distribute_transpiler.py 24.3 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
typhoonzero 已提交
15
from __future__ import print_function
T
done  
typhoonzero 已提交
16 17 18 19
import framework
from framework import Program, default_main_program, Parameter, Variable
import optimizer
from layer_helper import LayerHelper
T
typhoonzero 已提交
20
from distributed_spliter import *
T
typhoonzero 已提交
21
import math
22
from . import core
T
done  
typhoonzero 已提交
23 24


T
typhoonzero 已提交
25 26 27 28 29 30
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
31

T
typhoonzero 已提交
32 33
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
34 35


36 37 38 39
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


T
typhoonzero 已提交
40 41 42 43 44
def split_dense_variable(var_list,
                         pserver_count,
                         min_block_size=1024,
                         max_block_size=1048576):
    """
45
        We may need to split dense tensor to one or more blocks and put
T
typhoonzero 已提交
46 47
        them equally onto parameter server. One block is a sub-tensor
        aligned by dim[0] of the tensor.
48

T
typhoonzero 已提交
49 50
        We need to have a minimal block size so that the calculations in
        the parameter server side can gain better performance. By default
51 52
        minimum block size is 1024. The max block size is used to prevent
        very large blocks that may cause send error.
T
typhoonzero 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    """
    blocks = []
    for var in var_list:
        split_count = pserver_count
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
        if max_pserver_count < pserver_count:
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
71
        # update split_count after aligning
T
typhoonzero 已提交
72 73 74 75 76 77 78 79 80
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


T
done  
typhoonzero 已提交
81 82 83 84
class DistributeTranspiler:
    def transpile(self,
                  optimize_ops,
                  params_grads,
T
typhoonzero 已提交
85
                  trainer_id,
T
done  
typhoonzero 已提交
86 87 88 89 90
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  split_method=round_robin):
        """
91 92
            Transpile the program to distributed data-parallelism programs.
            The main_program will be transformed to use a remote parameter server
T
done  
typhoonzero 已提交
93
            to do parameter optimization. And the optimization graph will be put
94
            into a parameter server program.
T
done  
typhoonzero 已提交
95

96
            Use different methods to split trainable variables to different
T
done  
typhoonzero 已提交
97 98 99 100 101
            parameter servers.

            :param optimize_ops: op list of optimization, should be the
                                 return value of Optimizer.minimize
            :type optimize_ops: list
T
typhoonzero 已提交
102 103 104 105
            :param params_grads: list of tuple(weight, gradient)
            :type params_grads: list
            :param trainer_id: one unique id for each trainer in a job.
            :type trainer_id: int
106
            :param program: program to optimize, default is default_main_program
T
typhoonzero 已提交
107
            :type program: Program
T
done  
typhoonzero 已提交
108 109
            :param pservers: parameter server endpoints like "m1:6174,m2:6174"
            :type pservers: string
T
typhoonzero 已提交
110 111 112 113 114
            :param trainers: total number of workers/trainers in the job
            :type trainers: int
            :param split_method: A function to determin how to split variables
                to different servers equally.
            :type split_method: function
T
done  
typhoonzero 已提交
115
        """
T
typhoonzero 已提交
116
        assert (callable(split_method))
T
done  
typhoonzero 已提交
117 118
        if program is None:
            program = default_main_program()
T
typhoonzero 已提交
119
        self.program = program
T
done  
typhoonzero 已提交
120
        self.trainers = trainers
T
typhoonzero 已提交
121
        self.optimize_ops = optimize_ops
T
typhoonzero 已提交
122 123 124 125 126
        # TODO(typhoonzero): currently trainer_id is fetched from cluster system
        # like Kubernetes, we should port this to use etcd later when developing
        # fluid distributed training with fault-tolerance.
        self.trainer_id = trainer_id

T
typhoonzero 已提交
127
        # steps to transpile:
128
        # 1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
T
typhoonzero 已提交
129 130 131
        # 2. modify trainer program add split_op to each Grad.
        # 3. append send_op to trainer.
        # 4. append concat_op to trainer to update local weights.
132
        # 5. create new program for parameter server.
T
typhoonzero 已提交
133
        # 6. create parameter server program by split_method generated endpoint->VarBlock
T
typhoonzero 已提交
134

T
typhoonzero 已提交
135
        pserver_endpoints = pservers.split(",")
T
typhoonzero 已提交
136 137

        # step1
T
typhoonzero 已提交
138 139
        param_list = [pg[0] for pg in params_grads]
        grad_list = [pg[1] for pg in params_grads]
T
typhoonzero 已提交
140
        # TODO: add split selected rows support
T
typhoonzero 已提交
141 142
        grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
        param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
T
typhoonzero 已提交
143
        # step2
T
typhoonzero 已提交
144
        grad_var_mapping = self._append_split_op(program, grad_blocks)
T
typhoonzero 已提交
145 146 147

        # step3
        send_inputs = []
T
typhoonzero 已提交
148
        send_outputs = []
T
typhoonzero 已提交
149 150 151 152
        for b in grad_blocks:  # append by order
            varname, block_id, _ = b.split(":")
            send_inputs.append(grad_var_mapping[varname][int(block_id)])

T
typhoonzero 已提交
153 154
        param_var_mapping = self._create_vars_from_blocklist(program,
                                                             param_blocks)
T
typhoonzero 已提交
155 156 157
        for b in param_blocks:
            varname, block_id, _ = b.split(":")
            send_outputs.append(param_var_mapping[varname][int(block_id)])
158 159
        # let send_op know which endpoint to send which var to, eplist has the same
        # order as send_inputs.
T
typhoonzero 已提交
160
        eplist = split_method(send_inputs, pserver_endpoints)
161
        # create mapping of endpoint -> split var to create pserver side program
T
typhoonzero 已提交
162 163 164 165 166 167 168 169
        self.param_grad_ep_mapping = dict()
        for i, ep in enumerate(eplist):
            param = send_outputs[i]
            grad = send_inputs[i]
            if not self.param_grad_ep_mapping.has_key(ep):
                self.param_grad_ep_mapping[ep] = {"params": [], "grads": []}
            self.param_grad_ep_mapping[ep]["params"].append(param)
            self.param_grad_ep_mapping[ep]["grads"].append(grad)
T
typhoonzero 已提交
170

T
typhoonzero 已提交
171 172 173 174 175 176
        rpc_client_var = program.global_block().create_var(
            name="RPC_CLIENT_VAR",
            psersistable=True,
            dtype='float32',  # dtype and shape is not used in fact
            shape=[0])

177
        # create send_op
T
typhoonzero 已提交
178 179 180
        send_op = program.global_block().append_op(
            type="send",
            inputs={"X": send_inputs},
T
typhoonzero 已提交
181 182
            outputs={"Out": send_outputs,
                     "RPCClient": rpc_client_var},
T
typhoonzero 已提交
183
            attrs={"endpoints": pserver_endpoints,
T
typhoonzero 已提交
184 185 186
                   "epmap": eplist})
        # step4
        for varname, splited_var in param_var_mapping.iteritems():
T
typhoonzero 已提交
187 188
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
189 190 191
            orig_param = program.global_block().vars[varname]
            concat = program.global_block().append_op(
                type="concat",
T
typhoonzero 已提交
192
                inputs={"X": splited_var},
T
typhoonzero 已提交
193
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
194
                attrs={"axis": 0})
T
typhoonzero 已提交
195 196

    def _create_vars_from_blocklist(self, program, block_list):
197
        # Create respective variables using the block_list
T
typhoonzero 已提交
198
        block_map = dict()
T
typhoonzero 已提交
199
        var_mapping = dict()
T
typhoonzero 已提交
200 201 202 203 204 205 206
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
207

T
typhoonzero 已提交
208
            if len(splited) == 1:
T
typhoonzero 已提交
209 210 211 212 213 214
                # rename var to the trainer_id var
                new_var_name = "%s.trainer_%d" % \
                    (orig_var.name, self.trainer_id)
                program.global_block().rename_var(varname, new_var_name)
                var_mapping[varname] = \
                    [program.global_block().var(new_var_name)]
T
typhoonzero 已提交
215
                continue
T
typhoonzero 已提交
216 217

            var_mapping[varname] = []
T
typhoonzero 已提交
218 219 220 221
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
222

