Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
b81358d1
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b81358d1
编写于
2月 15, 2022
作者:
S
sneaxiy
提交者:
GitHub
2月 15, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add dropout fp32 (#39501)
上级
8cedcd3e
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
26 addition
and
12 deletion
+26
-12
paddle/fluid/operators/dropout_impl.cu.h
paddle/fluid/operators/dropout_impl.cu.h
+26
-12
未找到文件。
paddle/fluid/operators/dropout_impl.cu.h
浏览文件 @
b81358d1
...
...
@@ -30,6 +30,7 @@ limitations under the License. */
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
#include "paddle/fluid/operators/dropout_impl_util.h"
#include "paddle/fluid/operators/dropout_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h"
...
...
@@ -45,6 +46,7 @@ __global__ void RandomGenerator(const size_t n, uint64_t seed,
const
float
dropout_prob
,
const
T
*
src
,
MaskType
*
mask
,
T
*
dst
,
bool
is_upscale_in_train
,
uint64_t
increment
)
{
using
MT
=
typename
details
::
MPTypeTrait
<
T
>::
Type
;
int
idx
=
blockDim
.
x
*
blockIdx
.
x
+
threadIdx
.
x
;
#ifdef PADDLE_WITH_HIP
hiprandStatePhilox4_32_10_t
state
;
...
...
@@ -56,7 +58,7 @@ __global__ void RandomGenerator(const size_t n, uint64_t seed,
MaskType
mask_val
;
T
dst_val
;
T
factor
=
static_cast
<
T
>
(
1.0
f
/
(
1.0
f
-
dropout_prob
));
MT
factor
=
static_cast
<
M
T
>
(
1.0
f
/
(
1.0
f
-
dropout_prob
));
for
(;
idx
<
n
;
idx
+=
blockDim
.
x
*
gridDim
.
x
)
{
T
src_val
=
src
[
idx
];
#ifdef PADDLE_WITH_HIP
...
...
@@ -68,7 +70,9 @@ __global__ void RandomGenerator(const size_t n, uint64_t seed,
dst_val
=
0
;
}
else
{
mask_val
=
1
;
dst_val
=
is_upscale_in_train
?
src_val
*
factor
:
src_val
;
dst_val
=
is_upscale_in_train
?
static_cast
<
T
>
(
static_cast
<
MT
>
(
src_val
)
*
factor
)
:
src_val
;
}
mask
[
idx
]
=
mask_val
;
dst
[
idx
]
=
dst_val
;
...
...
@@ -81,6 +85,7 @@ __global__ void VectorizedRandomGenerator(const size_t n, uint64_t seed,
const
T
*
src
,
MaskType
*
mask
,
T
*
dst
,
bool
is_upscale_in_train
,
uint64_t
increment
)
{
using
MT
=
typename
details
::
MPTypeTrait
<
T
>::
Type
;
using
LoadT
=
platform
::
AlignedVector
<
T
,
VecSize
>
;
using
MaskLoadT
=
platform
::
AlignedVector
<
MaskType
,
VecSize
>
;
...
...
@@ -94,7 +99,7 @@ __global__ void VectorizedRandomGenerator(const size_t n, uint64_t seed,
curand_init
(
seed
,
idx
,
increment
,
&
state
);
#endif
T
factor
=
static_cast
<
T
>
(
1.0
f
/
(
1.0
f
-
dropout_prob
));
MT
factor
=
static_cast
<
M
T
>
(
1.0
f
/
(
1.0
f
-
dropout_prob
));
for
(
int
i
=
idx
*
VecSize
;
i
<
n
;
i
+=
blockDim
.
x
*
gridDim
.
x
*
VecSize
)
{
LoadT
src_val
;
platform
::
Load
<
T
,
VecSize
>
(
&
src
[
i
],
&
src_val
);
...
...
@@ -114,7 +119,9 @@ __global__ void VectorizedRandomGenerator(const size_t n, uint64_t seed,
dst_val
[
j
]
=
0
;
mask_val
[
j
]
=
0
;
}
else
{
dst_val
[
j
]
=
is_upscale_in_train
?
src_val
[
j
]
*
factor
:
src_val
[
j
];
dst_val
[
j
]
=
is_upscale_in_train
?
static_cast
<
T
>
(
static_cast
<
MT
>
(
src_val
[
j
])
*
factor
)
:
src_val
[
j
];
mask_val
[
j
]
=
1
;
}
}
...
...
@@ -126,21 +133,26 @@ __global__ void VectorizedRandomGenerator(const size_t n, uint64_t seed,
template
<
typename
T
,
typename
MaskType
>
struct
CudaDropoutGradFunctor
{
explicit
CudaDropoutGradFunctor
(
const
T
factor
)
:
factor_
(
factor
)
{}
using
MT
=
typename
details
::
MPTypeTrait
<
T
>::
Type
;
explicit
CudaDropoutGradFunctor
(
const
MT
factor
)
:
factor_
(
factor
)
{}
__device__
__forceinline__
T
operator
()(
const
T
dout
,
const
MaskType
mask
)
const
{
return
dout
*
static_cast
<
T
>
(
mask
)
*
factor_
;
return
static_cast
<
T
>
(
static_cast
<
MT
>
(
dout
)
*
static_cast
<
MT
>
(
mask
)
*
factor_
);
}
private:
T
factor_
;
M
T
factor_
;
};
template
<
typename
T
,
typename
MaskType
,
int
VecSize
>
__global__
void
DropoutGradCUDAKernel
(
const
T
*
dout
,
const
MaskType
*
mask
,
const
T
factor
,
const
int64_t
size
,
T
*
dx
)
{
__global__
void
DropoutGradCUDAKernel
(
const
T
*
dout
,
const
MaskType
*
mask
,
const
typename
details
::
MPTypeTrait
<
T
>::
Type
factor
,
const
int64_t
size
,
T
*
dx
)
{
using
MT
=
typename
details
::
MPTypeTrait
<
T
>::
Type
;
using
LoadT
=
platform
::
AlignedVector
<
T
,
VecSize
>
;
using
MaskLoadT
=
platform
::
AlignedVector
<
MaskType
,
VecSize
>
;
...
...
@@ -156,7 +168,8 @@ __global__ void DropoutGradCUDAKernel(const T* dout, const MaskType* mask,
#pragma unroll
for
(
int
j
=
0
;
j
<
VecSize
;
j
++
)
{
dx_val
[
j
]
=
dout_val
[
j
]
*
static_cast
<
T
>
(
mask_val
[
j
])
*
factor
;
dx_val
[
j
]
=
static_cast
<
T
>
(
static_cast
<
MT
>
(
dout_val
[
j
])
*
static_cast
<
MT
>
(
mask_val
[
j
])
*
factor
);
}
platform
::
Store
<
T
,
VecSize
>
(
dx_val
,
&
dx
[
i
]);
...
...
@@ -257,6 +270,7 @@ void DropoutGradGPUKernelDriver(const platform::CUDADeviceContext& dev_ctx,
float
dropout_prob
,
const
Tensor
&
grad_y
,
const
Tensor
&
mask
,
int64_t
size
,
Tensor
*
grad_x
,
bool
is_test
=
false
)
{
using
MT
=
typename
details
::
MPTypeTrait
<
T
>::
Type
;
auto
dX
=
EigenVector
<
T
>::
Flatten
(
*
grad_x
);
auto
dY
=
EigenVector
<
T
>::
Flatten
(
grad_y
);
...
...
@@ -273,7 +287,7 @@ void DropoutGradGPUKernelDriver(const platform::CUDADeviceContext& dev_ctx,
if
(
dropout_prob
==
1.0
f
)
{
dX
.
device
(
place
)
=
static_cast
<
T
>
(
0
)
*
dY
;
}
else
{
auto
factor
=
static_cast
<
T
>
(
1.0
f
/
(
1.0
f
-
dropout_prob
));
auto
factor
=
static_cast
<
M
T
>
(
1.0
f
/
(
1.0
f
-
dropout_prob
));
auto
stream
=
dev_ctx
.
stream
();
std
::
vector
<
const
framework
::
Tensor
*>
ins
=
{
&
grad_y
,
&
mask
};
std
::
vector
<
framework
::
Tensor
*>
outs
=
{
grad_x
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录