pool_op.cc 8.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/pool_op.h"

namespace paddle {
namespace operators {

C
chengduoZH 已提交
20
int OutputSizePool(int input_size, int filter_size, int padding, int stride) {
21 22 23 24
  int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  return output_size;
}

25 26 27 28 29 30 31
void PoolOp::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"), "X(Input) of Pooling should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Out"),
                 "Out(Output) of Pooling should not be null.");

  auto in_x_dims = ctx->GetInputDim("X");

C
fix doc  
chengduoZH 已提交
32
  std::string pooling_type = ctx->Attrs().Get<std::string>("poolingType");
33 34 35 36 37
  std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");

  PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
C
chengduoZH 已提交
38
                 "Pooling intput should be 4-D or 5-D tensor.");
39

C
fix doc  
chengduoZH 已提交
40
  if (ctx->Attrs().Get<bool>("globalPooling")) {
41 42 43
    ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
    for (size_t i = 0; i < ksize.size(); ++i)
      ksize[i] = static_cast<int>(in_x_dims[i + 2]);
44
  }
45 46 47 48 49 50 51 52 53 54 55 56

  PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
                 "Input size and pooling size should be consistent.");
  PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
                    "Strides size and pooling size should be the same.");
  PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
                    "Paddings size and pooling size should be the same.");

  std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
  for (size_t i = 0; i < ksize.size(); ++i) {
    output_shape.push_back(
        OutputSizePool(in_x_dims[i + 2], ksize[i], paddings[i], strides[i]));
57
  }
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
  ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
}

void PoolOpGrad::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
  PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                 "Input(X@GRAD) should not be null.");
  ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}

Pool2dOpMaker::Pool2dOpMaker(framework::OpProto *proto,
                             framework::OpAttrChecker *op_checker)
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "X",
C
chengduoZH 已提交
73
      "(Tensor) The input tensor of pooling operator. "
74 75 76
      "The format of input tensor is NCHW. Where N is batch size, C is the "
      "number of channels, H and W is the height and width of feature.");
  AddOutput("Out",
C
chengduoZH 已提交
77
            "(Tensor) The output tensor of pooling operator."
78 79 80 81 82
            "The format of output tensor is also NCHW."
            "Where N is batch size, C is "
            "the number of channels, H and W is the height and "
            "width of feature.");

C
fix doc  
chengduoZH 已提交
83 84
  AddAttr<std::string>("poolingType",
                       "(string), poolingType of pooling operator."
85 86 87 88
                       "Str constant equal to 'max' or 'avg'.")
      .InEnum({"max", "avg"});
  AddAttr<std::vector<int>>(
      "ksize",
C
fix doc  
chengduoZH 已提交
89 90
      "(vector ), the pooling window size(height, width) of pooling operator."
      "If globalPooling = true, ksize is ignored and need not be "
91
      "specified.");  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
92
  // TypedAttrChecker don't support vector type.)
93
  AddAttr<bool>(
C
fix doc  
chengduoZH 已提交
94 95 96
      "globalPooling",
      "(bool default: false), whether to use the global pooling."
      "If globalPooling = true, ksize is ignored and need not be specified.")
97
      .SetDefault(false);
C
fix doc  
chengduoZH 已提交
98 99 100
  AddAttr<std::vector<int>>(
      "strides",
      "(vector, default:{1, 1}), strides(height, width) of pooling operator.")
101
      .SetDefault({1, 1});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
102 103 104 105
  // TypedAttrChecker don't support vector type.)
  AddAttr<std::vector<int>>(
      "paddings",
      "(vector defalut:{0,0}), paddings(height, width) of pooling operator.")
106
      .SetDefault({0, 0});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
107
  // TypedAttrChecker don't support vector type.)
108 109

  AddComment(R"DOC(
C
chengduoZH 已提交
110
The pooling2d operation calculates the output based on
111
the input, poolingType and ksize, strides, paddings parameters.
C
fix doc  
chengduoZH 已提交
112 113 114 115
Input(X) and output(Out) are in NCHW format. Where N is batch size, C is the
number of channels, H and W is the height and width of feature.
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
C
chengduoZH 已提交
116 117 118 119 120 121 122 123 124 125
The input(X) size and output(Out) size may be different.

Example:
  Input:
       X shape: (N, C, H_in, W_in)
  Output:
       Out shape: (N, C, H_out, W_out)
  where
       H_out = (H_in - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
       W_out = (W_in - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
126
)DOC");
127 128 129 130 131 132 133
}

Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto,
                             framework::OpAttrChecker *op_checker)
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "X",
C
chengduoZH 已提交
134
      "(Tensor) The input tensor of pooling operator. "
135 136 137 138
      "The format of input tensor is NCDHW. Where N is batch size, C is "
      "the number of channels, D, H and W is the depth, height and width of "
      "feature.");
  AddOutput("Out",
C
chengduoZH 已提交
139
            "(Tensor) The output tensor of pooling operator."
140 141 142 143 144
            "The format of output tensor is also NCDHW."
            "Where N is batch size, C is "
            "the number of channels, D, H and W is the depth, height and "
            "width of feature.");

C
fix doc  
chengduoZH 已提交
145 146
  AddAttr<std::string>("poolingType",
                       "(string), poolingType of pooling operator."
147 148 149 150
                       "Str constant equal to 'max' or 'avg'.")
      .InEnum({"max", "avg"});
  AddAttr<std::vector<int>>(
      "ksize",
C
fix doc  
chengduoZH 已提交
151 152 153
      "(vector ), the pooling window size(depth, height, width) of pooling "
      "operator."
      "If globalPooling = true, ksize is ignored and need not be "
154 155 156
      "specified.");  // TODO(Chengduo): Add checker. (Currently,
                      // TypedAttrChecker don't support vector type.)
  AddAttr<bool>(
C
fix doc  
chengduoZH 已提交
157 158 159
      "globalPooling",
      "(bool default: false), whether to use the global pooling."
      "If globalPooling = true, ksize is ignored and need not be specified.")
160 161
      .SetDefault(false);
  AddAttr<std::vector<int>>("strides",
C
fix doc  
chengduoZH 已提交
162 163
                            "(vector, default:{1,1,1}), strides(depth, height, "
                            "width) of pooling operator.")
164 165
      .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
C
fix doc  
chengduoZH 已提交
166 167 168
  AddAttr<std::vector<int>>("paddings",
                            "(vector defalut:{0,0,0}), paddings(depth, height, "
                            "width) of pooling operator.")
169 170 171 172
      .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)

  AddComment(R"DOC(
C
chengduoZH 已提交
173
The pooling3d operation calculates the output based on
174
the input, poolingType and ksize, strides, paddings parameters.
C
fix doc  
chengduoZH 已提交
175 176 177 178
Input(X) and output(Out) are in NCDHW format. Where N is batch
size, C is the number of channels, D, H and W is the depth, height and
width of feature. Parameters(ksize, strides, paddings) are three elements.
These three elements represent depth, height and width, respectively.
C
chengduoZH 已提交
179 180 181 182 183 184 185 186 187 188 189
The input(X) size and output(Out) size may be different.

Example:
  Input:
       X shape: (N, C, D_in, H_in, W_in)
  Output:
       Out shape: (N, C, D_out, H_out, W_out)
  where
       D_out = (D_in - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
       H_out = (H_in - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
       W_out = (W_in - ksize[2] + 2 * paddings[2]) / strides[2] + 1;
190
)DOC");
191
}
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP(pool2d, ops::PoolOp, ops::Pool2dOpMaker, pool2d_grad,
            ops::PoolOpGrad);

REGISTER_OP_CPU_KERNEL(pool2d,
                       ops::PoolKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(pool2d_grad,
                       ops::PoolGradKernel<paddle::platform::CPUPlace, float>)

REGISTER_OP(pool3d, ops::PoolOp, ops::Pool3dOpMaker, pool3d_grad,
            ops::PoolOpGrad);

REGISTER_OP_CPU_KERNEL(pool3d,
                       ops::PoolKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(pool3d_grad,
                       ops::PoolGradKernel<paddle::platform::CPUPlace, float>);