T
typhoonzero 已提交
223
            for i, block in enumerate(splited):
T
typhoonzero 已提交
224
                size = block[1]
T
typhoonzero 已提交
225 226 227 228
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
229
                var = program.global_block().create_var(
T
typhoonzero 已提交
230 231
                    name="%s.block%d.trainer_%d" %
                    (varname, i, self.trainer_id),
T
typhoonzero 已提交
232 233
                    psersistable=False,
                    dtype=orig_var.dtype,
T
typhoonzero 已提交
234
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
235
                var_mapping[varname].append(var)
T
typhoonzero 已提交
236
            program.global_block().sync_with_cpp()
T
typhoonzero 已提交
237
        return var_mapping
T
done  
typhoonzero 已提交
238 239 240 241 242 243 244 245 246

    def _clone_var(self, block, var):
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
247
            # HACK: let all param in pserver be persistable so the child
T
typhoonzero 已提交
248 249
            # program in recv can get them
            persistable=True)
T
done  
typhoonzero 已提交
250

T
typhoonzero 已提交
251
    def _append_split_op(self, program, gradblocks):
252
        # Split variables that need to be split and append respective ops
T
typhoonzero 已提交
253 254
        var_mapping = self._create_vars_from_blocklist(program, gradblocks)
        for varname, splited_vars in var_mapping.iteritems():
T
typhoonzero 已提交
255 256
            # variable that don't need to split have empty splited_vars
            if len(splited_vars) <= 1:
T
typhoonzero 已提交
257
                continue
T
typhoonzero 已提交
258
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
259
            if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
260 261 262 263 264 265 266 267
                height_sections = []
                for v in splited_vars:
                    height_sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split_selected_rows",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"height_sections": height_sections})
T
typhoonzero 已提交
268
            elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
269 270 271 272 273 274 275 276 277 278 279 280
                sections = []
                for v in splited_vars:
                    sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"sections": sections}  # assume split evenly
                )
            else:
                AssertionError("Variable type should be in set "
                               "[LOD_TENSOR, SELECTED_ROWS]")
T
typhoonzero 已提交
281
        return var_mapping
T
done  
typhoonzero 已提交
282

T
typhoonzero 已提交
283
    def get_trainer_program(self):
T
typhoonzero 已提交
284
        # remove optimize ops and add a send op to main_program
T
typhoonzero 已提交
285 286
        self.program.global_block().delete_ops(self.optimize_ops)
        return self.program
T
typhoonzero 已提交
287

T
done  
typhoonzero 已提交
288
    def _create_var_for_trainers(self, block, var, trainers):
289
        # For each trainer, create the necessary variables
T
done  
typhoonzero 已提交
290 291 292 293 294 295 296 297 298 299
        var_list = []
        for i in xrange(trainers):
            var_each = block.create_var(
                name="%s.trainer_%d" % (var.name, i),
                psersistable=var.persistable,
                dtype=var.dtype,
                shape=var.shape)
            var_list.append(var_each)
        return var_list

T
typhoonzero 已提交
300 301 302 303
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
304
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

T
typhoonzero 已提交
327 328 329 330 331 332 333 334 335 336 337 338 339 340
    def _is_op_on_pserver(self, endpoint, all_ops, idx):
        """
        Recursively check if the op need to run on current server.
        Assume that ops are in the execution order.
        """
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
        op = all_ops[idx]
        if op.inputs.has_key("Param"):
            if op.inputs["Param"].name in param_names:
                return True
            else:
                for n in param_names:
341 342
                    if same_or_split_var(n, op.inputs[
                            "Param"].name) and n != op.inputs["Param"].name:
T
typhoonzero 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
                        return True
                return False
        else:
            j = idx - 1
            while j >= 0:
                prev_op = all_ops[j]
                prev_output_names = [o.name for o in prev_op.outputs.values()]
                prev_input_names = [o.name for o in prev_op.inputs.values()]
                found1 = False
                found2 = False
                for _, v in op.inputs.iteritems():
                    if v.name in prev_output_names:
                        found1 = self._is_op_on_pserver(endpoint, all_ops, j)
                # later ops may produce output for prev op's next batch use.
                for _, v in op.outputs.iteritems():
                    if v.name in prev_input_names:
                        found2 = self._is_op_on_pserver(endpoint, all_ops, j)
                if found1 or found2:
                    return True
                j -= 1
            return False

    def _append_pserver_ops(self, program, pserver_program, opt_op, endpoint):
T
typhoonzero 已提交
366
        new_inputs = dict()
T
typhoonzero 已提交
367 368
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
369 370 371 372
        for key, var in opt_op.inputs.iteritems():
            if key == "Grad":
                grad_block = None
                for g in self.param_grad_ep_mapping[endpoint]["grads"]:
373
                    if same_or_split_var(g.name, var.name):
T
typhoonzero 已提交
374 375 376 377 378 379
                        grad_block = g
                        break
                if not grad_block:
                    # do not append this op if current endpoint
                    # is not dealing with this grad block
                    return
T
typhoonzero 已提交
380
                merged_var = program.global_block().create_var(
T
typhoonzero 已提交
381 382 383 384 385 386
                    name=grad_block.name,
                    persistable=grad_block.persistable,
                    dtype=grad_block.dtype,
                    shape=grad_block.shape)
                # append merging ops if trainers > 1
                if self.trainers > 1:
T
done  
typhoonzero 已提交
387
                    vars2merge = self._create_var_for_trainers(
T
typhoonzero 已提交
388 389
                        program.global_block(), grad_block, self.trainers)
                    program.global_block().append_op(
T
done  
typhoonzero 已提交
390 391 392
                        type="sum",
                        inputs={"X": vars2merge},
                        outputs={"Out": merged_var})
T
typhoonzero 已提交
393
                    program.global_block().append_op(
T
done  
typhoonzero 已提交
394 395 396 397
                        type="scale",
                        inputs={"X": merged_var},
                        outputs={"Out": merged_var},
                        attrs={"scale": 1.0 / float(self.trainers)})
T
typhoonzero 已提交
398 399 400 401 402
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
403
                    if same_or_split_var(p.name, var.name):
T
typhoonzero 已提交
404 405 406 407
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
408
                tmpvar = program.global_block().create_var(
T
typhoonzero 已提交
409
                    name=param_block.name,
T
typhoonzero 已提交
410
                    persistable=True,
T
typhoonzero 已提交
411 412
                    dtype=param_block.dtype,
                    shape=param_block.shape)
T
typhoonzero 已提交
413

T
typhoonzero 已提交
414
                new_inputs[key] = tmpvar
T
typhoonzero 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428

        for key, var in opt_op.inputs.iteritems():
            if key in ["Param", "Grad"]:
                continue
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
            tmpvar = program.global_block().create_var(
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
429 430 431 432 433 434 435 436
            # create var in pserver program global block.
            # TODO(typhoonzero): put blocks in one program to avoid create two
            # variables.
            pserver_program.global_block().create_var(
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
T
typhoonzero 已提交
437

438
        # change output's ParamOut variable
T
typhoonzero 已提交
439
        opt_op.outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
440
        program.global_block().append_op(
T
typhoonzero 已提交
441 442 443 444 445
            type=opt_op.type,
            inputs=new_inputs,
            outputs=opt_op.outputs,
            attrs=opt_op.attrs)

T
typhoonzero 已提交
446
    def _append_pserver_non_opt_ops(self, program, pserver_program, opt_op):
447
        # Append the ops for parameters that do not need to be optimized/updated
T
typhoonzero 已提交
448
        for _, var in opt_op.inputs.iteritems():
T
typhoonzero 已提交
449
            program.global_block().create_var(
T
typhoonzero 已提交
450 451 452 453
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=var.shape)
T
typhoonzero 已提交
454 455 456 457 458
            pserver_program.global_block().create_var(
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=var.shape)
T
typhoonzero 已提交
459
        program.global_block().append_op(
T
typhoonzero 已提交
460
            type=opt_op.type,
T
typhoonzero 已提交
461
            inputs=opt_op.inputs,
T
typhoonzero 已提交
462 463 464
            outputs=opt_op.outputs,
            attrs=opt_op.attrs)

465
    def get_pserver_program(self, endpoint):
T
typhoonzero 已提交
466
        """
467
        Get pserver side program using the endpoint
T
typhoonzero 已提交
468 469 470 471 472 473 474 475

        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch. For each pserver endpoint, server side
        program must be a sub-set of the original optimization program.
        """
        # step5
        pserver_program = Program()
T
typhoonzero 已提交
476
        recv_inputs = []
T
typhoonzero 已提交
477
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
478
            self._clone_var(pserver_program.global_block(), v)
T
typhoonzero 已提交
479 480 481 482 483 484
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            pserver_program.global_block().create_var(
                name=v.name, persistable=True, dtype=v.dtype, shape=v.shape)
            for trainer_id in xrange(self.trainers):
T
typhoonzero 已提交
485 486 487 488 489
                # change client side var name to origin name by
                # removing ".trainer_%d" suffix
                suff_idx = v.name.find(".trainer_")
                if suff_idx >= 0:
                    orig_var_name = v.name[:suff_idx]
T
typhoonzero 已提交
490
                print("create variable for program: %s.trainer_%d" %
T
typhoonzero 已提交
491 492 493
                      (orig_var_name, trainer_id))
                var = pserver_program.global_block().create_var(
                    name="%s.trainer_%d" % (orig_var_name, trainer_id),
T
typhoonzero 已提交
494 495 496
                    persistable=True,
                    dtype=v.dtype,
                    shape=v.shape)
T
typhoonzero 已提交
497
                recv_inputs.append(var)
T
typhoonzero 已提交
498 499
        # step6
        optimize_sub_program = Program()
500
        # Iterate through the ops and append ops as needed
501 502 503
        for idx, opt_op in enumerate(self.optimize_ops):
            is_op_on_pserver = self._is_op_on_pserver(endpoint,
                                                      self.optimize_ops, idx)
T
typhoonzero 已提交
504 505
            if not is_op_on_pserver:
                continue
T
typhoonzero 已提交
506
            if opt_op.inputs.has_key("Grad"):
T
typhoonzero 已提交
507 508
                self._append_pserver_ops(optimize_sub_program, pserver_program,
                                         opt_op, endpoint)
T
typhoonzero 已提交
509
            else:
T
typhoonzero 已提交
510 511
                self._append_pserver_non_opt_ops(optimize_sub_program,
                                                 pserver_program, opt_op)
512
        # Append the listen_and_serv op
T
done  
typhoonzero 已提交
513
        pserver_program.global_block().append_op(
514
            type="listen_and_serv",
T
typhoonzero 已提交
515
            inputs={'X': recv_inputs},
T
done  
typhoonzero 已提交
516 517
            outputs={},
            attrs={
518
                "OptimizeBlock": optimize_sub_program.global_block(),
T
done  
typhoonzero 已提交
519
                "endpoint": endpoint,
T
typhoonzero 已提交
520 521 522 523 524 525 526 527 528
                # "ParamList": [
                #     p.name
                #     for p in self.param_grad_ep_mapping[endpoint]["params"]
                # ],
                # "GradList": [
                #     p.name
                #     for p in self.param_grad_ep_mapping[endpoint]["grads"]
                # ],
                # "Fanin": self.trainers
T
done  
typhoonzero 已提交
529 530 531
            })
        pserver_program.sync_with_cpp()
        return pserver_program
T
typhoonzero 已提交
532

T
typhoonzero 已提交
533
    def get_startup_program(self, endpoint, pserver_program):
T
typhoonzero 已提交
534 535 536
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
537
        were split to several blocks.
T
typhoonzero 已提交
538 539 540 541 542 543 544 545
        """
        s_prog = Program()
        orig_s_prog = framework.default_startup_program()
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
546
                if same_or_split_var(pname, varname) and varname != pname:
T
typhoonzero 已提交
547 548 549
                    return pname, splited_param.shape
            return "", []

Y
update  
yi.wu 已提交
550 551
        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
T
typhoonzero 已提交
552
        created_var_map = dict()
Y
update  
yi.wu 已提交
553
        for _, var in pserver_vars.iteritems():
T
typhoonzero 已提交
554 555
            tmpvar = s_prog.global_block().create_var(
                name=var.name,
T
typhoonzero 已提交
556
                persistable=var.persistable,
T
typhoonzero 已提交
557 558 559 560 561 562 563
                dtype=var.dtype,
                shape=var.shape)
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
            new_outputs = dict()
Y
update  
yi.wu 已提交
564 565
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
T
typhoonzero 已提交
566 567 568
            for key, var in op.outputs.iteritems():
                newname, _ = _get_splited_name_and_shape(var.name)
                if newname:
Y
update  
yi.wu 已提交
569
                    op_on_pserver = True
T
typhoonzero 已提交
570
                    new_outputs[key] = created_var_map[newname]
Y
update  
yi.wu 已提交
571
                elif var.name in pserver_vars:
T
typhoonzero 已提交
572
                    op_on_pserver = True
Y
update  
yi.wu 已提交
573 574
                    new_outputs[key] = pserver_vars[var.name]

T
typhoonzero 已提交
575
            if op_on_pserver:
T
typhoonzero 已提交
576 577 578
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
T
typhoonzero 已提交
579
                    op.attrs["shape"] = new_outputs["Out"].shape
T
typhoonzero 已提交
580 581 582 583 584 585
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=op.inputs,
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog