tracer.py 4.5 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import six

from collections import defaultdict
from paddle.fluid import core
from paddle.fluid import framework

__all__ = ['Tracer']


def release_op(op):
M
minqiyang 已提交
27
    del framework._dygraph_tracer()._ops[op._trace_id].inputs
28 29
    del framework._dygraph_tracer()._ops[op._trace_id].outputs
    del framework._dygraph_tracer()._ops[op._trace_id].backward_refs
M
minqiyang 已提交
30 31 32 33


class Tracer(core.Tracer):
    """
L
lujun 已提交
34
    Python wrapper of dygraph tracer
M
minqiyang 已提交
35 36 37 38 39 40
    """

    def __init__(self, block):
        super(Tracer, self).__init__(block)

        self._ops = defaultdict()
41
        self._vars = defaultdict()
M
minqiyang 已提交
42
        self._trace_id = 0
M
minqiyang 已提交
43
        self._train_mode = True
M
minqiyang 已提交
44

45 46 47 48 49 50 51
    def trace_var(self, name, var):
        self._vars[name] = var

    def all_parameters(self):
        return list((item for name, item in six.iteritems(self._vars)
                     if isinstance(item, framework.Parameter)))

52 53 54 55
    def _clear_ops(self):
        self._ops = defaultdict()
        self._trace_id = 0

M
minqiyang 已提交
56 57 58
    def trace_op(self, op, inputs, outputs, stop_gradient=False):
        # TODO(minqiyang): remove this line after we take apart all
        # backward grads and forward variables
M
minqiyang 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
        if self._train_mode:
            op.inputs = inputs
            inps = defaultdict(list)
            for k, vars in six.iteritems(inputs):
                if isinstance(vars, framework.Variable):
                    inps[k].append(vars._ivar)
                elif isinstance(vars, list) or isinstance(vars, tuple):
                    for var in vars:
                        inps[k].append(var._ivar)

            op.outputs = outputs
            outs = defaultdict(list)
            for k, vars in six.iteritems(outputs):
                if isinstance(vars, framework.Variable):
                    outs[k].append(vars._ivar)
                elif isinstance(vars, list) or isinstance(vars, tuple):
                    for var in vars:
                        outs[k].append(var._ivar)
        else:
            inps = defaultdict(list)
            for k, vars in six.iteritems(inputs):
                if isinstance(vars, framework.Variable):
                    op.previous_ops.append(vars.op)
                    inps[k].append(vars._ivar)
                elif isinstance(vars, list) or isinstance(vars, tuple):
                    for var in vars:
                        op.previous_ops.append(var.op)
                        inps[k].append(var._ivar)

            op.outputs = outputs
            outs = defaultdict(list)
            for k, vars in six.iteritems(outputs):
                if isinstance(vars, framework.Variable):
                    vars.op = op
                    outs[k].append(vars._ivar)
                elif isinstance(vars, list) or isinstance(vars, tuple):
                    for var in vars:
                        var.op = op
                        outs[k].append(var._ivar)
M
minqiyang 已提交
98

M
minqiyang 已提交
99 100
        # record op's trace id
        op.iop._trace_id = self._trace_id
X
polish  
Xin Pan 已提交
101

M
minqiyang 已提交
102
        backward_refs = self.trace(op.iop, inps, outs, op.attrs,
M
minqiyang 已提交
103 104 105
                                   framework._current_expected_place(),
                                   stop_gradient)

M
minqiyang 已提交
106
        if not stop_gradient and self._train_mode:
107
            self._trace_id += 1
M
minqiyang 已提交
108 109 110 111 112 113
            self._ops[op.iop._trace_id] = op

            # register backward hooks and variables if needed
            if len(backward_refs) > 0:
                op.iop.register_backward_hooks(release_op)

X
polish  
Xin Pan 已提交
114
                # TODO(minqiyang): remove all inputs and outputs after separate
M
minqiyang 已提交
115
                # var and grad
M
minqiyang 已提交
116
                op.backward_refs = defaultdict(list)
M
minqiyang 已提交
117
                for k, v in six.iteritems(inputs):
M
minqiyang 已提交
118
                    if k in backward_refs:
M
minqiyang 已提交
119
                        op.backward_refs[k] = inputs[k]
M
minqiyang 已提交
120

M
minqiyang 已提交
121
                for k, v in six.iteritems(outputs):
M
minqiyang 已提交
122
                    if k in backward_refs:
M
minqiyang 已提交
123
                        op.backward_refs[k] = outputs[k]
M
minqiyang 已提交
124

M
minqiyang 已提交
125
    def train_mode(self):
M
minqiyang 已提交
126 127
        self._train_mode = True

M
minqiyang 已提交
128
    def eval_mode(self):
M
minqiyang 已提交
129
        self._train_mode = False