test_imperative_ptb_rnn.py 15.9 KB
Newer Older
J
JiabinYang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import paddle.fluid as fluid
19
import paddle.fluid.core as core
L
lujun 已提交
20
from paddle.fluid.dygraph.nn import Embedding
J
JiabinYang 已提交
21 22
import paddle.fluid.framework as framework
from paddle.fluid.optimizer import SGDOptimizer
L
lujun 已提交
23
from paddle.fluid.dygraph.base import to_variable
24
from paddle.fluid.dygraph.jit import TracedLayer
25
from test_imperative_base import new_program_scope
J
JiabinYang 已提交
26
import numpy as np
27
import six
28
from utils import DyGraphProgramDescTracerTestHelper, is_equal_program
J
JiabinYang 已提交
29 30


31
class SimpleLSTMRNN(fluid.Layer):
J
JiabinYang 已提交
32
    def __init__(self,
X
Xin Pan 已提交
33
                 name_scope,
J
JiabinYang 已提交
34 35 36 37 38
                 hidden_size,
                 num_steps,
                 num_layers=2,
                 init_scale=0.1,
                 dropout=None):
X
Xin Pan 已提交
39
        super(SimpleLSTMRNN, self).__init__(name_scope)
J
JiabinYang 已提交
40 41 42 43
        self._hidden_size = hidden_size
        self._num_layers = num_layers
        self._init_scale = init_scale
        self._dropout = dropout
44 45
        self._input = None
        self._num_steps = num_steps
46 47
        self.cell_array = []
        self.hidden_array = []
J
JiabinYang 已提交
48

49
    def _build_once(self, input_embedding, init_hidden=None, init_cell=None):
J
JiabinYang 已提交
50 51 52 53 54 55
        self.weight_1_arr = []
        self.weight_2_arr = []
        self.bias_arr = []
        self.mask_array = []

        for i in range(self._num_layers):
56
            weight_1 = self.create_parameter(
57 58 59
                attr=fluid.ParamAttr(
                    initializer=fluid.initializer.UniformInitializer(
                        low=-self._init_scale, high=self._init_scale)),
J
JiabinYang 已提交
60 61 62 63
                shape=[self._hidden_size * 2, self._hidden_size * 4],
                dtype="float32",
                default_initializer=fluid.initializer.UniformInitializer(
                    low=-self._init_scale, high=self._init_scale))
64
            self.weight_1_arr.append(self.add_parameter('w_%d' % i, weight_1))
65
            bias_1 = self.create_parameter(
66 67 68 69
                attr=fluid.ParamAttr(
                    initializer=fluid.initializer.UniformInitializer(
                        low=-self._init_scale, high=self._init_scale)),
                shape=[self._hidden_size * 4],
J
JiabinYang 已提交
70 71
                dtype="float32",
                default_initializer=fluid.initializer.Constant(0.0))
72
            self.bias_arr.append(self.add_parameter('b_%d' % i, bias_1))
J
JiabinYang 已提交
73

74 75 76 77 78
    def forward(self, input_embedding, init_hidden=None, init_cell=None):
        self.cell_array = []
        self.hidden_array = []

        for i in range(self._num_layers):
J
JiabinYang 已提交
79 80 81 82 83 84 85 86 87 88 89 90
            pre_hidden = fluid.layers.slice(
                init_hidden, axes=[0], starts=[i], ends=[i + 1])
            pre_cell = fluid.layers.slice(
                init_cell, axes=[0], starts=[i], ends=[i + 1])
            pre_hidden = fluid.layers.reshape(
                pre_hidden, shape=[-1, self._hidden_size])
            pre_cell = fluid.layers.reshape(
                pre_cell, shape=[-1, self._hidden_size])
            self.hidden_array.append(pre_hidden)
            self.cell_array.append(pre_cell)

        res = []
91 92
        for index in range(self._num_steps):
            self._input = fluid.layers.slice(
J
JiabinYang 已提交
93
                input_embedding, axes=[1], starts=[index], ends=[index + 1])
94 95
            self._input = fluid.layers.reshape(
                self._input, shape=[-1, self._hidden_size])
J
JiabinYang 已提交
96 97 98 99 100 101
            for k in range(self._num_layers):
                pre_hidden = self.hidden_array[k]
                pre_cell = self.cell_array[k]
                weight_1 = self.weight_1_arr[k]
                bias = self.bias_arr[k]

102
                nn = fluid.layers.concat([self._input, pre_hidden], 1)
J
JiabinYang 已提交
103 104 105
                gate_input = fluid.layers.matmul(x=nn, y=weight_1)

                gate_input = fluid.layers.elementwise_add(gate_input, bias)
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
                i, j, f, o = fluid.layers.split(
                    gate_input, num_or_sections=4, dim=-1)
                c = pre_cell * fluid.layers.sigmoid(f) + fluid.layers.sigmoid(
                    i) * fluid.layers.tanh(j)
                m = fluid.layers.tanh(c) * fluid.layers.sigmoid(o)
                self.hidden_array[k] = m
                self.cell_array[k] = c
                self._input = m

                if self._dropout is not None and self._dropout > 0.0:
                    self._input = fluid.layers.dropout(
                        self._input,
                        dropout_prob=self._dropout,
                        dropout_implementation='upscale_in_train')
            res.append(
                fluid.layers.reshape(
                    self._input, shape=[1, -1, self._hidden_size]))
        real_res = fluid.layers.concat(res, 0)
        real_res = fluid.layers.transpose(x=real_res, perm=[1, 0, 2])
        last_hidden = fluid.layers.concat(self.hidden_array, 1)
        last_hidden = fluid.layers.reshape(
            last_hidden, shape=[-1, self._num_layers, self._hidden_size])
        last_hidden = fluid.layers.transpose(x=last_hidden, perm=[1, 0, 2])
        last_cell = fluid.layers.concat(self.cell_array, 1)
        last_cell = fluid.layers.reshape(
            last_cell, shape=[-1, self._num_layers, self._hidden_size])
        last_cell = fluid.layers.transpose(x=last_cell, perm=[1, 0, 2])
        return real_res, last_hidden, last_cell
J
JiabinYang 已提交
134 135


