distribute_transpiler.py 26.0 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
typhoonzero 已提交
15
from __future__ import print_function
T
done  
typhoonzero 已提交
16
import framework
17
from framework import Program, default_main_program, default_startup_program, Parameter, Variable
T
done  
typhoonzero 已提交
18 19
import optimizer
from layer_helper import LayerHelper
T
typhoonzero 已提交
20
from distributed_spliter import *
T
typhoonzero 已提交
21
import math
22
from . import core
T
done  
typhoonzero 已提交
23 24


T
typhoonzero 已提交
25 26 27 28 29 30
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
31

T
typhoonzero 已提交
32 33
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
34 35


36 37 38 39
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


T
typhoonzero 已提交
40 41 42 43 44
def split_dense_variable(var_list,
                         pserver_count,
                         min_block_size=1024,
                         max_block_size=1048576):
    """
45
        We may need to split dense tensor to one or more blocks and put
T
typhoonzero 已提交
46 47
        them equally onto parameter server. One block is a sub-tensor
        aligned by dim[0] of the tensor.
48

T
typhoonzero 已提交
49 50
        We need to have a minimal block size so that the calculations in
        the parameter server side can gain better performance. By default
51 52
        minimum block size is 1024. The max block size is used to prevent
        very large blocks that may cause send error.
T
typhoonzero 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    """
    blocks = []
    for var in var_list:
        split_count = pserver_count
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
        if max_pserver_count < pserver_count:
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
71
        # update split_count after aligning
T
typhoonzero 已提交
72 73 74 75 76 77 78 79 80
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


T
done  
typhoonzero 已提交
81 82 83 84
class DistributeTranspiler:
    def transpile(self,
                  optimize_ops,
                  params_grads,
T
typhoonzero 已提交
85
                  trainer_id,
T
done  
typhoonzero 已提交
86 87 88 89 90
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  split_method=round_robin):
        """
91 92
            Transpile the program to distributed data-parallelism programs.
            The main_program will be transformed to use a remote parameter server
T
done  
typhoonzero 已提交
93
            to do parameter optimization. And the optimization graph will be put
94
            into a parameter server program.
T
done  
typhoonzero 已提交
95

96
            Use different methods to split trainable variables to different
T
done  
typhoonzero 已提交
97 98 99
            parameter servers.

            :param optimize_ops: op list of optimization, should be the
100
                                    return value of Optimizer.minimize
T
done  
typhoonzero 已提交
101
            :type optimize_ops: list
T
typhoonzero 已提交
102 103 104 105
            :param params_grads: list of tuple(weight, gradient)
            :type params_grads: list
            :param trainer_id: one unique id for each trainer in a job.
            :type trainer_id: int
106
            :param program: program to optimize, default is default_main_program
T
typhoonzero 已提交
107
            :type program: Program
T
done  
typhoonzero 已提交
108 109
            :param pservers: parameter server endpoints like "m1:6174,m2:6174"
            :type pservers: string
T
typhoonzero 已提交
110 111 112 113 114
            :param trainers: total number of workers/trainers in the job
            :type trainers: int
            :param split_method: A function to determin how to split variables
                to different servers equally.
            :type split_method: function
T
done  
typhoonzero 已提交
115
        """
T
typhoonzero 已提交
116
        assert (callable(split_method))
T
done  
typhoonzero 已提交
117 118
        if program is None:
            program = default_main_program()
T
typhoonzero 已提交
119
        self.program = program
T
done  
typhoonzero 已提交
120
        self.trainers = trainers
T
typhoonzero 已提交
121
        self.optimize_ops = optimize_ops
T
typhoonzero 已提交
122 123 124 125 126
        # TODO(typhoonzero): currently trainer_id is fetched from cluster system
        # like Kubernetes, we should port this to use etcd later when developing
        # fluid distributed training with fault-tolerance.
        self.trainer_id = trainer_id

