pybind.cc 73.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15
#include <algorithm>
16
#include <cstdlib>
C
chengduoZH 已提交
17
#include <map>
S
sneaxiy 已提交
18
#include <memory>
C
chengduoZH 已提交
19 20 21
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
22
#include <unordered_set>
C
chengduoZH 已提交
23 24
#include <utility>
#include <vector>
25

Y
Yi Wang 已提交
26 27 28
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
29
#include "paddle/fluid/framework/garbage_collector.h"
30
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
31
#include "paddle/fluid/framework/ir/pass_builder.h"
32
#include "paddle/fluid/framework/load_op_lib.h"
Y
Yi Wang 已提交
33 34 35
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
36
#include "paddle/fluid/framework/op_compatible_info.h"
S
sneaxiy 已提交
37
#include "paddle/fluid/framework/op_info.h"
38
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
39
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
40
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
41
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
42
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
43
#include "paddle/fluid/framework/selected_rows.h"
44
#include "paddle/fluid/framework/trainer.h"
X
Xin Pan 已提交
45
#include "paddle/fluid/framework/version.h"
Y
Refine  
Yu Yang 已提交
46
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
47
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
48
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
49
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
50
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
51
#include "paddle/fluid/platform/cpu_info.h"
52
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
53
#include "paddle/fluid/platform/enforce.h"
54
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
55 56
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
H
hutuxian 已提交
57
#include "paddle/fluid/pybind/box_helper_py.h"
Y
Yi Wang 已提交
58
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
59
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
60
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
61
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
62
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
63
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
64
#include "paddle/fluid/pybind/ir.h"
65

W
wopeizl 已提交
66
#ifndef _WIN32
D
dongdaxiang 已提交
67
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
68
#endif
69
#include "paddle/fluid/framework/data_type.h"
70 71
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
72
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
73
#include "paddle/fluid/pybind/tensor_py.h"
74
#include "paddle/fluid/string/to_string.h"
D
Dong Zhihong 已提交
75
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
76
#ifndef _WIN32
Y
Yi Wang 已提交
77
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
78
#endif
Y
Yi Wang 已提交
79 80
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
81 82
#endif

83 84 85 86
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/pybind/communicator_py.h"
#endif

M
minqiyang 已提交
87 88
#include "pybind11/stl.h"

89 90 91
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");
92
DECLARE_bool(use_mkldnn);
93 94 95
#ifdef PADDLE_WITH_NGRAPH
DECLARE_bool(use_ngraph);
#endif
96

Q
Qiao Longfei 已提交
97 98 99
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

100
namespace paddle {
101
namespace pybind {
102
bool IsCompiledWithCUDA() {
103
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
104 105 106 107 108 109
  return false;
#else
  return true;
#endif
}

110 111 112 113 114 115 116 117
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

118 119 120 121 122 123 124 125
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

126
bool IsCompiledWithBrpc() {
127
#ifndef PADDLE_WITH_DISTRIBUTE
128 129
  return false;
#endif
130 131 132 133 134 135

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
136 137
}

Y
update  
Yancey1989 已提交
138
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
139
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
140 141 142 143 144 145
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
146 147 148 149 150 151 152 153 154 155
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

156 157 158 159 160 161
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
162 163 164
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
165
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
166

167
  m.doc() = "C++ core of PaddlePaddle";
168

169 170 171 172
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

173
  BindException(&m);
Y
Yu Yang 已提交
174

175 176
  m.def("set_num_threads", &platform::SetNumThreads);

177 178 179 180 181 182
  m.def("save_op_compatible_info", [](framework::ProgramDesc &desc) {
    framework::OpCompatibleMap op_compatible_map;
    op_compatible_map.InitOpCompatibleMap();
    return op_compatible_map.ConvertToProto(desc.OpCompatibleMap());
  });

S
sneaxiy 已提交
183
  m.def(
S
sneaxiy 已提交
184
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
185 186 187 188
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
189 190 191
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

S
sneaxiy 已提交
192 193 194
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
195
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
196

