distribute_transpiler.py 26.1 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
typhoonzero 已提交
15
from __future__ import print_function
T
done  
typhoonzero 已提交
16 17 18 19
import framework
from framework import Program, default_main_program, Parameter, Variable
import optimizer
from layer_helper import LayerHelper
T
typhoonzero 已提交
20
from distributed_spliter import *
T
typhoonzero 已提交
21
import math
22
from . import core
T
done  
typhoonzero 已提交
23 24


T
typhoonzero 已提交
25 26 27 28 29 30
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
31

T
typhoonzero 已提交
32 33
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
34 35


36 37 38 39
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


T
typhoonzero 已提交
40 41 42 43 44
def split_dense_variable(var_list,
                         pserver_count,
                         min_block_size=1024,
                         max_block_size=1048576):
    """
45
        We may need to split dense tensor to one or more blocks and put
T
typhoonzero 已提交
46 47
        them equally onto parameter server. One block is a sub-tensor
        aligned by dim[0] of the tensor.
48

T
typhoonzero 已提交
49 50
        We need to have a minimal block size so that the calculations in
        the parameter server side can gain better performance. By default
51 52
        minimum block size is 1024. The max block size is used to prevent
        very large blocks that may cause send error.
T
typhoonzero 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    """
    blocks = []
    for var in var_list:
        split_count = pserver_count
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
        if max_pserver_count < pserver_count:
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
71
        # update split_count after aligning
T
typhoonzero 已提交
72 73 74 75 76 77 78 79 80
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


T
done  
typhoonzero 已提交
81 82 83 84
class DistributeTranspiler:
    def transpile(self,
                  optimize_ops,
                  params_grads,
T
typhoonzero 已提交
85
                  trainer_id,
T
done  
typhoonzero 已提交
86 87 88 89 90
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  split_method=round_robin):
        """
91 92
            Transpile the program to distributed data-parallelism programs.
            The main_program will be transformed to use a remote parameter server
T
done  
typhoonzero 已提交
93
            to do parameter optimization. And the optimization graph will be put
94
            into a parameter server program.
T
done  
typhoonzero 已提交
95

96
            Use different methods to split trainable variables to different
T
done  
typhoonzero 已提交
97 98 99 100 101
            parameter servers.

            :param optimize_ops: op list of optimization, should be the
                                 return value of Optimizer.minimize
            :type optimize_ops: list
T
typhoonzero 已提交
102 103 104 105
            :param params_grads: list of tuple(weight, gradient)
            :type params_grads: list
            :param trainer_id: one unique id for each trainer in a job.
            :type trainer_id: int
106
            :param program: program to optimize, default is default_main_program
T
typhoonzero 已提交
107
            :type program: Program
T
done  
typhoonzero 已提交
108 109
            :param pservers: parameter server endpoints like "m1:6174,m2:6174"
            :type pservers: string
T
typhoonzero 已提交
110 111 112 113 114
            :param trainers: total number of workers/trainers in the job
            :type trainers: int
            :param split_method: A function to determin how to split variables
                to different servers equally.
            :type split_method: function
T
done  
typhoonzero 已提交
115
        """
T
typhoonzero 已提交
116
        assert (callable(split_method))
T
done  
typhoonzero 已提交
117 118
        if program is None:
            program = default_main_program()
T
typhoonzero 已提交
119
        self.program = program
T
done  
typhoonzero 已提交
120
        self.trainers = trainers
T
typhoonzero 已提交
121
        self.optimize_ops = optimize_ops
T
typhoonzero 已提交
122 123 124 125 126
        # TODO(typhoonzero): currently trainer_id is fetched from cluster system
        # like Kubernetes, we should port this to use etcd later when developing
        # fluid distributed training with fault-tolerance.
        self.trainer_id = trainer_id

T
typhoonzero 已提交
127
        # steps to transpile:
128
        # 1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
T
typhoonzero 已提交
129 130 131
        # 2. modify trainer program add split_op to each Grad.
        # 3. append send_op to trainer.
        # 4. append concat_op to trainer to update local weights.
132
        # 5. create new program for parameter server.
T
typhoonzero 已提交
133
        # 6. create parameter server program by split_method generated endpoint->VarBlock
T
typhoonzero 已提交
134