T
typhoonzero 已提交
127
        # steps to transpile:
128
        # 1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
T
typhoonzero 已提交
129 130 131
        # 2. modify trainer program add split_op to each Grad.
        # 3. append send_op to trainer.
        # 4. append concat_op to trainer to update local weights.
132
        # 5. create new program for parameter server.
T
typhoonzero 已提交
133
        # 6. create parameter server program by split_method generated endpoint->VarBlock
134
        # 7. update startup_program, rename variables to variables with trainer_id
T
typhoonzero 已提交
135

T
typhoonzero 已提交
136
        pserver_endpoints = pservers.split(",")
T
typhoonzero 已提交
137 138

        # step1
T
typhoonzero 已提交
139 140
        param_list = [pg[0] for pg in params_grads]
        grad_list = [pg[1] for pg in params_grads]
T
typhoonzero 已提交
141
        # TODO: add split selected rows support
T
typhoonzero 已提交
142 143
        grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
        param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
T
typhoonzero 已提交
144
        # step2
T
typhoonzero 已提交
145
        grad_var_mapping = self._append_split_op(program, grad_blocks)
T
typhoonzero 已提交
146 147 148

        # step3
        send_inputs = []
T
typhoonzero 已提交
149
        send_outputs = []
T
typhoonzero 已提交
150 151 152 153
        for b in grad_blocks:  # append by order
            varname, block_id, _ = b.split(":")
            send_inputs.append(grad_var_mapping[varname][int(block_id)])

T
typhoonzero 已提交
154 155
        param_var_mapping = self._create_vars_from_blocklist(program,
                                                             param_blocks)
T
typhoonzero 已提交
156 157 158
        for b in param_blocks:
            varname, block_id, _ = b.split(":")
            send_outputs.append(param_var_mapping[varname][int(block_id)])
159 160
        # let send_op know which endpoint to send which var to, eplist has the same
        # order as send_inputs.
T
typhoonzero 已提交
161
        eplist = split_method(send_inputs, pserver_endpoints)
162
        # create mapping of endpoint -> split var to create pserver side program
T
typhoonzero 已提交
163 164 165 166 167 168 169 170
        self.param_grad_ep_mapping = dict()
        for i, ep in enumerate(eplist):
            param = send_outputs[i]
            grad = send_inputs[i]
            if not self.param_grad_ep_mapping.has_key(ep):
                self.param_grad_ep_mapping[ep] = {"params": [], "grads": []}
            self.param_grad_ep_mapping[ep]["params"].append(param)
            self.param_grad_ep_mapping[ep]["grads"].append(grad)
T
typhoonzero 已提交
171

T
typhoonzero 已提交
172 173 174 175 176 177
        rpc_client_var = program.global_block().create_var(
            name="RPC_CLIENT_VAR",
            psersistable=True,
            dtype='float32',  # dtype and shape is not used in fact
            shape=[0])

178
        # create send_op
T
typhoonzero 已提交
179 180 181
        send_op = program.global_block().append_op(
            type="send",
            inputs={"X": send_inputs},
T
typhoonzero 已提交
182 183
            outputs={"Out": send_outputs,
                     "RPCClient": rpc_client_var},
T
typhoonzero 已提交
184
            attrs={"endpoints": pserver_endpoints,
T
typhoonzero 已提交
185 186 187
                   "epmap": eplist})
        # step4
        for varname, splited_var in param_var_mapping.iteritems():
T
typhoonzero 已提交
188 189
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
190 191 192
            orig_param = program.global_block().vars[varname]
            concat = program.global_block().append_op(
                type="concat",
T
typhoonzero 已提交
193
                inputs={"X": splited_var},
T
typhoonzero 已提交
194
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
195
                attrs={"axis": 0})
T
typhoonzero 已提交
196

197 198 199 200 201 202 203 204 205
        # step 7
        startup_prog = default_startup_program()
        for varname in startup_prog.global_block().vars.keys():
            if varname in param_var_mapping and \
                len(param_var_mapping[varname]) == 1:
                new_var_name = "%s.trainer_%d" % \
                    (varname, self.trainer_id)
                startup_prog.global_block().rename_var(varname, new_var_name)

T
typhoonzero 已提交
206
    def _create_vars_from_blocklist(self, program, block_list):
207
        # Create respective variables using the block_list
T
typhoonzero 已提交
208
        block_map = dict()
T
typhoonzero 已提交
209
        var_mapping = dict()
T
typhoonzero 已提交
210 211 212 213 214 215
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
T
typhoonzero 已提交
216
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
217
            if len(splited) == 1:
T
typhoonzero 已提交
218 219 220 221 222 223
                # rename var to the trainer_id var
                new_var_name = "%s.trainer_%d" % \
                    (orig_var.name, self.trainer_id)
                program.global_block().rename_var(varname, new_var_name)
                var_mapping[varname] = \
                    [program.global_block().var(new_var_name)]
T
typhoonzero 已提交
224
                continue
T
typhoonzero 已提交
225 226

            var_mapping[varname] = []
T
typhoonzero 已提交
227 228 229 230
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
231

T
typhoonzero 已提交
232
            for i, block in enumerate(splited):
T
typhoonzero 已提交
233
                size = block[1]
T
typhoonzero 已提交
234 235 236 237
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
238
                var = program.global_block().create_var(
T
typhoonzero 已提交
239 240
                    name="%s.block%d.trainer_%d" %
                    (varname, i, self.trainer_id),
T
typhoonzero 已提交
241 242
                    psersistable=False,
                    dtype=orig_var.dtype,
T
typhoonzero 已提交
243
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
244
                var_mapping[varname].append(var)
T
typhoonzero 已提交
245
            program.global_block().sync_with_cpp()
T
typhoonzero 已提交
246
        return var_mapping
T
done  
typhoonzero 已提交
247 248 249 250 251 252 253 254 255

    def _clone_var(self, block, var):
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
256
            # HACK: let all param in pserver be persistable so the child
T
typhoonzero 已提交
257 258
            # program in recv can get them
            persistable=True)
T
done  
typhoonzero 已提交
259

T
typhoonzero 已提交
260
    def _append_split_op(self, program, gradblocks):
261
        # Split variables that need to be split and append respective ops
T
typhoonzero 已提交
262 263
        var_mapping = self._create_vars_from_blocklist(program, gradblocks)
        for varname, splited_vars in var_mapping.iteritems():
T
typhoonzero 已提交
264 265
            # variable that don't need to split have empty splited_vars
            if len(splited_vars) <= 1:
T
typhoonzero 已提交
266
                continue
T
typhoonzero 已提交
267
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
268
            if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
269 270 271 272 273 274 275 276
                height_sections = []
                for v in splited_vars:
                    height_sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split_selected_rows",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"height_sections": height_sections})
T
typhoonzero 已提交
277
            elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
278 279 280 281 282 283 284 285 286 287 288 289
                sections = []
                for v in splited_vars:
                    sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"sections": sections}  # assume split evenly
                )
            else:
                AssertionError("Variable type should be in set "
                               "[LOD_TENSOR, SELECTED_ROWS]")
T
typhoonzero 已提交
290
        return var_mapping
T
done  
typhoonzero 已提交
291

T
typhoonzero 已提交
292
    def get_trainer_program(self):
T
typhoonzero 已提交
293
        # remove optimize ops and add a send op to main_program
T
typhoonzero 已提交
294 295
        self.program.global_block().delete_ops(self.optimize_ops)
        return self.program
T
typhoonzero 已提交
296

T
done  
typhoonzero 已提交
297
    def _create_var_for_trainers(self, block, var, trainers):
298
        # For each trainer, create the necessary variables
T
done  
typhoonzero 已提交
299 300 301 302 303 304 305 306 307 308
        var_list = []
        for i in xrange(trainers):
            var_each = block.create_var(
                name="%s.trainer_%d" % (var.name, i),
                psersistable=var.persistable,
                dtype=var.dtype,
                shape=var.shape)
            var_list.append(var_each)
        return var_list