197
  m.def("_set_fuse_parameter_group_size",
198
        &paddle::framework::ir::SetFuseParameterGroupsSize);
199
  m.def("_set_fuse_parameter_memory_size",
200
        &paddle::framework::ir::SetFuseParameterMemorySize);
201

S
sneaxiy 已提交
202 203 204
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

205 206
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

207
  BindImperative(&m);
208

209
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
210
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
211 212
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
213
      .def("_get_dims",
214
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
215
      .def("_set_dims",
Q
qijun 已提交
216
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
217
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
218
           })
Y
yuyang18 已提交
219
      .def("_set_layout",
D
dzhwinter 已提交
220 221 222
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
223
      .def("_alloc_float",
D
dzhwinter 已提交
224
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
225
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
226
           })
Y
yuyang18 已提交
227
      .def("_alloc_float",
Y
Yu Yang 已提交
228
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
229
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
230
           })
231 232 233 234
      .def("_alloc_double",
           [](Tensor &self, paddle::platform::CPUPlace &place) {
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
235
      .def("_alloc_int",
Y
Yu Yang 已提交
236
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
237
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
238
           })
Y
yuyang18 已提交
239
      .def("_alloc_int",
D
dzhwinter 已提交
240
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
241
             self.mutable_data<int>(place);
Q
qijun 已提交
242
           })
Y
yuyang18 已提交
243
      .def("_alloc_int",
C
chengduoZH 已提交
244 245 246
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
247
      .def("_alloc_float",
C
chengduoZH 已提交
248 249 250
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
266
      .def("_clear", &Tensor::clear)
Y
Yu Yang 已提交
267 268
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
269
      .def("set", PyCPUTensorSetFromArray<double>)
270
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
271
      .def("set", PyCPUTensorSetFromArray<bool>)
272
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
273
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
274
      .def("set", PyCPUTensorSetFromArray<int8_t>)
275
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
276 277
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
278
      .def("set", PyCUDATensorSetFromArray<double>)
279
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
280
      .def("set", PyCUDATensorSetFromArray<bool>)
281
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
282
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
283
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
284 285 286 287 288 289
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
290
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
291
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
292
#endif
293
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
294 295 296 297
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
298
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
299
      .def("_dtype", [](Tensor &self) { return self.type(); })
300 301 302 303 304 305
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__", [](const Tensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
306

X
Xin Pan 已提交
307 308 309 310 311 312 313 314 315
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

316 317
    For example, a LoDTensor X can look like the example below. It contains
    2 sequences. The first has length 2 and the second has length 3, as
Z
Zeng Jinle 已提交
318
    described by x.lod.
X
Xin Pan 已提交
319

Z
Zeng Jinle 已提交
320 321 322
    The first tensor dimension 5=2+3 is calculated from LoD if it's available.
    It means the total number of sequence element. In X, each element has 2
    columns, hence [5, 2].
X
Xin Pan 已提交
323

Z
Zeng Jinle 已提交
324
    x.lod  = [[2, 3]]
325

Z
Zeng Jinle 已提交
326
    x.data = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]
X
Xin Pan 已提交
327

Z
Zeng Jinle 已提交
328
    x.shape = [5, 2]
X
Xin Pan 已提交
329

Z
Zeng Jinle 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
    LoD can have multiple levels (for example, a paragraph can have multiple
    sentences and a sentence can have multiple words). In the following
    LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
    first sequence length is 2 (has 2 sub-sequences), the second one's
    length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
    respectively. And the second sequence's 1 sub-sequence has length 3.

    y.lod = [[2 1], [2 2 3]]

    y.shape = [2+2+3, ...]

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
347 348 349 350 351 352 353 354 355 356 357 358

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.
        )DOC")
359
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
360 361 362 363 364 365 366 367 368
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
369 370
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
371 372 373
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
374
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
375 376 377 378 379
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
380
      .def("set_lod",
381
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
382
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
383
             LoD new_lod;
384 385
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
386 387 388
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
                 "the provided lod info is invalid");
389
             self.set_lod(new_lod);
S
sneaxiy 已提交
390 391 392 393 394 395
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
Z
Zeng Jinle 已提交
396 397 398 399 400 401 402 403 404 405

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
S
sneaxiy 已提交
406
           )DOC")
407 408 409 410 411 412 413 414 415 416 417
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
418 419
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
420 421
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
422 423 424 425
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
426
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
427 428
           there are two sequences with length 2 and 3 respectively, the
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
S
sneaxiy 已提交
429 430

           Args:
431
                recursive_sequence_lengths (List[List[int]]): sequence lengths.
Z
Zeng Jinle 已提交
432 433 434 435 436 437 438 439 440 441

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
S
sneaxiy 已提交
442
           )DOC")
443 444 445 446 447 448 449 450
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
451 452 453 454 455 456
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
Z
Zeng Jinle 已提交
457 458 459 460 461 462 463 464 465 466 467

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
468
           )DOC")
G
gongweibao 已提交
469
      // Set above comments of set_lod.
470 471 472 473 474 475 476 477
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
478 479 480 481 482
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
483
               out (List[List[int]): the sequence lengths.
Z
Zeng Jinle 已提交
484 485 486 487 488 489 490 491 492 493 494

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
495 496 497 498 499 500 501 502 503 504 505 506
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
Z
Zeng Jinle 已提交
507 508 509 510 511 512 513 514 515 516 517

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
518 519 520 521 522 523 524
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
525
           )DOC")
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
544
      });
D
dangqingqing 已提交
545

Q
qijun 已提交
546 547 548 549 550 551 552 553 554 555 556
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
557 558
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
559 560
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
561 562 563 564 565 566 567 568 569
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
570
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
571
      .def("rows", [](SelectedRows &self) {
572 573 574 575 576
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
577
      });
Q
qijun 已提交
578

579
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
580 581 582

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
583
      .def(py::init<>())
584
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
585
      .def("set_int",
586 587
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
588 589 590 591 592 593 594
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
595
      .def("get_tensor",
596 597
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
598 599
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
600 601 602
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
603 604 605 606 607
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
608 609 610
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
611
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
612 613 614 615 616
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
617
#endif
Y
Refine  
Yu Yang 已提交
618 619
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
C
chengduo 已提交
620
             PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(), true);
Y
Refine  
Yu Yang 已提交
621 622
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
623
           py::return_value_policy::reference);
624

S
sneaxiy 已提交
625
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
626

S
sneaxiy 已提交
627 628 629 630
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
631

S
sneaxiy 已提交
632 633
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
634
      .def("push",
S
sneaxiy 已提交
635
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
636
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
637
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
638
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
639
           })
S
sneaxiy 已提交
640 641 642 643
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
644

S
sneaxiy 已提交
645
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
646 647
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
Q
Qiao Longfei 已提交
648
          VLOG(1) << "init_lod_tensor_blocking_queue";
Q
Qiao Longfei 已提交
649 650 651 652
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
653
        py::return_value_policy::copy);
S
sneaxiy 已提交
654

S
sneaxiy 已提交
655
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
656 657 658 659 660 661 662 663 664 665 666 667 668
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

669
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
670 671 672 673 674 675
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
676 677
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
678
      .def("var",
679
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
680
             return self.Var(name);
Y
Yu Yang 已提交
681
           },
S
sneaxiy 已提交
682 683
           py::arg("name"),
           R"DOC(
684
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
685

686
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
687
           current scope, the variable would be created. Otherwise,
688
           return the existing variable.
S
sneaxiy 已提交
689 690

           Args:
691 692
               name (str): the variable name.

S
sneaxiy 已提交
693
           Returns:
694
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
695 696 697 698
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
699
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
700
           its parent scope. Return None if not found.
701

S
sneaxiy 已提交
702 703
           Args:
               name (str): the variable name.
704

S
sneaxiy 已提交
705
           Returns:
706
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
707
           )DOC",
708
           py::return_value_policy::reference)
709
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
710 711 712 713 714 715
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
716
           py::return_value_policy::reference)
S
sneaxiy 已提交
717 718 719
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
720 721
           )DOC")
      .def("_kids", &Scope::kids);
722

S
sneaxiy 已提交
723 724 725 726 727 728
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
729 730
        R"DOC(
        Create a new scope.
731

S
sneaxiy 已提交
732 733 734
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
735 736
        py::return_value_policy::reference);

