tracer.py 3.3 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import six

from collections import defaultdict
from paddle.fluid import core
from paddle.fluid import framework

__all__ = ['Tracer']


def release_op(op):
M
minqiyang 已提交
27
    del framework._dygraph_tracer()._ops[op._trace_id].inputs
M
minqiyang 已提交
28 29 30 31


class Tracer(core.Tracer):
    """
L
lujun 已提交
32
    Python wrapper of dygraph tracer
M
minqiyang 已提交
33 34 35 36 37 38
    """

    def __init__(self, block):
        super(Tracer, self).__init__(block)

        self._ops = defaultdict()
39
        self._vars = defaultdict()
M
minqiyang 已提交
40 41
        self._trace_id = 0

42 43 44 45 46 47 48
    def trace_var(self, name, var):
        self._vars[name] = var

    def all_parameters(self):
        return list((item for name, item in six.iteritems(self._vars)
                     if isinstance(item, framework.Parameter)))

M
minqiyang 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
    def trace_op(self, op, inputs, outputs, stop_gradient=False):
        # TODO(minqiyang): remove this line after we take apart all
        # backward grads and forward variables
        op.inputs = inputs
        inps = defaultdict(list)
        for k, vars in six.iteritems(inputs):
            if isinstance(vars, framework.Variable):
                op.previous_ops.append(vars.op)
                inps[k].append(vars._ivar)
            elif isinstance(vars, list) or isinstance(vars, tuple):
                for var in vars:
                    op.previous_ops.append(var.op)
                    inps[k].append(var._ivar)

        outs = defaultdict(list)
        for k, vars in six.iteritems(outputs):
            if isinstance(vars, framework.Variable):
                vars.op = op
                outs[k].append(vars._ivar)
            elif isinstance(vars, list) or isinstance(vars, tuple):
                for var in vars:
                    var.op = op
                    outs[k].append(var._ivar)

M
minqiyang 已提交
73 74
        # record op's trace id
        op.iop._trace_id = self._trace_id
X
polish  
Xin Pan 已提交
75

M
minqiyang 已提交
76
        backward_refs = self.trace(op.iop, inps, outs, op.attrs,
M
minqiyang 已提交
77 78 79 80
                                   framework._current_expected_place(),
                                   stop_gradient)

        if not stop_gradient:
81
            self._trace_id += 1
M
minqiyang 已提交
82 83 84 85 86 87
            self._ops[op.iop._trace_id] = op

            # register backward hooks and variables if needed
            if len(backward_refs) > 0:
                op.iop.register_backward_hooks(release_op)

X
polish  
Xin Pan 已提交
88
                # TODO(minqiyang): remove all inputs and outputs after separate
M
minqiyang 已提交
89
                # var and grad
M
minqiyang 已提交
90
                op.backward_refs = defaultdict(list)
M
minqiyang 已提交
91
                for k, v in six.iteritems(inputs):
M
minqiyang 已提交
92
                    if k in backward_refs:
M
minqiyang 已提交
93
                        op.backward_refs[k] = inputs[k]
M
minqiyang 已提交
94

M
minqiyang 已提交
95
                for k, v in six.iteritems(outputs):
M
minqiyang 已提交
96
                    if k in backward_refs:
M
minqiyang 已提交
97
                        op.backward_refs[k] = outputs[k]