T
typhoonzero 已提交
309 310 311 312
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
313
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

T
typhoonzero 已提交
336 337 338
    def _op_input_var(self, op, varname):
        pass

T
typhoonzero 已提交
339 340 341 342 343 344 345 346 347
    def _is_op_on_pserver(self, endpoint, all_ops, idx):
        """
        Recursively check if the op need to run on current server.
        Assume that ops are in the execution order.
        """
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
        op = all_ops[idx]
T
typhoonzero 已提交
348 349 350 351 352
        input_names = set(op.input_names)
        # TODO(typhoonzero): using Param and Grad input name to identify
        # that the operator is an optimization operator, need a better way.
        if "Param" in input_names:
            if op.input("Param")[0] in param_names:
T
typhoonzero 已提交
353 354 355
                return True
            else:
                for n in param_names:
T
typhoonzero 已提交
356 357
                    if same_or_split_var(n, op.input("Param")[0]) \
                            and n != op.input("Param")[0]:
T
typhoonzero 已提交
358 359 360 361 362 363
                        return True
                return False
        else:
            j = idx - 1
            while j >= 0:
                prev_op = all_ops[j]
T
typhoonzero 已提交
364 365 366 367 368
                # prev_output_names = [o.name for o in prev_op.outputs.values()]
                # prev_input_names = [o.name for o in prev_op.inputs.values()]
                # NOTE(typhoonzero): consider list input/output
                prev_output_names = prev_op.desc.output_arg_names()
                prev_input_names = prev_op.desc.input_arg_names()
T
typhoonzero 已提交
369 370
                found1 = False
                found2 = False
T
typhoonzero 已提交
371 372
                for varname in op.desc.input_arg_names():
                    if varname in prev_output_names:
T
typhoonzero 已提交
373 374
                        found1 = self._is_op_on_pserver(endpoint, all_ops, j)
                # later ops may produce output for prev op's next batch use.
T
typhoonzero 已提交
375 376
                for varname in op.desc.output_arg_names():
                    if varname in prev_input_names:
T
typhoonzero 已提交
377 378 379 380 381 382
                        found2 = self._is_op_on_pserver(endpoint, all_ops, j)
                if found1 or found2:
                    return True
                j -= 1
            return False

383 384
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint):
        program = optimize_block.program
T
typhoonzero 已提交
385
        new_inputs = dict()
T
typhoonzero 已提交
386 387
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
388
        for key in opt_op.input_names:
T
typhoonzero 已提交
389 390 391
            if key == "Grad":
                grad_block = None
                for g in self.param_grad_ep_mapping[endpoint]["grads"]:
T
typhoonzero 已提交
392
                    if same_or_split_var(g.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
393 394 395 396 397 398
                        grad_block = g
                        break
                if not grad_block:
                    # do not append this op if current endpoint
                    # is not dealing with this grad block
                    return
T
typhoonzero 已提交
399
                merged_var = program.global_block().create_var(
T
typhoonzero 已提交
400 401 402 403 404 405
                    name=grad_block.name,
                    persistable=grad_block.persistable,
                    dtype=grad_block.dtype,
                    shape=grad_block.shape)
                # append merging ops if trainers > 1
                if self.trainers > 1:
T
done  
typhoonzero 已提交
406
                    vars2merge = self._create_var_for_trainers(
T
typhoonzero 已提交
407
                        program.global_block(), grad_block, self.trainers)
408
                    optimize_block.append_op(
T
done  
typhoonzero 已提交
409 410 411
                        type="sum",
                        inputs={"X": vars2merge},
                        outputs={"Out": merged_var})
412
                    optimize_block.append_op(
T
done  
typhoonzero 已提交
413 414 415 416
                        type="scale",
                        inputs={"X": merged_var},
                        outputs={"Out": merged_var},
                        attrs={"scale": 1.0 / float(self.trainers)})
T
typhoonzero 已提交
417 418 419 420 421
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
422
                    if same_or_split_var(p.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
423 424 425 426
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
427
                tmpvar = program.global_block().create_var(
T
typhoonzero 已提交
428
                    name=param_block.name,
T
typhoonzero 已提交
429
                    persistable=True,
T
typhoonzero 已提交
430 431
                    dtype=param_block.dtype,
                    shape=param_block.shape)
T
typhoonzero 已提交
432

T
typhoonzero 已提交
433
                new_inputs[key] = tmpvar
T
typhoonzero 已提交
434

T
typhoonzero 已提交
435
        for key in opt_op.input_names:
T
typhoonzero 已提交
436 437 438 439
            if key in ["Param", "Grad"]:
                continue
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
T
typhoonzero 已提交
440
            var = program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
441 442 443 444 445 446 447 448
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
            tmpvar = program.global_block().create_var(
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
449

450
        # change output's ParamOut variable
T
typhoonzero 已提交
451 452
        outputs = self._get_output_map_from_op(program.global_block(), opt_op)
        outputs["ParamOut"] = new_inputs["Param"]
453
        optimize_block.append_op(
T
typhoonzero 已提交
454 455
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
456
            outputs=outputs,
T
typhoonzero 已提交
457 458
            attrs=opt_op.attrs)

459 460
    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
        program = optimize_block.program
461
        # Append the ops for parameters that do not need to be optimized/updated
T
typhoonzero 已提交
462 463 464 465 466 467 468 469
        inputs = self._get_input_map_from_op(self.program.global_block().vars,
                                             opt_op)
        for var in inputs.itervalues():
            if type(var) == list:
                varlist = var
            else:
                varlist = [var]
            for var in varlist:
470 471
                if not program.global_block().vars.has_key(var.name):
                    program.global_block().create_var(
T
typhoonzero 已提交
472 473 474 475 476 477 478 479
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

        outputs = self._get_output_map_from_op(self.program.global_block().vars,
                                               opt_op)

480
        optimize_block.append_op(
T
typhoonzero 已提交
481
            type=opt_op.type,
T
typhoonzero 已提交
482 483
            inputs=inputs,
            outputs=outputs,
T
typhoonzero 已提交
484 485
            attrs=opt_op.attrs)

486
    def get_pserver_program(self, endpoint):
T
typhoonzero 已提交
487
        """
488
        Get pserver side program using the endpoint
T
typhoonzero 已提交
489 490 491 492 493 494 495 496

        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch. For each pserver endpoint, server side
        program must be a sub-set of the original optimization program.
        """
        # step5
        pserver_program = Program()
T
typhoonzero 已提交
497
        recv_inputs = []
T
typhoonzero 已提交
498
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
499
            self._clone_var(pserver_program.global_block(), v)
T
typhoonzero 已提交
500 501 502 503 504 505
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            pserver_program.global_block().create_var(
                name=v.name, persistable=True, dtype=v.dtype, shape=v.shape)
            for trainer_id in xrange(self.trainers):
T
typhoonzero 已提交
506 507 508 509 510 511 512
                # change client side var name to origin name by
                # removing ".trainer_%d" suffix
                suff_idx = v.name.find(".trainer_")
                if suff_idx >= 0:
                    orig_var_name = v.name[:suff_idx]
                var = pserver_program.global_block().create_var(
                    name="%s.trainer_%d" % (orig_var_name, trainer_id),
T
typhoonzero 已提交
513 514 515
                    persistable=True,
                    dtype=v.dtype,
                    shape=v.shape)
T
typhoonzero 已提交
516
                recv_inputs.append(var)
T
typhoonzero 已提交
517
        # step6
518
        optimize_block = pserver_program.create_block(0)
519
        # Iterate through the ops and append ops as needed
520 521 522
        for idx, opt_op in enumerate(self.optimize_ops):
            is_op_on_pserver = self._is_op_on_pserver(endpoint,
                                                      self.optimize_ops, idx)
T
typhoonzero 已提交
523 524
            if not is_op_on_pserver:
                continue
T
typhoonzero 已提交
525
            if "Grad" in opt_op.desc.input_arg_names():
526
                self._append_pserver_ops(optimize_block, opt_op, endpoint)
T
typhoonzero 已提交
527
            else:
528 529
                self._append_pserver_non_opt_ops(optimize_block, opt_op)

530
        # Append the listen_and_serv op
T
done  
typhoonzero 已提交
531
        pserver_program.global_block().append_op(
532
            type="listen_and_serv",
T
typhoonzero 已提交
533
            inputs={'X': recv_inputs},
T
done  
typhoonzero 已提交
534 535
            outputs={},
            attrs={
536
                "OptimizeBlock": optimize_block,
T
done  
typhoonzero 已提交
537
                "endpoint": endpoint,
T
typhoonzero 已提交
538 539 540 541 542 543 544 545
                # "ParamList": [
                #     p.name
                #     for p in self.param_grad_ep_mapping[endpoint]["params"]
                # ],
                # "GradList": [
                #     p.name
                #     for p in self.param_grad_ep_mapping[endpoint]["grads"]
                # ],
546
                "Fanin": self.trainers
T
done  
typhoonzero 已提交
547 548 549
            })
        pserver_program.sync_with_cpp()
        return pserver_program
T
typhoonzero 已提交
550

T
typhoonzero 已提交
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
    def _get_input_map_from_op(self, varmap, op):
        iomap = dict()
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
        iomap = dict()
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

T
typhoonzero 已提交
575
    def get_startup_program(self, endpoint, pserver_program):
T
typhoonzero 已提交
576 577 578
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
579
        were split to several blocks.
T
typhoonzero 已提交
580 581 582 583 584 585 586 587
        """
        s_prog = Program()
        orig_s_prog = framework.default_startup_program()
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
588
                if same_or_split_var(pname, varname) and varname != pname:
T
typhoonzero 已提交
589 590 591
                    return pname, splited_param.shape
            return "", []

Y
update  
yi.wu 已提交
592 593
        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
T
typhoonzero 已提交
594
        created_var_map = dict()
Y
update  
yi.wu 已提交
595
        for _, var in pserver_vars.iteritems():
T
typhoonzero 已提交
596 597
            tmpvar = s_prog.global_block().create_var(
                name=var.name,
T
typhoonzero 已提交
598
                persistable=var.persistable,
T
typhoonzero 已提交
599 600 601 602 603 604
                dtype=var.dtype,
                shape=var.shape)
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
T
typhoonzero 已提交
605
            new_inputs = dict()
T
typhoonzero 已提交
606
            new_outputs = dict()
Y
update  
yi.wu 已提交
607 608
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
T
typhoonzero 已提交
609 610
            for key in op.output_names:
                newname, _ = _get_splited_name_and_shape(op.output(key)[0])
T
typhoonzero 已提交
611
                if newname:
Y
update  
yi.wu 已提交
612
                    op_on_pserver = True
T
typhoonzero 已提交
613
                    new_outputs[key] = created_var_map[newname]
T
typhoonzero 已提交
614
                elif op.output(key)[0] in pserver_vars:
T
typhoonzero 已提交
615
                    op_on_pserver = True
T
typhoonzero 已提交
616 617 618 619
                    new_outputs[key] = pserver_vars[op.output(key)[0]]

            # most startup program ops have no inputs
            new_inputs = self._get_input_map_from_op(pserver_vars, op)
Y
update  
yi.wu 已提交
620

T
typhoonzero 已提交
621
            if op_on_pserver:
T
typhoonzero 已提交
622 623 624
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
T
typhoonzero 已提交
625
                    op.attrs["shape"] = new_outputs["Out"].shape
T
typhoonzero 已提交
626 627
                s_prog.global_block().append_op(
                    type=op.type,
T
typhoonzero 已提交
628
                    inputs=new_inputs,
T
typhoonzero 已提交
629 630 631
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog