dropout_impl.cu.h 11.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>

#ifdef PADDLE_WITH_CUDA
#include <cuda.h>
#include <curand_kernel.h>
#include "paddle/fluid/platform/dynload/curand.h"
#endif
#ifdef PADDLE_WITH_HIP
#include <hip/hip_runtime.h>
#include <hiprand_kernel.h>
#include "paddle/fluid/platform/dynload/hiprand.h"
#endif

#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/tensor_util.h"
S
sneaxiy 已提交
33
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
34
#include "paddle/fluid/operators/dropout_impl_util.h"
35
#include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h"
H
hong 已提交
36 37
#include "paddle/fluid/platform/aligned_vector.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
38
#include "paddle/phi/kernels/funcs/functors.h"
39 40 41 42 43 44 45 46 47

namespace paddle {
namespace operators {

template <typename T, typename MaskType>
__global__ void RandomGenerator(const size_t n, uint64_t seed,
                                const float dropout_prob, const T* src,
                                MaskType* mask, T* dst,
                                bool is_upscale_in_train, uint64_t increment) {
S
sneaxiy 已提交
48
  using MT = typename details::MPTypeTrait<T>::Type;
49 50 51 52 53 54 55 56 57 58 59
  int idx = blockDim.x * blockIdx.x + threadIdx.x;
#ifdef PADDLE_WITH_HIP
  hiprandStatePhilox4_32_10_t state;
  hiprand_init(seed, idx, increment, &state);
#else
  curandStatePhilox4_32_10_t state;
  curand_init(seed, idx, increment, &state);
#endif

  MaskType mask_val;
  T dst_val;
S
sneaxiy 已提交
60
  MT factor = static_cast<MT>(1.0f / (1.0f - dropout_prob));
61 62 63 64 65 66 67 68 69 70 71
  for (; idx < n; idx += blockDim.x * gridDim.x) {
    T src_val = src[idx];
#ifdef PADDLE_WITH_HIP
    if (hiprand_uniform(&state) < dropout_prob) {
#else
    if (curand_uniform(&state) < dropout_prob) {
#endif
      mask_val = 0;
      dst_val = 0;
    } else {
      mask_val = 1;
S
sneaxiy 已提交
72 73 74
      dst_val = is_upscale_in_train
                    ? static_cast<T>(static_cast<MT>(src_val) * factor)
                    : src_val;
75 76 77 78 79 80 81 82 83 84 85 86
    }
    mask[idx] = mask_val;
    dst[idx] = dst_val;
  }
}

template <typename T, typename MaskType, int VecSize>
__global__ void VectorizedRandomGenerator(const size_t n, uint64_t seed,
                                          const float dropout_prob,
                                          const T* src, MaskType* mask, T* dst,
                                          bool is_upscale_in_train,
                                          uint64_t increment) {
S
sneaxiy 已提交
87
  using MT = typename details::MPTypeTrait<T>::Type;
88 89
  using LoadT = phi::AlignedVector<T, VecSize>;
  using MaskLoadT = phi::AlignedVector<MaskType, VecSize>;
90 91 92 93 94 95 96 97 98 99 100

#ifdef PADDLE_WITH_HIP
  int64_t idx = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
  hiprandStatePhilox4_32_10_t state;
  hiprand_init(seed, idx, increment, &state);
#else
  int64_t idx = blockDim.x * blockIdx.x + threadIdx.x;
  curandStatePhilox4_32_10_t state;
  curand_init(seed, idx, increment, &state);
#endif

S
sneaxiy 已提交
101
  MT factor = static_cast<MT>(1.0f / (1.0f - dropout_prob));
102 103
  for (int i = idx * VecSize; i < n; i += blockDim.x * gridDim.x * VecSize) {
    LoadT src_val;
104
    phi::Load<T, VecSize>(&src[i], &src_val);
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

#ifdef PADDLE_WITH_HIP
    float4 rand = hiprand_uniform4(&state);
#else
    float4 rand = curand_uniform4(&state);
#endif

    LoadT dst_val;
    MaskLoadT mask_val;

#pragma unroll
    for (int j = 0; j < VecSize; j++) {
      if ((&rand.x)[j] < dropout_prob) {
        dst_val[j] = 0;
        mask_val[j] = 0;
      } else {
S
sneaxiy 已提交
121 122 123
        dst_val[j] = is_upscale_in_train
                         ? static_cast<T>(static_cast<MT>(src_val[j]) * factor)
                         : src_val[j];
124 125 126 127
        mask_val[j] = 1;
      }
    }

128 129
    phi::Store<T, VecSize>(dst_val, &dst[i]);
    phi::Store<MaskType, VecSize>(mask_val, &mask[i]);
130 131 132
  }
}

133 134
template <typename T, typename MaskType>
struct CudaDropoutGradFunctor {
S
sneaxiy 已提交
135 136 137
  using MT = typename details::MPTypeTrait<T>::Type;

  explicit CudaDropoutGradFunctor(const MT factor) : factor_(factor) {}
138 139 140

  __device__ __forceinline__ T operator()(const T dout,
                                          const MaskType mask) const {
S
sneaxiy 已提交
141 142
    return static_cast<T>(static_cast<MT>(dout) * static_cast<MT>(mask) *
                          factor_);
143 144 145
  }

 private:
S
sneaxiy 已提交
146
  MT factor_;
147 148
};

149
template <typename T, typename MaskType, int VecSize>
S
sneaxiy 已提交
150 151 152 153 154
__global__ void DropoutGradCUDAKernel(
    const T* dout, const MaskType* mask,
    const typename details::MPTypeTrait<T>::Type factor, const int64_t size,
    T* dx) {
  using MT = typename details::MPTypeTrait<T>::Type;
155 156
  using LoadT = phi::AlignedVector<T, VecSize>;
  using MaskLoadT = phi::AlignedVector<MaskType, VecSize>;
157 158 159 160

  int64_t idx = blockDim.x * blockIdx.x + threadIdx.x;
  for (int i = idx * VecSize; i < size; i += blockDim.x * gridDim.x * VecSize) {
    LoadT dout_val;
161
    phi::Load<T, VecSize>(&dout[i], &dout_val);
162 163

    MaskLoadT mask_val;
164
    phi::Load<MaskType, VecSize>(&mask[i], &mask_val);
165 166 167 168 169

    LoadT dx_val;

#pragma unroll
    for (int j = 0; j < VecSize; j++) {
S
sneaxiy 已提交
170 171
      dx_val[j] = static_cast<T>(static_cast<MT>(dout_val[j]) *
                                 static_cast<MT>(mask_val[j]) * factor);
172 173
    }

174
    phi::Store<T, VecSize>(dx_val, &dx[i]);
175 176 177 178
  }
}

template <typename T>
H
hong 已提交
179
void DropoutFwGPUKernelDriver(const phi::GPUContext& dev_ctx, bool is_test,
180 181
                              const std::string dropout_implementation,
                              float dropout_prob, bool upscale_in_train,
H
hong 已提交
182 183 184 185
                              bool is_fix_seed, int seed_val,
                              const framework::Tensor& x,
                              const framework::Tensor* seed,
                              framework::Tensor* mask, framework::Tensor* y) {
186
  auto& place = *dev_ctx.eigen_device();
187 188 189 190
  int64_t x_numel = x.numel();
  auto stream = dev_ctx.stream();
  auto* x_data = x.data<T>();
  auto* y_data = y->data<T>();
191 192 193

  if (!is_test) {
    auto* mask_data = mask->data<uint8_t>();
194
    size_t size = phi::product(mask->dims());
195 196 197

    if (dropout_prob == 1.0f) {
#ifdef PADDLE_WITH_HIP
198
      PADDLE_ENFORCE_GPU_SUCCESS(
199
          hipMemsetAsync(y_data, 0, x_numel * sizeof(T), stream));
200
      PADDLE_ENFORCE_GPU_SUCCESS(
201 202
          hipMemsetAsync(mask_data, 0, x_numel * sizeof(*mask_data), stream));
#else
203
      PADDLE_ENFORCE_GPU_SUCCESS(
204
          cudaMemsetAsync(y_data, 0, x_numel * sizeof(T), stream));
205
      PADDLE_ENFORCE_GPU_SUCCESS(
206 207 208 209 210 211 212 213 214 215 216 217 218 219
          cudaMemsetAsync(mask_data, 0, x_numel * sizeof(*mask_data), stream));
#endif
      return;
    }

    // increment is used to set the args(offset) of curand_init, which defines
    // offset in subsequence.
    // The detail:
    // https://docs.nvidia.com/cuda/curand/device-api-overview.html
    // Increment should be at least the number of curand() random numbers used
    // in each thread to avoid the random number generated this time being the
    // same as the previous calls.
    uint64_t seed_data;
    uint64_t increment;
Z
Zhang Ting 已提交
220 221
    // VectorizedRandomGenerator use curand_uniform4, so we only support
    // vec_size is 4;
222
    int vec_size = (phi::GetVectorizedSize<T>(x_data) == 4) ? 4 : 1;
H
hong 已提交
223 224
    auto gpu_config =
        phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, x_numel, vec_size);
Z
Zhang Ting 已提交
225
    auto offset =
226
        ((x_numel - 1) / (gpu_config.GetThreadNum() * vec_size) + 1) * vec_size;
227 228 229

    GetSeedDataAndIncrement(dev_ctx, seed, is_fix_seed, seed_val, offset,
                            &seed_data, &increment);
230 231 232 233

#ifdef __HIPCC__
    if (vec_size == 4 && size % 4 == 0) {
      hipLaunchKernelGGL(
234 235 236 237
          HIP_KERNEL_NAME(VectorizedRandomGenerator<T, uint8_t, 4>),
          gpu_config.GetGridSize(), gpu_config.GetBlockSize(), 0, stream, size,
          seed_data, dropout_prob, x_data, mask_data, y_data, upscale_in_train,
          increment);
238 239
    } else {
      hipLaunchKernelGGL(HIP_KERNEL_NAME(RandomGenerator<T, uint8_t>),
240 241 242
                         gpu_config.GetGridSize(), gpu_config.GetBlockSize(), 0,
                         stream, size, seed_data, dropout_prob, x_data,
                         mask_data, y_data, upscale_in_train, increment);
243 244 245
    }
#else
    if (vec_size == 4 && size % 4 == 0) {
246 247
      VectorizedRandomGenerator<T, uint8_t, 4><<<
          gpu_config.block_per_grid, gpu_config.thread_per_block, 0, stream>>>(
248 249 250
          size, seed_data, dropout_prob, x_data, mask_data, y_data,
          upscale_in_train, increment);
    } else {
251 252
      RandomGenerator<T, uint8_t><<<gpu_config.block_per_grid,
                                    gpu_config.thread_per_block, 0, stream>>>(
253 254 255 256 257 258
          size, seed_data, dropout_prob, x_data, mask_data, y_data,
          upscale_in_train, increment);
    }
#endif
  } else {
    if (upscale_in_train) {
259 260 261 262 263 264 265 266 267 268
// todo: can y share with data with x directly?
#ifdef PADDLE_WITH_HIP
      PADDLE_ENFORCE_GPU_SUCCESS(
          hipMemcpyAsync(y_data, x_data, sizeof(T) * x_numel,
                         hipMemcpyDeviceToDevice, stream));
#else
      PADDLE_ENFORCE_GPU_SUCCESS(
          cudaMemcpyAsync(y_data, x_data, sizeof(T) * x_numel,
                          cudaMemcpyDeviceToDevice, stream));
#endif
269
    } else {
270 271
      using MT = typename details::MPTypeTrait<T>::Type;
      MT factor = static_cast<MT>(1.0f - dropout_prob);
272 273 274 275 276
      std::vector<const framework::Tensor*> ins = {&x};
      std::vector<framework::Tensor*> outs = {y};
      auto functor = phi::funcs::ScaleFunctor<T>(factor);
      paddle::operators::LaunchSameDimsElementwiseCudaKernel<T>(dev_ctx, ins,
                                                                &outs, functor);
277 278 279 280 281
    }
  }
}

template <typename T>
H
hong 已提交
282
void DropoutGradGPUKernelDriver(const phi::GPUContext& dev_ctx,
283
                                const std::string dropout_implementation,
H
hong 已提交
284 285 286 287 288
                                float dropout_prob,
                                const framework::Tensor& grad_y,
                                const framework::Tensor& mask, int64_t size,
                                framework::Tensor* grad_x,
                                bool is_test = false) {
S
sneaxiy 已提交
289
  using MT = typename details::MPTypeTrait<T>::Type;
290 291
  auto stream = dev_ctx.stream();
  MT factor;
292 293
  if (is_test) {
    if (dropout_implementation == "upscale_in_train") {
294
      factor = static_cast<MT>(1.0f);
295
    } else {
296
      factor = static_cast<MT>(1.0f - dropout_prob);
297
    }
298 299 300 301 302
    std::vector<const framework::Tensor*> ins = {&grad_y};
    std::vector<framework::Tensor*> outs = {grad_x};
    auto functor = phi::funcs::ScaleFunctor<T>(factor);
    paddle::operators::LaunchSameDimsElementwiseCudaKernel<T>(dev_ctx, ins,
                                                              &outs, functor);
303
  } else {
304 305
    std::vector<const framework::Tensor*> ins = {&grad_y, &mask};
    std::vector<framework::Tensor*> outs = {grad_x};
306 307
    if (dropout_implementation == "upscale_in_train") {
      if (dropout_prob == 1.0f) {
308 309 310 311 312
#ifdef PADDLE_WITH_HIP
        hipMemset(grad_x->data<T>(), 0, size * sizeof(T));
#else
        cudaMemset(grad_x->data<T>(), 0, size * sizeof(T));
#endif
313
      } else {
314
        factor = static_cast<MT>(1.0f / (1.0f - dropout_prob));
315
        paddle::operators::LaunchSameDimsElementwiseCudaKernel<T>(
316
            dev_ctx, ins, &outs, CudaDropoutGradFunctor<T, uint8_t>(factor));
317
      }
318
    } else {
319 320 321
      factor = static_cast<MT>(1.0f);
      paddle::operators::LaunchSameDimsElementwiseCudaKernel<T>(
          dev_ctx, ins, &outs, CudaDropoutGradFunctor<T, uint8_t>(factor));
322 323 324 325 326 327
    }
  }
}

}  // namespace operators
}  // namespace paddle