T
typhoonzero 已提交
135
        pserver_endpoints = pservers.split(",")
T
typhoonzero 已提交
136 137

        # step1
T
typhoonzero 已提交
138 139
        param_list = [pg[0] for pg in params_grads]
        grad_list = [pg[1] for pg in params_grads]
T
typhoonzero 已提交
140
        # TODO: add split selected rows support
T
typhoonzero 已提交
141 142
        grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
        param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
T
typhoonzero 已提交
143
        # step2
T
typhoonzero 已提交
144
        grad_var_mapping = self._append_split_op(program, grad_blocks)
T
typhoonzero 已提交
145 146 147

        # step3
        send_inputs = []
T
typhoonzero 已提交
148
        send_outputs = []
T
typhoonzero 已提交
149 150 151 152
        for b in grad_blocks:  # append by order
            varname, block_id, _ = b.split(":")
            send_inputs.append(grad_var_mapping[varname][int(block_id)])

T
typhoonzero 已提交
153 154
        param_var_mapping = self._create_vars_from_blocklist(program,
                                                             param_blocks)
T
typhoonzero 已提交
155 156 157
        for b in param_blocks:
            varname, block_id, _ = b.split(":")
            send_outputs.append(param_var_mapping[varname][int(block_id)])
158 159
        # let send_op know which endpoint to send which var to, eplist has the same
        # order as send_inputs.
T
typhoonzero 已提交
160
        eplist = split_method(send_inputs, pserver_endpoints)
161
        # create mapping of endpoint -> split var to create pserver side program
T
typhoonzero 已提交
162 163 164 165 166 167 168 169
        self.param_grad_ep_mapping = dict()
        for i, ep in enumerate(eplist):
            param = send_outputs[i]
            grad = send_inputs[i]
            if not self.param_grad_ep_mapping.has_key(ep):
                self.param_grad_ep_mapping[ep] = {"params": [], "grads": []}
            self.param_grad_ep_mapping[ep]["params"].append(param)
            self.param_grad_ep_mapping[ep]["grads"].append(grad)
T
typhoonzero 已提交
170

T
typhoonzero 已提交
171 172 173 174 175 176
        rpc_client_var = program.global_block().create_var(
            name="RPC_CLIENT_VAR",
            psersistable=True,
            dtype='float32',  # dtype and shape is not used in fact
            shape=[0])

177
        # create send_op
T
wip  
typhoonzero 已提交
178
        print("send inputs: ", send_inputs)
T
typhoonzero 已提交
179 180 181
        send_op = program.global_block().append_op(
            type="send",
            inputs={"X": send_inputs},
T
typhoonzero 已提交
182 183
            outputs={"Out": send_outputs,
                     "RPCClient": rpc_client_var},
T
typhoonzero 已提交
184
            attrs={"endpoints": pserver_endpoints,
T
typhoonzero 已提交
185 186 187
                   "epmap": eplist})
        # step4
        for varname, splited_var in param_var_mapping.iteritems():
T
typhoonzero 已提交
188 189
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
190 191 192
            orig_param = program.global_block().vars[varname]
            concat = program.global_block().append_op(
                type="concat",
T
typhoonzero 已提交
193
                inputs={"X": splited_var},
T
typhoonzero 已提交
194
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
195
                attrs={"axis": 0})
T
typhoonzero 已提交
196 197

    def _create_vars_from_blocklist(self, program, block_list):
198
        # Create respective variables using the block_list
T
typhoonzero 已提交
199
        block_map = dict()
T
typhoonzero 已提交
200
        var_mapping = dict()
T
typhoonzero 已提交
201 202 203 204 205 206
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
T
typhoonzero 已提交
207
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
208
            if len(splited) == 1:
T
typhoonzero 已提交
209 210 211 212
                # rename var to the trainer_id var
                new_var_name = "%s.trainer_%d" % \
                    (orig_var.name, self.trainer_id)
                program.global_block().rename_var(varname, new_var_name)
T
wip  
typhoonzero 已提交
213
                print("renaming OK...", varname, new_var_name)
T
typhoonzero 已提交
214 215
                var_mapping[varname] = \
                    [program.global_block().var(new_var_name)]
T
typhoonzero 已提交
216
                continue
T
typhoonzero 已提交
217 218

            var_mapping[varname] = []
T
typhoonzero 已提交
219 220 221 222
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
223

