dropout_impl.cu.h 10.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>

#ifdef PADDLE_WITH_CUDA
#include <cuda.h>
#include <curand_kernel.h>
#include "paddle/fluid/platform/dynload/curand.h"
#endif
#ifdef PADDLE_WITH_HIP
#include <hip/hip_runtime.h>
#include <hiprand_kernel.h>
#include "paddle/fluid/platform/dynload/hiprand.h"
#endif

#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/dropout_op.h"
#include "paddle/fluid/platform/aligned_vector.h"
#include "paddle/fluid/platform/gpu_launch_config.h"

namespace paddle {
namespace operators {

template <typename T, typename MaskType>
__global__ void RandomGenerator(const size_t n, uint64_t seed,
                                const float dropout_prob, const T* src,
                                MaskType* mask, T* dst,
                                bool is_upscale_in_train, uint64_t increment) {
  int idx = blockDim.x * blockIdx.x + threadIdx.x;
#ifdef PADDLE_WITH_HIP
  hiprandStatePhilox4_32_10_t state;
  hiprand_init(seed, idx, increment, &state);
#else
  curandStatePhilox4_32_10_t state;
  curand_init(seed, idx, increment, &state);
#endif

  MaskType mask_val;
  T dst_val;
  T factor = static_cast<T>(1.0f / (1.0f - dropout_prob));
  for (; idx < n; idx += blockDim.x * gridDim.x) {
    T src_val = src[idx];
#ifdef PADDLE_WITH_HIP
    if (hiprand_uniform(&state) < dropout_prob) {
#else
    if (curand_uniform(&state) < dropout_prob) {
#endif
      mask_val = 0;
      dst_val = 0;
    } else {
      mask_val = 1;
      dst_val = is_upscale_in_train ? src_val * factor : src_val;
    }
    mask[idx] = mask_val;
    dst[idx] = dst_val;
  }
}

template <typename T, typename MaskType, int VecSize>
__global__ void VectorizedRandomGenerator(const size_t n, uint64_t seed,
                                          const float dropout_prob,
                                          const T* src, MaskType* mask, T* dst,
                                          bool is_upscale_in_train,
                                          uint64_t increment) {
  using LoadT = platform::AlignedVector<T, VecSize>;
  using MaskLoadT = platform::AlignedVector<MaskType, VecSize>;

#ifdef PADDLE_WITH_HIP
  int64_t idx = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
  hiprandStatePhilox4_32_10_t state;
  hiprand_init(seed, idx, increment, &state);
#else
  int64_t idx = blockDim.x * blockIdx.x + threadIdx.x;
  curandStatePhilox4_32_10_t state;
  curand_init(seed, idx, increment, &state);
#endif

  T factor = static_cast<T>(1.0f / (1.0f - dropout_prob));
  for (int i = idx * VecSize; i < n; i += blockDim.x * gridDim.x * VecSize) {
    LoadT src_val;
    platform::Load<T, VecSize>(&src[i], &src_val);

#ifdef PADDLE_WITH_HIP
    float4 rand = hiprand_uniform4(&state);
#else
    float4 rand = curand_uniform4(&state);
#endif

    LoadT dst_val;
    MaskLoadT mask_val;

#pragma unroll
    for (int j = 0; j < VecSize; j++) {
      if ((&rand.x)[j] < dropout_prob) {
        dst_val[j] = 0;
        mask_val[j] = 0;
      } else {
        dst_val[j] = is_upscale_in_train ? src_val[j] * factor : src_val[j];
        mask_val[j] = 1;
      }
    }

    platform::Store<T, VecSize>(dst_val, &dst[i]);
    platform::Store<MaskType, VecSize>(mask_val, &mask[i]);
  }
}

template <typename T, typename MaskType, int VecSize>
__global__ void DropoutGradCUDAKernel(const T* dout, const MaskType* mask,
                                      const T factor, const int64_t size,
                                      T* dx) {
  using LoadT = platform::AlignedVector<T, VecSize>;
  using MaskLoadT = platform::AlignedVector<MaskType, VecSize>;

  int64_t idx = blockDim.x * blockIdx.x + threadIdx.x;
  for (int i = idx * VecSize; i < size; i += blockDim.x * gridDim.x * VecSize) {
    LoadT dout_val;
    platform::Load<T, VecSize>(&dout[i], &dout_val);

    MaskLoadT mask_val;
    platform::Load<MaskType, VecSize>(&mask[i], &mask_val);

    LoadT dx_val;

#pragma unroll
    for (int j = 0; j < VecSize; j++) {
      dx_val[j] = dout_val[j] * static_cast<T>(mask_val[j]) * factor;
    }

    platform::Store<T, VecSize>(dx_val, &dx[i]);
  }
}

template <typename T>
void DropoutFwGPUKernelDriver(const platform::CUDADeviceContext& dev_ctx,
                              bool is_test,
                              const std::string dropout_implementation,
                              float dropout_prob, bool upscale_in_train,
                              bool is_fix_seed, int seed_val, const Tensor& x,
                              const Tensor* seed, Tensor* mask, Tensor* y) {
  auto& place = *dev_ctx.eigen_device();

  if (!is_test) {
    int64_t x_numel = x.numel();
    auto stream = dev_ctx.stream();
    auto* mask_data = mask->data<uint8_t>();
    size_t size = framework::product(mask->dims());

    auto* x_data = x.data<T>();
    auto* y_data = y->data<T>();
    if (dropout_prob == 1.0f) {
#ifdef PADDLE_WITH_HIP
      PADDLE_ENFORCE_CUDA_SUCCESS(
          hipMemsetAsync(y_data, 0, x_numel * sizeof(T), stream));
      PADDLE_ENFORCE_CUDA_SUCCESS(
          hipMemsetAsync(mask_data, 0, x_numel * sizeof(*mask_data), stream));
#else
      PADDLE_ENFORCE_CUDA_SUCCESS(
          cudaMemsetAsync(y_data, 0, x_numel * sizeof(T), stream));
      PADDLE_ENFORCE_CUDA_SUCCESS(
          cudaMemsetAsync(mask_data, 0, x_numel * sizeof(*mask_data), stream));
#endif
      return;
    }

    platform::GpuLaunchConfig config =
        platform::GetGpuLaunchConfig1D(dev_ctx, size);