Y
Yu Yang 已提交
737 738
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
739 740
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
741 742 743 744
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
745 746
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
747 748 749 750
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
751 752
    return ret_values;
  });
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
769 770 771 772 773 774 775
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
  m.def("get_flags_use_mkldnn", []() { return FLAGS_use_mkldnn; });
776 777 778
#ifdef PADDLE_WITH_NGRAPH
  m.def("get_flags_use_ngraph", []() { return FLAGS_use_ngraph; });
#endif
779

Y
Yu Yang 已提交
780
  m.def("prune", [](const ProgramDesc &origin,
781
                    const std::set<std::string> &feeded_var_names,
782
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
783
    ProgramDesc prog_with_targets(origin);
784

785
    for (const auto &t : targets) {
786
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
787
    }
788
    proto::ProgramDesc pruned_desc;
789
    Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
Y
Yu Yang 已提交
790
    return new ProgramDesc(pruned_desc);
791
  });
792 793 794
  m.def("prune_backward", [](const framework::ProgramDesc &program) {
    return PruneBackward(program);
  });
795 796 797 798
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
799 800 801
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
802 803
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
804
  // clang-format off
Y
Yu Yang 已提交
805
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
806 807
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
808
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
809 810 811
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
812
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
813
                      -> paddle::platform::DeviceContext* {
814
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
815
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
816
#else
Q
qijun 已提交
817
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
818
#endif
C
chengduoZH 已提交
819 820 821 822 823 824 825 826 827 828 829
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
830
// clang-format on
P
peizhilin 已提交
831
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
832 833
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
834
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
835 836 837 838 839 840 841 842
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
843
    The memory of CUDAPlace with different dev_id is not accessible.
844 845 846 847 848 849 850 851
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
852 853 854 855

    Examples:
        .. code-block:: python

856
          import paddle.fluid as fluid
L
lujun 已提交
857 858
          gpu_place = fluid.CUDAPlace(0)

859
        )DOC")
S
sneaxiy 已提交
860 861 862
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
887 888
             new (&self) platform::CUDAPlace(dev_id);
#else
889 890 891 892 893 894 895 896 897
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
898 899
#endif
           })
S
sneaxiy 已提交
900 901 902 903 904 905
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
906
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
907

908
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
909 910
    CPUPlace is a descriptor of a device.
    It represents a CPU device allocated or to be allocated with Tensor or LoDTensor.
L
lujun 已提交
911 912 913 914

    Examples:
        .. code-block:: python

915
          import paddle.fluid as fluid
916
          cpu_place = fluid.CPUPlace()to be allocated
L
lujun 已提交
917

918
        )DOC")
919
      .def(py::init<>())
S
sneaxiy 已提交
920 921 922 923 924 925
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
926
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
927

928
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
929 930 931 932 933 934
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
935 936 937 938

    Examples:
        .. code-block:: python

939
          import paddle.fluid as fluid
L
lujun 已提交
940 941
          place = fluid.CUDAPinnedPlace()

942
        )DOC")
S
sneaxiy 已提交
943
      .def("__init__",
S
sneaxiy 已提交
944
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
945 946 947
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
948
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
949
           })
S
sneaxiy 已提交
950 951 952 953 954 955 956 957
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
958 959
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
960 961
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
962 963 964 965 966
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
967 968
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
969 970 971 972 973 974
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
975 976 977 978
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
S
sneaxiy 已提交
979 980
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
981 982 983 984 985
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
986
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
987
             self = gpu_place;
C
chengduoZH 已提交
988 989
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
990 991
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
992
      });
Y
Yu Yang 已提交
993

Y
Yu Yang 已提交
994
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
995 996 997 998 999 1000 1001 1002 1003 1004 1005
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
                              "Cannot parse user input to OpDesc");
            PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                              "User OpDesc is not initialized, reason %s",
                              desc.InitializationErrorString());
            return OpRegistry::CreateOp(desc);
          })
1006
      .def("run",
1007
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1008 1009 1010
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1011
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1012 1013 1014 1015 1016
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1017 1018 1019 1020 1021 1022 1023
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1024 1025
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1026
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1027
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1028 1029 1030 1031
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1032

1033 1034 1035
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1036 1037 1038 1039 1040 1041 1042 1043 1044
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

F
fengjiayi 已提交
1045
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1046
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1047
      .def("close", &Executor::Close)
1048 1049
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
              std::map<std::string, LoDTensor *> *fetch_targets,
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
G
guru4elephant 已提交
1073 1074 1075 1076 1077 1078 1079 1080
      .def("run_cached_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1081 1082
      .def("prepare_ctx_cache", &Executor::PrepareCtxCache,
           py::call_guard<py::gil_scoped_release>())
1083 1084
      .def("create_variables", &Executor::CreateVariables,
           py::call_guard<py::gil_scoped_release>())
S
sneaxiy 已提交
1085
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1086 1087
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1088
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1089 1090
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1091
      });
S
sneaxiy 已提交
1092

D
dzhwinter 已提交
1093
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1094
  m.def("init_glog", framework::InitGLOG);
1095
  m.def("init_dgc", framework::InitDGC);
1096
  m.def("load_op_library", framework::LoadOpLib);
X
Xin Pan 已提交
1097 1098
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
1099

1100
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
1101
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1102
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1103
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1104
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1105 1106 1107 1108 1109 1110
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1111

1112
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
1113
  m.def("get_fetch_variable", framework::GetFetchVariable);
1114
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1115

X
Xin Pan 已提交
1116 1117
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1118 1119 1120 1121 1122
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
1123

Y
Yu Yang 已提交
1124 1125 1126 1127 1128 1129 1130 1131 1132
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1133 1134 1135 1136 1137
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
    Array of LoDTensor.

    Examples:
        .. code-block:: python
1138

Z
Zeng Jinle 已提交
1139 1140 1141 1142
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1143 1144
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1155 1156 1157 1158 1159 1160
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1185

Y
Yu Yang 已提交
1186
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1187
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1188
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1189

P
peizhilin 已提交
1190
#ifndef _WIN32
D
dangqingqing 已提交
1191 1192 1193
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1194
#endif
P
peizhilin 已提交
1195
#endif
Y
Yu Yang 已提交
1196

1197 1198 1199 1200
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1201
      .value("kAll", platform::ProfilerState::kAll)
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1215
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1216
  m.def("reset_profiler", platform::ResetProfiler);
1217
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1218 1219 1220
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1221

1222 1223
  m.def("size_of_dtype", framework::SizeOfType);

1224 1225 1226
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

1227 1228
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1229
      .def("has", &ir::Pass::Has)
1230 1231 1232
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1233
           })
1234
      .def(
1235
          "set",
1236 1237 1238
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1239 1240
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
1255 1256
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1257
        self.Apply(graph.get());
F
flame 已提交
1258
      });
1259

X
fix  
Xin Pan 已提交
1260 1261
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1276
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1277

Y
yuyang18 已提交
1278
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1279 1280 1281 1282
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1283 1284 1285
    Examples:
        .. code-block:: python

1286
          import paddle.fluid as fluid
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
          x = fluid.layers.data(name='x', shape=[13], dtype='float32')
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.fc(input=x, size=1, act=None)

          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
          avg_loss = fluid.layers.mean(cost)

          sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
          sgd_optimizer.minimize(avg_loss)

C
chengduo 已提交
1297 1298 1299
          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

1300 1301
          train_exe = fluid.ParallelExecutor(use_cuda=False,
                                             loss_name=avg_loss.name,
C
chengduo 已提交
1302 1303
                                             exec_strategy=exec_strategy)

C
chengduo 已提交
1304 1305
        )DOC");

Y
yuyang18 已提交
1306
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1307 1308 1309 1310 1311
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1322
      .def_property(
1323 1324 1325 1326
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1327 1328 1329 1330
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1331 1332 1333 1334 1335
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1336 1337 1338
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
1339 1340
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
1341 1342 1343 1344 1345 1346 1347
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1348 1349 1350 1351
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
1352 1353
                because the temp variable's shape maybe the same between two iterations.
                Default 1.
C
chengduo 已提交
1354 1355 1356 1357 1358 1359

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1360
              )DOC")
Q
Qiao Longfei 已提交
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
                user call pe.run() in python
              )DOC")
1372 1373 1374 1375 1376
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1377

Y
yuyang18 已提交
1378
  exec_strategy.def_property(
Y
yuyang18 已提交
1379 1380 1381 1382 1383 1384 1385
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1386 1387
      });

C
chengduo 已提交
1388 1389 1390 1391
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1392 1393 1394
    Examples:
        .. code-block:: python

F
flame 已提交
1395 1396 1397
            import paddle.fluid as fluid
            build_strategy = fluid.BuildStrategy()
            build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
C
chengduo 已提交
1398
)DOC");
Y
yuyang18 已提交
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
C
chengduo 已提交
1415 1416
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1417
            self.reduce_ = strategy;
C
chengduo 已提交
1418
          },
C
chengduo 已提交
1419 1420 1421 1422 1423 1424 1425
          R"DOC(The type is fluid.BuildStrategy.ReduceStrategy, there are two reduce
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
                you should choose AllReduce; if you choose Reduce, all the parameters'
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
                Default 'AllReduce'.
F
flame 已提交
1426 1427 1428 1429 1430 1431 1432 1433

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
                  )DOC")
Y
yuyang18 已提交
1434 1435 1436 1437 1438
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
C
chengduo 已提交
1439 1440
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finalized.");
Y
yuyang18 已提交
1441
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1442
          },
C
chengduo 已提交
1443 1444 1445 1446 1447
          R"DOC(The type is fluid.BuildStrategy.GradientScaleStrategy, there are three
                ways of defining :math:`loss@grad` in ParallelExecutor, CoeffNumDevice,
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
                you can choose Customized. Default 'CoeffNumDevice'.
F
flame 已提交
1448 1449 1450 1451 1452

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
C
chengduo 已提交
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
                        import paddle.fluid.compiler as compiler
                        import numpy
                        import os

                        use_cuda = True
                        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
                        exe = fluid.Executor(place)

                        # NOTE: If you use CPU to run the program, you need
                        # to specify the CPU_NUM, otherwise, fluid will use
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
                            places = fluid.cpu_places()
                        else:
                            places = places = fluid.cuda_places()

                        data = fluid.layers.data(name='X', shape=[1], dtype='float32')
                        hidden = fluid.layers.fc(input=data, size=10)
                        loss = fluid.layers.mean(hidden)
                        fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                        fluid.default_startup_program().random_seed=1
                        exe.run(fluid.default_startup_program())

F
flame 已提交
1481
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
                        build_strategy.gradient_scale_strategy = \
                                 fluid.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = compiler.CompiledProgram(
                                 fluid.default_main_program()).with_data_parallel(
                                          loss_name=loss.name, build_strategy=build_strategy,
                                          places = places)

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
                                             feed={"X": x, loss_grad_name : loss_grad},
                                             fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
1496
                   )DOC")
Y
yuyang18 已提交
1497 1498 1499 1500
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
C
chengduo 已提交
1501 1502
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1503
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1504
          },
C
chengduo 已提交
1505
          R"DOC(The type is STR, debug_graphviz_path indicates the path that
F
flame 已提交
1506 1507 1508 1509 1510 1511 1512 1513
                writing the SSA Graph to file in the form of graphviz.
                It is useful for debugging. Default ""

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
1514 1515
                        build_strategy.debug_graphviz_path = "./graph"

F
flame 已提交
1516
                    )DOC")
S
sneaxiy 已提交
1517 1518 1519 1520 1521 1522
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1523 1524
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1525 1526
            self.enable_sequential_execution_ = b;
          },
C
chengduo 已提交
1527 1528
          R"DOC(The type is BOOL. If set True, the execution order of ops would
                be the same as what is in the program. Default False.
F
flame 已提交
1529 1530 1531 1532 1533 1534 1535 1536

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
1537 1538 1539 1540 1541 1542
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1543 1544
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1545 1546
            self.remove_unnecessary_lock_ = b;
          },
C
chengduo 已提交
1547 1548
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default True.
F
flame 已提交
1549 1550 1551 1552 1553 1554 1555 1556

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
1557 1558 1559 1560
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
1561 1562 1563
#ifdef WIN32
            PADDLE_THROW("Windows has NO support to distribute mode.");
#endif
1564 1565
            self.num_trainers_ = num_trainers;
          })
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
1578 1579 1580 1581 1582 1583
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
1584
      .def_property("use_hierarchical_allreduce",
1585 1586 1587 1588 1589 1590
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
1591
      .def_property("hierarchical_allreduce_inter_nranks",
1592 1593 1594 1595 1596 1597 1598
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
1599 1600 1601 1602 1603 1604
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1605 1606
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
C
chengduo 已提交
1607 1608 1609
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
F
flame 已提交
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
                to fuse elementwise_add_op and activation_op,
                it may make the execution faster. Default False

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
1620 1621 1622 1623 1624 1625
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1626 1627
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
1628 1629 1630
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
F
flame 已提交
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
                Default False.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
                      PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                                        "BuildStrategy is finlaized.");
                      self.fuse_broadcast_ops_ = b;
                    },
                    R"DOC(The type is BOOL, fuse_broadcast_op indicates whether
1654 1655 1656 1657 1658
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
                      for NCCLReduce operations for a period of time. Default False.)DOC")
C
chengduo 已提交
1659 1660
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
1661 1662
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
1663 1664
                    },
                    [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1665 1666
                      PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                                        "BuildStrategy is finlaized.");
C
chengduo 已提交
1667 1668
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
1669 1670 1671 1672
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1673 1674
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Q
qingqing01 已提交
1675 1676 1677 1678 1679 1680 1681 1682 1683
            self.sync_batch_norm_ = b;
          },
          R"DOC(The type is BOOL, sync_batch_norm indicates whether to use
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.

                Current implementation doesn't support FP16 training and CPU.
                And only synchronous on one machine, not all machines.

F
flame 已提交
1684 1685 1686 1687 1688 1689 1690 1691 1692
                Default False

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
1693 1694
      .def_property(
          "memory_optimize",
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
              PADDLE_THROW(
                  "BuildStrategy.memory_optimize must be None, False or True");
            }
          },
          R"DOC(The type is BOOL or None, memory opitimize aims to save total memory
1714
                consumption, set to True to enable it.
1715

1716 1717 1718 1719
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
                True means enabling and False means disabling. Default None.)DOC")
1720 1721 1722
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
1723 1724 1725 1726 1727 1728 1729 1730 1731
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
              PADDLE_THROW("Windows has NO support to distribute mode.");
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
1732 1733 1734
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
1735
      .def_property(
D
dzhwinter 已提交
1736 1737 1738
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
1739 1740
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
1741 1742 1743 1744
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
1745
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
1746 1747 1748 1749 1750 1751 1752
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
1753 1754 1755 1756
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
1757 1758 1759 1760 1761 1762 1763 1764 1765
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
1766
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1767
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1768 1769 1770 1771 1772
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1773 1774

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
1775
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
1776
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
1777
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
1778 1779 1780 1781
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1782 1783 1784 1785 1786
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
1787 1788 1789
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
1790 1791 1792 1793
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1794
      .def("run", [](ParallelExecutor &self,
1795
                     const std::vector<std::string> &fetch_tensors) {
S
sneaxiy 已提交
1796
        pybind11::gil_scoped_release release;
1797
        return self.Run(fetch_tensors);
S
sneaxiy 已提交
1798
      });
Y
Yu Yang 已提交
1799

D
dongdaxiang 已提交
1800
  BindFleetWrapper(&m);
H
hutuxian 已提交
1801
  BindBoxHelper(&m);
W
wopeizl 已提交
1802
#ifndef _WIN32
D
dongdaxiang 已提交
1803
  BindNCCLWrapper(&m);
W
wopeizl 已提交
1804
#endif
F
flame 已提交
1805 1806
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1807
  BindInferenceApi(&m);
1808
  BindDataset(&m);
1809 1810 1811
#ifdef PADDLE_WITH_DISTRIBUTE
  BindCommunicator(&m);
#endif
L
Luo Tao 已提交
1812
}
1813
}  // namespace pybind
1814
}  // namespace paddle