distributed_py.cc 21.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <fcntl.h>
#ifdef _POSIX_C_SOURCE
#undef _POSIX_C_SOURCE
#endif

#ifdef _XOPEN_SOURCE
#undef _XOPEN_SOURCE
#endif

#include "paddle/fluid/distributed/collective/ProcessGroup.h"
#include "paddle/fluid/distributed/collective/Types.h"
26
#include "paddle/fluid/distributed/collective/reducer.h"
27 28 29 30 31 32 33
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/pybind/distributed_py.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/all.h"

34
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
35 36 37
#include "paddle/fluid/distributed/collective/ProcessGroupNCCL.h"
#endif

38 39 40 41
#if defined(PADDLE_WITH_ASCEND_CL)
#include "paddle/fluid/distributed/collective/ProcessGroupHCCL.h"
#endif

42 43 44 45 46
#if defined(PADDLE_WITH_GLOO) && defined(PADDLE_WITH_PSCORE) && \
    (defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_ASCEND_CL))
#include "paddle/fluid/distributed/collective/ProcessGroupHeter.h"
#endif

47 48 49 50 51
#if defined(PADDLE_WITH_GLOO)
#include "paddle/fluid/distributed/collective/ProcessGroupGloo.h"
#include "paddle/fluid/distributed/store/tcp_store.h"
#endif

52 53 54 55 56 57 58
namespace py = pybind11;

namespace paddle {
namespace pybind {

using Tensor = paddle::experimental::Tensor;

59 60 61 62 63
std::shared_ptr<distributed::EagerReducer> CreateEagerReducer(
    py::handle py_tensors,
    const std::vector<std::vector<size_t>> &group_indices,
    const std::vector<bool> &is_sparse_gradient,
    std::shared_ptr<distributed::ProcessGroup> process_group,
64 65
    const std::vector<size_t> &group_size_limits,
    bool find_unused_parameters) {
66
  auto params = CastPyArg2VectorOfTensor(py_tensors.ptr(), 0);
67 68 69 70 71 72
  return std::make_shared<distributed::EagerReducer>(params,
                                                     group_indices,
                                                     is_sparse_gradient,
                                                     process_group,
                                                     group_size_limits,
                                                     find_unused_parameters);
73 74
}

75 76 77 78 79 80 81 82
#if defined(PADDLE_WITH_GLOO)
using ProcessGroupGloo = paddle::distributed::ProcessGroupGloo;
using GlooStore = paddle::distributed::ProcessGroupGloo::GlooStore;
using GlooOptions = paddle::distributed::ProcessGroupGloo::GlooOptions;
#endif

static std::string GLOO_SOCKET_IFNAME_ENV = "GLOO_SOCKET_IFNAME";  // NOLINT

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
void BindDistributed(py::module *m) {
  py::enum_<distributed::ReduceOp>(*m, "ReduceOp")
      .value("SUM", distributed::ReduceOp::SUM)
      .value("AVG", distributed::ReduceOp::AVG)
      .value("MAX", distributed::ReduceOp::MAX)
      .value("MIN", distributed::ReduceOp::MIN)
      .value("PRODUCT", distributed::ReduceOp::PRODUCT);

  py::class_<distributed::AllreduceOptions>(*m, "AllreduceOptions")
      .def(py::init<>())
      .def_readwrite("reduce_op", &distributed::AllreduceOptions::reduce_op);

  py::class_<distributed::BroadcastOptions>(*m, "BroadcastOptions")
      .def(py::init<>())
      .def_readwrite("source_rank", &distributed::BroadcastOptions::source_rank)
      .def_readwrite("source_root",
                     &distributed::BroadcastOptions::source_root);

B
Baibaifan 已提交
101 102 103 104
  py::class_<distributed::BarrierOptions>(*m, "BarrierOptions")
      .def(py::init<>())
      .def_readwrite("place_ids", &distributed::BarrierOptions::place_ids);

105 106 107 108 109
  py::class_<distributed::ReduceOptions>(*m, "ReduceOptions")
      .def(py::init<>())
      .def_readwrite("reduce_op", &distributed::ReduceOptions::reduce_op)
      .def_readwrite("source_root", &distributed::ReduceOptions::root_rank);

110 111 112 113 114 115
  auto ProcessGroup =
      py::class_<distributed::ProcessGroup,
                 std::shared_ptr<distributed::ProcessGroup>>(*m, "ProcessGroup")
          .def("rank", &distributed::ProcessGroup::GetRank)
          .def("size", &distributed::ProcessGroup::GetSize)
          .def("name", &distributed::ProcessGroup::GetBackendName)
116 117
          .def(
              "allreduce",
118 119
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
120 121 122 123 124 125 126 127 128
                 distributed::ReduceOp op) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                distributed::AllreduceOptions opts;
                opts.reduce_op = op;
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.AllReduce(tensors, tensors, opts);
              },
129 130
              py::arg("tensor"),
              py::arg("op") = distributed::ReduceOp::SUM,
131 132 133 134
              py::call_guard<py::gil_scoped_release>())

          .def(
              "broadcast",
135 136
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
137 138 139 140 141 142 143 144 145
                 int source_rank) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                distributed::BroadcastOptions opts;
                opts.source_rank = source_rank;
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Broadcast(tensors, tensors, opts);
              },
146 147
              py::arg("tensor"),
              py::arg("source_rank"),
148 149 150 151 152 153 154 155 156 157 158 159 160 161
              py::call_guard<py::gil_scoped_release>())

          .def(
              "barrier",
              [](distributed::ProcessGroup &self, std::vector<int> place_ids) {
                distributed::BarrierOptions opts;
                opts.place_ids = place_ids;
                return self.Barrier(opts);
              },
              py::arg("place_ids") = std::vector<int>{},
              py::call_guard<py::gil_scoped_release>())

          .def(
              "send",
162 163
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
164 165 166 167 168 169 170
                 int dst) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Send(tensors, dst);
              },
171 172
              py::arg("tensor"),
              py::arg("dst"),
173 174
              py::call_guard<py::gil_scoped_release>())

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
          .def(
              "send_partial",
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
                 int dst_rank,
                 int nranks,
                 int rank_id) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                int numel = (*dense).numel();
                int send_numel = numel / nranks;
                int offset = send_numel * rank_id;
                return self.Send_Partial(*dense, dst_rank, offset, send_numel);
              },
              py::arg("tensor"),
              py::arg("dst"),
              py::arg("num"),
              py::arg("id"),
              py::call_guard<py::gil_scoped_release>())

196 197
          .def(
              "recv",
198 199
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
200 201 202 203 204 205 206
                 int src) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Recv(tensors, src);
              },
207 208
              py::arg("tensor"),
              py::arg("src"),
209 210
              py::call_guard<py::gil_scoped_release>())

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
          .def(
              "recv_partial",
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
                 int src_rank,
                 int nranks,
                 int rank_id) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                int numel = (*dense).numel();
                int recv_numel = numel / nranks;
                int offset = recv_numel * rank_id;
                return self.Recv_Partial(*dense, src_rank, offset, recv_numel);
              },
              py::arg("tensor"),
              py::arg("src"),
              py::arg("num"),
              py::arg("id"),
              py::call_guard<py::gil_scoped_release>())

232 233
          .def(
              "all_gather",
234 235
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
236 237 238 239 240 241 242 243 244 245 246
                 py::handle py_out_tensor) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> in_tensors = {*in_dense};
                std::vector<phi::DenseTensor> out_tensors = {*out_dense};
                return self.AllGather(in_tensors, out_tensors);
              },
247 248
              py::arg("in"),
              py::arg("out"),
249 250
              py::call_guard<py::gil_scoped_release>())

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
          .def(
              "all_gather_partial",
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor,
                 int nranks,
                 int rank_id) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> in_tensors = {*in_dense};
                std::vector<phi::DenseTensor> out_tensors = {*out_dense};
                int numel = (*in_dense).numel();
                int send_numel = numel / nranks;
                int offset = send_numel * rank_id;
                return self.AllGather_Partial(
                    in_tensors, out_tensors, offset, send_numel);
              },
              py::arg("in"),
              py::arg("out"),
              py::arg("num"),
              py::arg("id"),
              py::call_guard<py::gil_scoped_release>())

278 279
          .def(
              "alltoall",
280 281
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
282 283 284 285 286 287 288 289 290 291 292
                 py::handle py_out_tensor) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> in_tensors = {*in_dense};
                std::vector<phi::DenseTensor> out_tensors = {*out_dense};
                return self.AllToAll(in_tensors, out_tensors);
              },
293 294
              py::arg("in"),
              py::arg("out"),
295 296
              py::call_guard<py::gil_scoped_release>())

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
          .def(
              "alltoall_single",
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor,
                 std::vector<int64_t> in_sizes,
                 std::vector<int64_t> out_sizes) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> in_tensors = {*in_dense};
                std::vector<phi::DenseTensor> out_tensors = {*out_dense};
                return self.AllToAll_Single(
                    in_tensors, out_tensors, in_sizes, out_sizes);
              },
              py::arg("in"),
              py::arg("out"),
              py::arg("in_sizes"),
              py::arg("out_sizes"),
              py::call_guard<py::gil_scoped_release>())

321 322
          .def(
              "reduce",
323 324 325 326
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
                 int dst,
                 distributed::ReduceOp op) {
327 328 329 330 331 332 333 334 335
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                distributed::ReduceOptions opts;
                opts.reduce_op = op;
                opts.root_rank = dst;
                auto dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Reduce(tensors, tensors, opts);
              },
336 337
              py::arg("tensor"),
              py::arg("dst"),
338 339 340 341
              py::arg("op") = distributed::ReduceOp::SUM,
              py::call_guard<py::gil_scoped_release>())
          .def(
              "scatter",
342 343 344 345
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor,
                 int src) {
346 347 348 349 350 351 352 353 354 355 356 357
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                distributed::ScatterOptions opts;
                opts.root_rank = src;
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> in_tensors = {*in_dense};
                std::vector<phi::DenseTensor> out_tensors = {*out_dense};
                return self.Scatter(in_tensors, out_tensors, opts);
              },
358 359 360
              py::arg("in"),
              py::arg("out"),
              py::arg("src"),
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
              py::call_guard<py::gil_scoped_release>())
          .def(
              "_reduce_scatter_base",
              [](distributed::ProcessGroup &self,
                 py::handle py_out_tensor,
                 py::handle py_in_tensor,
                 distributed::ReduceOp op) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                distributed::ReduceScatterOptions opts;
                opts.reduce_op = op;
                auto dense_out = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                auto dense_in = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                return self._ReduceScatterBase(*dense_out, *dense_in, opts);
              },
              py::arg("out_tensor"),
              py::arg("in_tensor"),
              py::arg("op") = distributed::ReduceOp::SUM,
381
              py::call_guard<py::gil_scoped_release>());
382

383
#if defined(PADDLE_WITH_RCCL) || defined(PADDLE_WITH_NCCL)
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
  auto processGroupNCCL =
      py::class_<distributed::ProcessGroupNCCL,
                 std::shared_ptr<distributed::ProcessGroupNCCL>>(
          *m, "ProcessGroupNCCL", ProcessGroup)
          .def(py::init<const std::shared_ptr<distributed::Store> &,
                        int,
                        int,
                        const platform::CUDAPlace &,
                        int>(),
               py::arg("store"),
               py::arg("rank"),
               py::arg("world_size"),
               py::arg("place"),
               py::arg("group_id") = 0,
               py::call_guard<py::gil_scoped_release>());

  processGroupNCCL.def_static(
      "group_start", []() { distributed::ProcessGroupNCCL::GroupStart(); });
  processGroupNCCL.def_static(
      "group_end", []() { distributed::ProcessGroupNCCL::GroupEnd(); });

405
#endif
406 407 408 409 410 411

#if defined(PADDLE_WITH_GLOO) && defined(PADDLE_WITH_PSCORE) && \
    (defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_ASCEND_CL))
  py::class_<distributed::ProcessGroupHeter,
             std::shared_ptr<distributed::ProcessGroupHeter>>(
      *m, "ProcessGroupHeter", ProcessGroup)
412 413 414
      .def(py::init<const std::shared_ptr<distributed::Store> &,
                    int,
                    int,
415 416 417 418 419
#if defined(PADDLE_WITH_ASCEND_CL)
                    const platform::NPUPlace &,
#else
                    const platform::CUDAPlace &,
#endif
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
                    int,
                    int,
                    int,
                    int,
                    int,
                    bool,
                    std::string,
                    int,
                    int>(),
           py::arg("store"),
           py::arg("rank"),
           py::arg("world_size"),
           py::arg("place"),
           py::arg("gid") = 0,
           py::arg("local_rank") = 0,
           py::arg("local_size") = 1,
           py::arg("gloo_rank") = 0,
           py::arg("gloo_size") = 1,
           py::arg("with_switch") = false,
           py::arg("switch_endpoint") = "",
           py::arg("src_rank") = "",
           py::arg("dst_rank") = "",
           py::call_guard<py::gil_scoped_release>());
443
#endif
444

445 446 447 448
#if defined(PADDLE_WITH_ASCEND_CL)
  py::class_<distributed::ProcessGroupHCCL,
             std::shared_ptr<distributed::ProcessGroupHCCL>>(
      *m, "ProcessGroupHCCL", ProcessGroup)
449 450 451 452 453 454 455 456 457 458
      .def(py::init<const std::shared_ptr<distributed::Store> &,
                    int,
                    int,
                    const platform::NPUPlace &,
                    int>(),
           py::arg("store"),
           py::arg("rank"),
           py::arg("world_size"),
           py::arg("place"),
           py::arg("group_id") = 0,
459
           py::call_guard<py::gil_scoped_release>());
460

461 462
#endif

463 464 465
  py::class_<distributed::ProcessGroup::Task,
             std::shared_ptr<distributed::ProcessGroup::Task>>(*m, "task")
      .def("is_completed", &distributed::ProcessGroup::Task::IsCompleted)
466 467
      .def("wait",
           &distributed::ProcessGroup::Task::Wait,
468 469
           py::arg("timeout") = kWaitTimeout,
           py::call_guard<py::gil_scoped_release>())
470 471
      .def("synchronize",
           &distributed::ProcessGroup::Task::Synchronize,
472 473
           py::call_guard<py::gil_scoped_release>());

474 475 476
#if defined(PADDLE_WITH_GLOO)
  py::class_<ProcessGroupGloo, std::shared_ptr<ProcessGroupGloo>>(
      *m, "ProcessGroupGloo", ProcessGroup)
477 478 479 480 481
      .def(py::init<const std::shared_ptr<paddle::distributed::Store> &,
                    int,
                    int,
                    const platform::CPUPlace &,
                    int,
482
                    std::shared_ptr<GlooOptions> &>(),
483
           py::call_guard<py::gil_scoped_release>())
484
      .def(py::init([](const std::shared_ptr<paddle::distributed::Store> &store,
485 486 487 488
                       int rank,
                       int world_size,
                       const platform::CPUPlace &place,
                       int gid) {
489 490 491 492 493 494 495 496
             auto opts = GlooOptions::create();
             char *ifname = getenv(GLOO_SOCKET_IFNAME_ENV.c_str());
             if (ifname && strlen(ifname) > 1) {
               opts->device = ProcessGroupGloo::createDeviceForInterface(
                   std::string(ifname));
             } else {
               opts->device = ProcessGroupGloo::createDefaultDevice();
             }
497 498
             return std::make_shared<ProcessGroupGloo>(
                 store, rank, world_size, place, gid, opts);
499
           }),
500 501 502 503 504
           py::arg("store"),
           py::arg("rank"),
           py::arg("world_size"),
           py::arg("place"),
           py::arg("group_id") = 0,
505
           py::call_guard<py::gil_scoped_release>())
506 507 508 509
      .def_static("create_default_device",
                  &ProcessGroupGloo::createDefaultDevice);
#endif

510 511
  m->def(
      "eager_assign_group_by_size",
512 513
      [](py::handle py_tensors,
         std::vector<bool> is_sparse_gradient,
514 515 516 517 518 519
         std::vector<size_t> group_size_limits,
         std::vector<int64_t> tensor_indices) {
        auto tensors = CastPyArg2VectorOfTensor(py_tensors.ptr(), 0);
        return distributed::Eager_AssignGroupBySize(
            tensors, is_sparse_gradient, group_size_limits, tensor_indices);
      },
520 521
      py::arg("tensors"),
      py::arg("is_sparse_gradient"),
522 523 524
      py::arg("group_size_limits") = std::vector<size_t>{25 * 1024 * 1024},
      py::arg("tensor_indices") = std::vector<int64_t>{},
      py::call_guard<py::gil_scoped_release>());
525 526

  py::class_<distributed::EagerReducer,
527 528
             std::shared_ptr<distributed::EagerReducer>>(
      *m, "EagerReducer", R"DOC()DOC")
529
      .def(py::init(&CreateEagerReducer))
530 531 532 533 534 535
      .def(
          "prepare_for_backward",
          [](distributed::EagerReducer &self, py::handle py_tensors) {
            auto params = CastPyArg2VectorOfTensor(py_tensors.ptr(), 0);
            self.PrepareForBackward(params);
          },
536 537
          py::arg("tensors"),
          py::call_guard<py::gil_scoped_release>());
538 539 540 541
}

}  // end namespace pybind
}  // namespace paddle