T
typhoonzero 已提交
224
            for i, block in enumerate(splited):
T
typhoonzero 已提交
225
                size = block[1]
T
typhoonzero 已提交
226 227 228 229
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
230
                var = program.global_block().create_var(
T
typhoonzero 已提交
231 232
                    name="%s.block%d.trainer_%d" %
                    (varname, i, self.trainer_id),
T
typhoonzero 已提交
233 234
                    psersistable=False,
                    dtype=orig_var.dtype,
T
typhoonzero 已提交
235
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
236
                var_mapping[varname].append(var)
T
typhoonzero 已提交
237
            program.global_block().sync_with_cpp()
T
typhoonzero 已提交
238
        return var_mapping
T
done  
typhoonzero 已提交
239 240 241 242 243 244 245 246 247

    def _clone_var(self, block, var):
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
248
            # HACK: let all param in pserver be persistable so the child
T
typhoonzero 已提交
249 250
            # program in recv can get them
            persistable=True)
T
done  
typhoonzero 已提交
251

T
typhoonzero 已提交
252
    def _append_split_op(self, program, gradblocks):
253
        # Split variables that need to be split and append respective ops
T
typhoonzero 已提交
254 255
        var_mapping = self._create_vars_from_blocklist(program, gradblocks)
        for varname, splited_vars in var_mapping.iteritems():
T
typhoonzero 已提交
256 257
            # variable that don't need to split have empty splited_vars
            if len(splited_vars) <= 1:
T
typhoonzero 已提交
258
                continue
T
typhoonzero 已提交
259
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
260
            if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
261 262 263 264 265 266 267 268
                height_sections = []
                for v in splited_vars:
                    height_sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split_selected_rows",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"height_sections": height_sections})
T
typhoonzero 已提交
269
            elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
270 271 272 273 274 275 276 277 278 279 280 281
                sections = []
                for v in splited_vars:
                    sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"sections": sections}  # assume split evenly
                )
            else:
                AssertionError("Variable type should be in set "
                               "[LOD_TENSOR, SELECTED_ROWS]")
T
typhoonzero 已提交
282
        return var_mapping
T
done  
typhoonzero 已提交
283

T
typhoonzero 已提交
284
    def get_trainer_program(self):
T
typhoonzero 已提交
285
        # remove optimize ops and add a send op to main_program
T
typhoonzero 已提交
286 287
        self.program.global_block().delete_ops(self.optimize_ops)
        return self.program
T
typhoonzero 已提交
288

T
done  
typhoonzero 已提交
289
    def _create_var_for_trainers(self, block, var, trainers):
290
        # For each trainer, create the necessary variables
T
done  
typhoonzero 已提交
291 292 293 294 295 296 297 298 299 300
        var_list = []
        for i in xrange(trainers):
            var_each = block.create_var(
                name="%s.trainer_%d" % (var.name, i),
                psersistable=var.persistable,
                dtype=var.dtype,
                shape=var.shape)
            var_list.append(var_each)
        return var_list

T
typhoonzero 已提交
301 302 303 304
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
305
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

T
typhoonzero 已提交
328 329 330
    def _op_input_var(self, op, varname):
        pass

T
typhoonzero 已提交
331 332 333 334 335 336 337 338 339
    def _is_op_on_pserver(self, endpoint, all_ops, idx):
        """
        Recursively check if the op need to run on current server.
        Assume that ops are in the execution order.
        """
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
        op = all_ops[idx]
T
typhoonzero 已提交
340 341 342 343 344
        input_names = set(op.input_names)
        # TODO(typhoonzero): using Param and Grad input name to identify
        # that the operator is an optimization operator, need a better way.
        if "Param" in input_names:
            if op.input("Param")[0] in param_names:
T
typhoonzero 已提交
345 346 347
                return True
            else:
                for n in param_names:
T
typhoonzero 已提交
348 349
                    if same_or_split_var(n, op.input("Param")[0]) \
                            and n != op.input("Param")[0]:
T
typhoonzero 已提交
350 351 352 353 354 355
                        return True
                return False
        else:
            j = idx - 1
            while j >= 0:
                prev_op = all_ops[j]
T
typhoonzero 已提交
356 357 358 359 360
                # prev_output_names = [o.name for o in prev_op.outputs.values()]
                # prev_input_names = [o.name for o in prev_op.inputs.values()]
                # NOTE(typhoonzero): consider list input/output
                prev_output_names = prev_op.desc.output_arg_names()
                prev_input_names = prev_op.desc.input_arg_names()
T
typhoonzero 已提交
361 362
                found1 = False
                found2 = False
T
typhoonzero 已提交
363 364
                for varname in op.desc.input_arg_names():
                    if varname in prev_output_names:
T
typhoonzero 已提交
365 366
                        found1 = self._is_op_on_pserver(endpoint, all_ops, j)
                # later ops may produce output for prev op's next batch use.
T
typhoonzero 已提交
367 368
                for varname in op.desc.output_arg_names():
                    if varname in prev_input_names:
T
typhoonzero 已提交
369 370 371 372 373 374
                        found2 = self._is_op_on_pserver(endpoint, all_ops, j)
                if found1 or found2:
                    return True
                j -= 1
            return False

375 376
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint):
        program = optimize_block.program
T
typhoonzero 已提交
377
        new_inputs = dict()
T
typhoonzero 已提交
378 379
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
wip  
typhoonzero 已提交
380
        print("mark1")
T
typhoonzero 已提交
381
        for key in opt_op.input_names:
T
wip  
typhoonzero 已提交
382 383
            # print("opt type: ", opt_op.type)
            # print("opt op input: ", key)
T
typhoonzero 已提交
384 385 386
            if key == "Grad":
                grad_block = None
                for g in self.param_grad_ep_mapping[endpoint]["grads"]:
T
typhoonzero 已提交
387
                    if same_or_split_var(g.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
388 389 390 391 392 393
                        grad_block = g
                        break
                if not grad_block:
                    # do not append this op if current endpoint
                    # is not dealing with this grad block
                    return
T
typhoonzero 已提交
394
                merged_var = program.global_block().create_var(
T
typhoonzero 已提交
395 396 397 398 399 400
                    name=grad_block.name,
                    persistable=grad_block.persistable,
                    dtype=grad_block.dtype,
                    shape=grad_block.shape)
                # append merging ops if trainers > 1
                if self.trainers > 1:
T
done  
typhoonzero 已提交
401
                    vars2merge = self._create_var_for_trainers(
T
typhoonzero 已提交
402
                        program.global_block(), grad_block, self.trainers)
403
                    optimize_block.append_op(
T
done  
typhoonzero 已提交
404 405 406
                        type="sum",
                        inputs={"X": vars2merge},
                        outputs={"Out": merged_var})
407
                    optimize_block.append_op(
T
done  
typhoonzero 已提交
408 409 410 411
                        type="scale",
                        inputs={"X": merged_var},
                        outputs={"Out": merged_var},
                        attrs={"scale": 1.0 / float(self.trainers)})
T
typhoonzero 已提交
412 413 414 415 416
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
417
                    if same_or_split_var(p.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
418 419 420 421
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
422
                tmpvar = program.global_block().create_var(
T
typhoonzero 已提交
423
                    name=param_block.name,
T
typhoonzero 已提交
424
                    persistable=True,
T
typhoonzero 已提交
425 426
                    dtype=param_block.dtype,
                    shape=param_block.shape)
T
typhoonzero 已提交
427

T
typhoonzero 已提交
428
                new_inputs[key] = tmpvar
T
typhoonzero 已提交
429

T
wip  
typhoonzero 已提交
430
        print("mark2")
T
typhoonzero 已提交
431
        for key in opt_op.input_names:
T
typhoonzero 已提交
432 433 434 435
            if key in ["Param", "Grad"]:
                continue
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
T
typhoonzero 已提交
436
            var = program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
437 438 439 440 441 442 443 444
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
            tmpvar = program.global_block().create_var(
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
445

446
        # change output's ParamOut variable
T
typhoonzero 已提交
447 448
        outputs = self._get_output_map_from_op(program.global_block(), opt_op)
        outputs["ParamOut"] = new_inputs["Param"]
449
        optimize_block.append_op(
T
typhoonzero 已提交
450 451
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
452
            outputs=outputs,
T
typhoonzero 已提交
453
            attrs=opt_op.attrs)
T
wip  
typhoonzero 已提交
454
        print("mark3")
T
typhoonzero 已提交
455

456 457
    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
        program = optimize_block.program
458
        # Append the ops for parameters that do not need to be optimized/updated
T
typhoonzero 已提交
459 460 461 462 463 464 465 466
        inputs = self._get_input_map_from_op(self.program.global_block().vars,
                                             opt_op)
        for var in inputs.itervalues():
            if type(var) == list:
                varlist = var
            else:
                varlist = [var]
            for var in varlist:
467 468
                if not program.global_block().vars.has_key(var.name):
                    program.global_block().create_var(
T
typhoonzero 已提交
469 470 471 472 473 474 475 476
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

        outputs = self._get_output_map_from_op(self.program.global_block().vars,
                                               opt_op)

477
        optimize_block.append_op(
T
typhoonzero 已提交
478
            type=opt_op.type,
T
typhoonzero 已提交
479 480
            inputs=inputs,
            outputs=outputs,
T
typhoonzero 已提交
481 482
            attrs=opt_op.attrs)

483
    def get_pserver_program(self, endpoint):
T
typhoonzero 已提交
484
        """
485
        Get pserver side program using the endpoint
T
typhoonzero 已提交
486 487 488 489 490 491 492 493

        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch. For each pserver endpoint, server side
        program must be a sub-set of the original optimization program.
        """
        # step5
        pserver_program = Program()
T
typhoonzero 已提交
494
        recv_inputs = []
T
typhoonzero 已提交
495
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
496
            self._clone_var(pserver_program.global_block(), v)
T
typhoonzero 已提交
497 498 499 500 501 502
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            pserver_program.global_block().create_var(
                name=v.name, persistable=True, dtype=v.dtype, shape=v.shape)
            for trainer_id in xrange(self.trainers):
T
typhoonzero 已提交
503 504 505 506 507
                # change client side var name to origin name by
                # removing ".trainer_%d" suffix
                suff_idx = v.name.find(".trainer_")
                if suff_idx >= 0:
                    orig_var_name = v.name[:suff_idx]
T
typhoonzero 已提交
508
                print("create variable for program: %s.trainer_%d" %
T
typhoonzero 已提交
509 510 511
                      (orig_var_name, trainer_id))
                var = pserver_program.global_block().create_var(
                    name="%s.trainer_%d" % (orig_var_name, trainer_id),
T
typhoonzero 已提交
512 513 514
                    persistable=True,
                    dtype=v.dtype,
                    shape=v.shape)
T
typhoonzero 已提交
515
                recv_inputs.append(var)
T
typhoonzero 已提交
516
        # step6
517
        optimize_block = pserver_program.create_block(0)
518
        # Iterate through the ops and append ops as needed
519
        for idx, opt_op in enumerate(self.optimize_ops):
T
wip  
typhoonzero 已提交
520 521 522 523 524
            print("mark0")
            print(opt_op.inputs.keys())
            for v in opt_op.inputs.values():
                print(v.name)
                print(v.shape)
525 526
            is_op_on_pserver = self._is_op_on_pserver(endpoint,
                                                      self.optimize_ops, idx)
T
typhoonzero 已提交
527 528
            if not is_op_on_pserver:
                continue
T
typhoonzero 已提交
529
            if "Grad" in opt_op.desc.input_arg_names():
530
                self._append_pserver_ops(optimize_block, opt_op, endpoint)
T
typhoonzero 已提交
531
            else:
532 533
                self._append_pserver_non_opt_ops(optimize_block, opt_op)

534
        # Append the listen_and_serv op
T
done  
typhoonzero 已提交
535
        pserver_program.global_block().append_op(
536
            type="listen_and_serv",
T
typhoonzero 已提交
537
            inputs={'X': recv_inputs},
T
done  
typhoonzero 已提交
538 539
            outputs={},
            attrs={
540
                "OptimizeBlock": optimize_block,
T
done  
typhoonzero 已提交
541
                "endpoint": endpoint,
T
typhoonzero 已提交
542 543 544 545 546 547 548 549 550
                # "ParamList": [
                #     p.name
                #     for p in self.param_grad_ep_mapping[endpoint]["params"]
                # ],
                # "GradList": [
                #     p.name
                #     for p in self.param_grad_ep_mapping[endpoint]["grads"]
                # ],
                # "Fanin": self.trainers
T
done  
typhoonzero 已提交
551 552 553
            })
        pserver_program.sync_with_cpp()
        return pserver_program
T
typhoonzero 已提交
554

T
typhoonzero 已提交
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
    def _get_input_map_from_op(self, varmap, op):
        iomap = dict()
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
        iomap = dict()
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

T
typhoonzero 已提交
579
    def get_startup_program(self, endpoint, pserver_program):
T
typhoonzero 已提交
580 581 582
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
583
        were split to several blocks.
T
typhoonzero 已提交
584 585 586 587 588 589 590 591
        """
        s_prog = Program()
        orig_s_prog = framework.default_startup_program()
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
592
                if same_or_split_var(pname, varname) and varname != pname:
T
typhoonzero 已提交
593 594 595
                    return pname, splited_param.shape
            return "", []

Y
update  
yi.wu 已提交
596 597
        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
T
typhoonzero 已提交
598
        created_var_map = dict()
Y
update  
yi.wu 已提交
599
        for _, var in pserver_vars.iteritems():
T
typhoonzero 已提交
600 601
            tmpvar = s_prog.global_block().create_var(
                name=var.name,
T
typhoonzero 已提交
602
                persistable=var.persistable,
T
typhoonzero 已提交
603 604 605 606 607 608
                dtype=var.dtype,
                shape=var.shape)
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
T
typhoonzero 已提交
609
            new_inputs = dict()
T
typhoonzero 已提交
610
            new_outputs = dict()
Y
update  
yi.wu 已提交
611 612
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
T
typhoonzero 已提交
613 614
            for key in op.output_names:
                newname, _ = _get_splited_name_and_shape(op.output(key)[0])
T
typhoonzero 已提交
615
                if newname:
Y
update  
yi.wu 已提交
616
                    op_on_pserver = True
T
typhoonzero 已提交
617
                    new_outputs[key] = created_var_map[newname]
T
typhoonzero 已提交
618
                elif op.output(key)[0] in pserver_vars:
T
typhoonzero 已提交
619
                    op_on_pserver = True
T
typhoonzero 已提交
620 621 622 623
                    new_outputs[key] = pserver_vars[op.output(key)[0]]

            # most startup program ops have no inputs
            new_inputs = self._get_input_map_from_op(pserver_vars, op)
Y
update  
yi.wu 已提交
624

T
typhoonzero 已提交
625
            if op_on_pserver:
T
typhoonzero 已提交
626 627 628
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
T
typhoonzero 已提交
629
                    op.attrs["shape"] = new_outputs["Out"].shape
T
typhoonzero 已提交
630 631
                s_prog.global_block().append_op(
                    type=op.type,
T
typhoonzero 已提交
632
                    inputs=new_inputs,
T
typhoonzero 已提交
633 634 635
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog