reshape_op.cc 15.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yibing Liu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yibing Liu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yibing Liu 已提交
14

Y
Yi Wang 已提交
15 16
#include <string>
#include <vector>
Y
yuyang18 已提交
17
#include "paddle/fluid/framework/op_registry.h"
Y
Yi Wang 已提交
18

Y
Yibing Liu 已提交
19 20 21
namespace paddle {
namespace operators {

Y
yuyang18 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
class ReshapeOp : public framework::OperatorWithKernel {
 public:
  ReshapeOp(const std::string &type, const framework::VariableNameMap &inputs,
            const framework::VariableNameMap &outputs,
            const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of ReshapeOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of ReshapeOp should not be null.");

    const std::vector<int> &shape = ctx->Attrs().Get<std::vector<int>>("shape");
    PADDLE_ENFORCE(!shape.empty(),
                   "The shape information must be set by Attr(shape).");

    if (ctx->HasInput("Shape") && ctx->IsRuntime()) {
      // If true, set the shape of Output(Out) according to Input(Shape) in
      // ReshapeKernel with ExecutionContext. Also check LoD in ReshapeKernel.
      ctx->ShareLoD("X", /*->*/ "Out");
      return;
    }

    auto x_dims = ctx->GetInputDim("X");
    auto out_dims = ValidateShape(shape, x_dims);
    ctx->SetOutputDim("Out", out_dims);
    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", /*->*/ "Out");
    }
  }

  static framework::DDim ValidateShape(const std::vector<int> shape,
                                       const framework::DDim &in_dims) {
    const int64_t in_size = framework::product(in_dims);
    // only one dimension can be set to -1, whose size will be automatically
    // infered.
    const int64_t unk_dim_val = -1;
    const int64_t copy_dim_val = 0;

    std::vector<int64_t> output_shape(shape.size(), 0);
    int64_t capacity = 1;
    int unk_dim_idx = -1;
    for (size_t i = 0; i < shape.size(); ++i) {
      if (shape[i] == unk_dim_val) {
        PADDLE_ENFORCE(
            unk_dim_idx == -1,
            "Only one input dimension of Attr(shape) can be unknown.");
        unk_dim_idx = i;
      } else if (shape[i] == copy_dim_val) {
        PADDLE_ENFORCE(
            static_cast<int>(i) < in_dims.size(),
            "The index of dimension to copy from input shape must be less "
            "than the size of input shape.");
      } else {
        PADDLE_ENFORCE(
            shape[i] > 0,
            "Each input dimension of Attr(shape) must not be negtive except "
            "one unknown dimension.");
      }

      capacity *= (shape[i] ? shape[i] : in_dims[i]);
      output_shape[i] =
          (shape[i] ? static_cast<int64_t>(shape[i]) : in_dims[i]);
    }

    if (unk_dim_idx != -1) {
      if (in_size > 0) {
        // in_size < 0 and is un-determinate in compile time, skip the check,
        // for example, in_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
        // capacity = -24, in_size = -8, output_shape[0] = 0
        // the following check will fail.
        output_shape[unk_dim_idx] = -in_size / capacity;
        PADDLE_ENFORCE_EQ(output_shape[unk_dim_idx] * capacity, -in_size,
                          "Invalid shape is given.");
      } else {
        output_shape[unk_dim_idx] = -1;
      }
    } else {
      PADDLE_ENFORCE_EQ(capacity, in_size, "Invalid shape is given.");
    }
    return framework::make_ddim(output_shape);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
Y
Yu Yang 已提交
111 112
    return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
                                   ctx.device_context());
Y
yuyang18 已提交
113 114 115
  }
};

Y
Yibing Liu 已提交
116 117
class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
118
  void Make() override {
119 120 121 122 123 124 125 126
    AddInput("X", "(Tensor). The input tensor of reshape operator.");
    AddInput("Shape",
             "(Tensor<int32>, optional). If provided, reshape according to "
             "this given shape. That is to say it has a higher priority than "
             "the shape attribute, while the shape attribute still should be "
             "set correctly to gurantee shape inference in compile time.")
        .AsDispensable();
    AddOutput("Out", "(Tensor). The output tensor of reshape operator.");
C
caoying03 已提交
127
    AddAttr<std::vector<int>>(
C
caoying03 已提交
128
        "shape", "(std::vector<int>) Target shape of reshape operator.");
K
kexinzhao 已提交
129 130
    AddComment(R"DOC(
Reshape Operator.
Y
Yibing Liu 已提交
131

132 133
Reshape Input(X) into the shape specified by Attr(shape) or Input(Shape). The
data in Input(X) are unchanged.
Y
Yibing Liu 已提交
134

C
caoying03 已提交
135
Examples:
Y
Yibing Liu 已提交
136

C
caoying03 已提交
137 138 139 140
1. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
specified by Attr(shape) is [6, 8], the reshape operator will transform Input(X)
into a 2-D tensor with shape [6, 8] and leaving Input(X)'s data unchanged.

141
2. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
C
caoying03 已提交
142 143 144 145 146 147
specified by Attr(shape) is [2, 3, -1, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 3, 4, 2] and leaving Input(X)'s data
unchanged. In this case, one and only dimension of Attr(shape) can be set to -1,
the value of this dimension is inferred from the total element number of
Input(X) and remaining dimensions.

148
3. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
C
caoying03 已提交
149 150 151 152
specified by Attr(shape) is [-1, 0, 3, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 4, 3, 2] and leaving Input(X)'s data
unchanged. In this case, besides -1, 0 means the actual dimension value is going
to be copied from the corresponding dimension of Input(X).
Y
Yibing Liu 已提交
153

C
caoying03 已提交
154
Note:
Y
Yibing Liu 已提交
155

C
caoying03 已提交
156 157 158
1. One and only one dimension in Attr(shape) can be set -1. In this case,
the actual dimension value will be infered from the total element number of
Input(X) and remaining dimensions.
159 160

2. More than one dimensions in Attr(shape) can be set to 0, which means the real
C
caoying03 已提交
161
dimension value will be copied from Input(X) at runtime. Note that the index of
G
guosheng 已提交
162
0 can not exceed Rank(X). For example, Input(X) is a 3-D tensor with shape
C
caoying03 已提交
163
[2, 3, 4], Attr(shape) = [2, 3, 2, 0] is an invalid input.
164 165

3. Input(Shape) has a higher priority than Attr(shape) if it is provided, while
M
minqiyang 已提交
166
Attr(shape) still should be set correctly to gurantee shape inference in
167
compile-time.
Y
Yibing Liu 已提交
168

Y
Yibing Liu 已提交
169 170 171 172 173 174 175 176 177 178 179 180
)DOC");
  }
};

class ReshapeGradOp : public framework::OperatorWithKernel {
 public:
  ReshapeGradOp(const std::string &type,
                const framework::VariableNameMap &inputs,
                const framework::VariableNameMap &outputs,
                const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

181
  void InferShape(framework::InferShapeContext *ctx) const override {
Q
Qiao Longfei 已提交
182 183 184 185
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) shouldn't be null.");
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
Y
Yibing Liu 已提交
186
  }
187 188 189 190

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
Y
Yu Yang 已提交
191 192
    return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
                                   ctx.device_context());
193
  }
Y
Yibing Liu 已提交
194 195
};

Y
yuyang18 已提交
196 197 198 199 200
class ReshapeKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *out = ctx.Output<framework::LoDTensor>("Out");
    auto *in = ctx.Input<framework::LoDTensor>("X");
Y
yuyang18 已提交
201

Y
yuyang18 已提交
202 203 204
    auto *shape_tensor = ctx.HasInput("Shape")
                             ? ctx.Input<framework::LoDTensor>("Shape")
                             : nullptr;
Y
yuyang18 已提交
205

Y
yuyang18 已提交
206
    framework::DDim out_dims = out->dims();
Y
yuyang18 已提交
207

Y
yuyang18 已提交
208 209 210
    if (shape_tensor) {
      auto *shape_data = shape_tensor->data<int>();
      framework::Tensor cpu_shape_tensor;
211
      if (platform::is_gpu_place(shape_tensor->place())) {
Y
yuyang18 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225
        TensorCopySync(*shape_tensor, platform::CPUPlace(), &cpu_shape_tensor);
        shape_data = cpu_shape_tensor.data<int>();
      }
      auto shape =
          std::vector<int>(shape_data, shape_data + shape_tensor->numel());
      out_dims = ReshapeOp::ValidateShape(shape, in->dims());
    }
    if (!in->lod().empty()) {
      PADDLE_ENFORCE_EQ(
          out_dims[0], in->dims()[0],
          "Reshape operator cannot reshape an input sequence batch "
          "into an output sequence batch that has a different "
          "number of time steps. Please consider using "
          "sequence_reshape op.");
Y
yuyang18 已提交
226 227
    }

228
    out->mutable_data(ctx.GetPlace(), in->type());
Y
Yiqun Liu 已提交
229 230 231
    framework::TensorCopy(
        *in, ctx.GetPlace(),
        ctx.template device_context<platform::DeviceContext>(), out);
Y
yuyang18 已提交
232 233
    out->Resize(out_dims);
  }
Y
yuyang18 已提交
234 235 236 237 238 239 240
};

class ReshapeGradKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto *d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
D
dzhwinter 已提交
241
    auto in_dims = d_x->dims();
Y
yuyang18 已提交
242

243 244
    d_x->mutable_data(ctx.GetPlace(), d_out->type());
    framework::TensorCopySync(*d_out, ctx.GetPlace(), d_x);
D
dzhwinter 已提交
245
    d_x->Resize(in_dims);
Y
yuyang18 已提交
246
  }
Y
yuyang18 已提交
247 248
};

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
// FIXME(zcd): reshape2 adds an intermediate output(XShape) based on reshape,
// the XShape is used to carry the shape and lod of X which will be used in
// reshape_grad, in this way, the framework can reuse the memory of X
// immediately the reshape_op is finished.
// Considering compatibility issues, we could not fix reshape_op
class Reshape2Op : public ReshapeOp {
 public:
  Reshape2Op(const std::string &type, const framework::VariableNameMap &inputs,
             const framework::VariableNameMap &outputs,
             const framework::AttributeMap &attrs)
      : ReshapeOp(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasOutput("XShape"),
                   "Output(XShape) of ReshapeOp should not be null.");
    const auto &x_dims = ctx->GetInputDim("X");
    std::vector<int64_t> xshape_dims(x_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < x_dims.size(); ++i) {
      xshape_dims[i + 1] = x_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
    ctx->ShareLoD("X", /*->*/ "XShape");
M
minqiyang 已提交
272 273

    ReshapeOp::InferShape(ctx);
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
  }
};

class Reshape2OpMaker : public ReshapeOpMaker {
 public:
  void Make() override {
    ReshapeOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in FlattenGradOp.")
        .AsIntermediate();
  }
};

class Reshape2GradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto *grad_op = new framework::OpDesc();
    grad_op->SetType("reshape2_grad");
    grad_op->SetInput("XShape", Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    grad_op->SetAttrMap(Attrs());
    return std::unique_ptr<framework::OpDesc>(grad_op);
  }
};

class Reshape2GradOp : public framework::OperatorWithKernel {
 public:
  Reshape2GradOp(const std::string &type,
                 const framework::VariableNameMap &inputs,
                 const framework::VariableNameMap &outputs,
                 const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("XShape"), "Input(XShape) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) shouldn't be null.");
    auto xshape_dims = ctx->GetInputDim("XShape");
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    ctx->ShareLoD("XShape", framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
Y
Yu Yang 已提交
325
        ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"))->type(),
326 327 328 329
        ctx.device_context());
  }
};

Y
Yibing Liu 已提交
330 331 332
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;
333
namespace plat = paddle::platform;
Y
Yibing Liu 已提交
334

Y
Yang Yang 已提交
335
REGISTER_OPERATOR(reshape, ops::ReshapeOp, ops::ReshapeOpMaker,
336 337
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(reshape_grad, ops::ReshapeGradOp);
338 339 340 341 342 343 344
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double,
                               ops::ReshapeKernel, int, ops::ReshapeKernel,
                               int64_t, ops::ReshapeKernel);
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
                               double, ops::ReshapeGradKernel, int,
                               ops::ReshapeGradKernel, int64_t,
                               ops::ReshapeGradKernel);
Y
yuyang18 已提交
345

346 347 348
REGISTER_OPERATOR(reshape2, ops::Reshape2Op, ops::Reshape2OpMaker,
                  ops::Reshape2GradMaker);
REGISTER_OPERATOR(reshape2_grad, ops::Reshape2GradOp);
349 350 351 352 353 354 355
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape2, float, ops::ReshapeKernel, double,
                               ops::ReshapeKernel, int, ops::ReshapeKernel,
                               int64_t, ops::ReshapeKernel);
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape2_grad, float, ops::ReshapeGradKernel,
                               double, ops::ReshapeGradKernel, int,
                               ops::ReshapeGradKernel, int64_t,
                               ops::ReshapeGradKernel);
356

Y
yuyang18 已提交
357
#ifdef PADDLE_WITH_CUDA
358 359
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double,
                                ops::ReshapeKernel, int, ops::ReshapeKernel,
360 361
                                int64_t, ops::ReshapeKernel, plat::float16,
                                ops::ReshapeKernel);
362 363 364
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
                                double, ops::ReshapeGradKernel, int,
                                ops::ReshapeGradKernel, int64_t,
365
                                ops::ReshapeGradKernel, plat::float16,
366 367 368
                                ops::ReshapeGradKernel);
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape2, float, ops::ReshapeKernel, double,
                                ops::ReshapeKernel, int, ops::ReshapeKernel,
369 370
                                int64_t, ops::ReshapeKernel, plat::float16,
                                ops::ReshapeKernel);
371 372 373
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape2_grad, float, ops::ReshapeGradKernel,
                                double, ops::ReshapeGradKernel, int,
                                ops::ReshapeGradKernel, int64_t,
374
                                ops::ReshapeGradKernel, plat::float16,
375
                                ops::ReshapeGradKernel);
Y
yuyang18 已提交
376
#endif