number of channels, D, H and W is the depth, height and width of "
        "image.");
96
    AddOutput("Out",
97 98 99
              "The output tensor of pooling operator."
              "The format of output tensor is also NCDHW.");

100 101 102 103 104 105 106
    AddAttr<std::string>("poolingType",
                         "poolingType of pooling operator.['max' or 'ave']");
    AddAttr<std::vector<int>>(
        "ksize", "pooling size(depth, height, width) of pooling operator.");
    AddAttr<int>("globalPooling",
                 "default 0"
                 "whether to use the globalPooling.")
107
        .SetDefault(0);
108 109 110 111
    AddAttr<std::vector<int>>(
        "strides",
        "default {1,1,1}"
        "strides(depth, height, width) of pooling operator.")
112
        .SetDefault({1, 1, 1});
113 114 115 116
    AddAttr<std::vector<int>>(
        "paddings",
        "default {0,0,0}"
        "paddings(depth, height, width) of pooling operator.")
117 118 119
        .SetDefault({0, 0, 0});
    AddComment(R"DOC(
The pooling3d operation calculates the output based on
120
the input, poolingType and ksize, strides, paddings parameters.
121 122 123 124 125 126 127 128 129
)DOC");
  }
};

class Pool2dOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  Pool2dOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(
130
        "X",
131 132 133
        "The input tensor of pooling operator. "
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of image.");
134
    AddOutput("Out",
135 136 137
              "The output tensor of pooling operator."
              "The format of output tensor is also NCHW.");

138 139 140 141 142 143 144
    AddAttr<std::string>("poolingType",
                         "poolingType of pooling operator.['max' or 'ave']");
    AddAttr<std::vector<int>>(
        "ksize", "pooling size(height, width) of pooling operator.");
    AddAttr<int>("globalPooling",
                 "default 0"
                 "whether to use the globalPooling.[0 or 1]")
145
        .SetDefault(0);
146 147 148
    AddAttr<std::vector<int>>("strides",
                              "default {1, 1}"
                              "strides(height, width) of pooling operator.")
149
        .SetDefault({1, 1});
150 151 152
    AddAttr<std::vector<int>>("paddings",
                              "default {0, 0}"
                              "paddings(height, width) of pooling operator.")
153 154 155
        .SetDefault({0, 0});
    AddComment(R"DOC(
The pooling2d operation calculates the output based on
156
the input, poolingType and ksize, strides, paddings parameters.
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
)DOC");
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP(pool2d, ops::PoolOp, ops::Pool2dOpMaker, pool2d_grad,
            ops::PoolOpGrad);

REGISTER_OP_CPU_KERNEL(pool2d,
                       ops::PoolKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(pool2d_grad,
                       ops::PoolGradKernel<paddle::platform::CPUPlace, float>)

REGISTER_OP(pool3d, ops::PoolOp, ops::Pool3dOpMaker, pool3d_grad,
            ops::PoolOpGrad);

REGISTER_OP_CPU_KERNEL(pool3d,
                       ops::PoolKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(pool3d_grad,
                       ops::PoolGradKernel<paddle::platform::CPUPlace, float>);