    // increment is used to set the args(offset) of curand_init, which defines
    // offset in subsequence.
    // The detail:
    // https://docs.nvidia.com/cuda/curand/device-api-overview.html
    // Increment should be at least the number of curand() random numbers used
    // in each thread to avoid the random number generated this time being the
    // same as the previous calls.
    uint64_t seed_data;
    uint64_t increment;
    int vec_size = platform::GetVectorizedSize<T>(x_data);
    auto offset = ((x_numel - 1) / (config.block_per_grid.x *
                                    config.thread_per_block.x * vec_size) +
                   1) *
                  vec_size;
    int device_id =
        BOOST_GET_CONST(platform::CUDAPlace, dev_ctx.GetPlace()).GetDeviceId();
    auto gen_cuda = framework::GetDefaultCUDAGenerator(device_id);

    if ((seed) && platform::is_gpu_place(seed->place())) {
      framework::Tensor seed_cpu_tensor;
      TensorCopySync(*seed, platform::CPUPlace(), &seed_cpu_tensor);
      seed_data = static_cast<uint64_t>(seed_cpu_tensor.data<int>()[0]);
      increment = offset;
208 209 210
    } else if (seed && platform::is_cpu_place(seed->place())) {
      seed_data = *(seed->data<int>());
      increment = offset;
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
    } else if (gen_cuda->GetIsInitPy() && (!is_fix_seed)) {
      auto seed_offset = gen_cuda->IncrementOffset(offset);
      seed_data = seed_offset.first;
      increment = seed_offset.second;
    } else {
      if (seed) {
        seed_data = *(seed->data<int>());
      } else {
        std::random_device rnd;
        seed_data = is_fix_seed ? seed_val : rnd();
      }
      increment = offset;
    }

#ifdef __HIPCC__
    if (vec_size == 4 && size % 4 == 0) {
      hipLaunchKernelGGL(
          HIP_KERNEL_NAME(VectorizedRandomGenerator<T, uint8_t, 4>),
          config.block_per_grid, config.thread_per_block, 0, stream, size,
          seed_data, dropout_prob, x_data, mask_data, y_data, upscale_in_train,
          increment);
    } else {
      hipLaunchKernelGGL(HIP_KERNEL_NAME(RandomGenerator<T, uint8_t>),
                         config.block_per_grid, config.thread_per_block, 0,
                         stream, size, seed_data, dropout_prob, x_data,
                         mask_data, y_data, upscale_in_train, increment);
    }
#else
    if (vec_size == 4 && size % 4 == 0) {
      VectorizedRandomGenerator<
          T, uint8_t,
          4><<<config.block_per_grid, config.thread_per_block, 0, stream>>>(
          size, seed_data, dropout_prob, x_data, mask_data, y_data,
          upscale_in_train, increment);
    } else {
      RandomGenerator<T, uint8_t><<<config.block_per_grid,
                                    config.thread_per_block, 0, stream>>>(
          size, seed_data, dropout_prob, x_data, mask_data, y_data,
          upscale_in_train, increment);
    }
#endif
  } else {
    auto X = EigenMatrix<T>::Reshape(x, 1);
    auto Y = EigenMatrix<T>::Reshape(*y, 1);
    if (upscale_in_train) {
      Y.device(place) = X;
    } else {
      Y.device(place) = X * static_cast<T>(1.0f - dropout_prob);
    }
  }
}

template <typename T>
void DropoutGradGPUKernelDriver(const platform::CUDADeviceContext& dev_ctx,
                                const std::string dropout_implementation,
                                float dropout_prob, const Tensor& grad_y,
                                const Tensor& mask, int64_t size,
                                Tensor* grad_x) {
  auto M = EigenVector<uint8_t>::Flatten(mask);
  auto dX = EigenVector<T>::Flatten(*grad_x);
  auto dY = EigenVector<T>::Flatten(grad_y);

  auto& place = *dev_ctx.eigen_device();
  if (dropout_implementation == "upscale_in_train") {
    if (dropout_prob == 1.0f) {
      dX.device(place) = static_cast<T>(0) * dY;
    } else {
      int vec_size = platform::GetVectorizedSize<T>(grad_y.data<T>());
      if (vec_size == 4 && size % 4 == 0) {
        auto factor = static_cast<T>(1.0f / (1.0f - dropout_prob));
        auto stream = dev_ctx.stream();
        platform::GpuLaunchConfig config =
            platform::GetGpuLaunchConfig1D(dev_ctx, size);
        DropoutGradCUDAKernel<
            T, uint8_t,
            4><<<config.block_per_grid, config.thread_per_block, 0, stream>>>(
            grad_y.data<T>(), mask.data<uint8_t>(), factor, size,
            grad_x->data<T>());
      } else {
        dX.device(place) =
            dY * M.cast<T>() / static_cast<T>(1.0f - dropout_prob);
      }
    }
  } else {
    dX.device(place) = dY * M.cast<T>();
  }
}

}  // namespace operators
}  // namespace paddle