136
class PtbModel(fluid.Layer):
J
JiabinYang 已提交
137
    def __init__(self,
X
Xin Pan 已提交
138
                 name_scope,
J
JiabinYang 已提交
139 140 141 142 143
                 hidden_size,
                 vocab_size,
                 num_layers=2,
                 num_steps=20,
                 init_scale=0.1,
144
                 is_sparse=False,
J
JiabinYang 已提交
145
                 dropout=None):
X
Xin Pan 已提交
146
        super(PtbModel, self).__init__(name_scope)
J
JiabinYang 已提交
147 148 149 150 151 152 153
        self.hidden_size = hidden_size
        self.vocab_size = vocab_size
        self.init_scale = init_scale
        self.num_layers = num_layers
        self.num_steps = num_steps
        self.dropout = dropout
        self.simple_lstm_rnn = SimpleLSTMRNN(
X
Xin Pan 已提交
154
            self.full_name(),
J
JiabinYang 已提交
155 156 157 158 159
            hidden_size,
            num_steps,
            num_layers=num_layers,
            init_scale=init_scale,
            dropout=dropout)
160
        self.embedding = Embedding(
X
Xin Pan 已提交
161
            self.full_name(),
J
JiabinYang 已提交
162 163
            size=[vocab_size, hidden_size],
            dtype='float32',
164
            is_sparse=is_sparse,
J
JiabinYang 已提交
165 166 167 168
            param_attr=fluid.ParamAttr(
                name='embedding_para',
                initializer=fluid.initializer.UniformInitializer(
                    low=-init_scale, high=init_scale)))
169
        self.softmax_weight = self.create_parameter(
170 171
            attr=fluid.ParamAttr(),
            shape=[self.hidden_size, self.vocab_size],
J
JiabinYang 已提交
172 173 174
            dtype="float32",
            default_initializer=fluid.initializer.UniformInitializer(
                low=-self.init_scale, high=self.init_scale))
175
        self.softmax_bias = self.create_parameter(
176 177
            attr=fluid.ParamAttr(),
            shape=[self.vocab_size],
J
JiabinYang 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
            dtype="float32",
            default_initializer=fluid.initializer.UniformInitializer(
                low=-self.init_scale, high=self.init_scale))

    def forward(self, input, label, init_hidden, init_cell):
        init_h = fluid.layers.reshape(
            init_hidden, shape=[self.num_layers, -1, self.hidden_size])

        init_c = fluid.layers.reshape(
            init_cell, shape=[self.num_layers, -1, self.hidden_size])

        x_emb = self.embedding(input)
        x_emb = fluid.layers.reshape(
            x_emb, shape=[-1, self.num_steps, self.hidden_size])
        if self.dropout is not None and self.dropout > 0.0:
            x_emb = fluid.layers.dropout(
                x_emb,
                dropout_prob=self.drop_out,
                dropout_implementation='upscale_in_train')
        rnn_out, last_hidden, last_cell = self.simple_lstm_rnn(x_emb, init_h,
                                                               init_c)
        rnn_out = fluid.layers.reshape(
            rnn_out, shape=[-1, self.num_steps, self.hidden_size])
201
        projection = fluid.layers.matmul(rnn_out, self.softmax_weight)
J
JiabinYang 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214
        projection = fluid.layers.elementwise_add(projection, self.softmax_bias)
        projection = fluid.layers.reshape(
            projection, shape=[-1, self.vocab_size])
        loss = fluid.layers.softmax_with_cross_entropy(
            logits=projection, label=label, soft_label=False)
        loss = fluid.layers.reshape(loss, shape=[-1, self.num_steps])
        loss = fluid.layers.reduce_mean(loss, dim=[0])
        loss = fluid.layers.reduce_sum(loss)
        loss.permissions = True

        return loss, last_hidden, last_cell


L
lujun 已提交
215
class TestDygraphPtbRnn(unittest.TestCase):
216 217 218 219 220
    def test_ptb_rnn(self):
        for is_sparse in [True, False]:
            self.ptb_rnn_cpu_float32(is_sparse)

    def ptb_rnn_cpu_float32(self, is_sparse):
J
JiabinYang 已提交
221 222 223 224 225 226 227
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
228
        batch_num = 200
229 230
        traced_layer = None

L
lujun 已提交
231
        with fluid.dygraph.guard():
J
JiabinYang 已提交
232 233 234 235
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            # TODO: marsyang1993 Change seed to
            ptb_model = PtbModel(
X
Xin Pan 已提交
236
                "ptb_model",
J
JiabinYang 已提交
237 238 239 240
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
241 242
                init_scale=init_scale,
                is_sparse=is_sparse)
J
JiabinYang 已提交
243 244

            sgd = SGDOptimizer(learning_rate=1e-3)
245 246
            dy_param_updated = dict()
            dy_param_init = dict()
J
JiabinYang 已提交
247 248 249
            dy_loss = None
            last_hidden = None
            last_cell = None
250

251 252
            helper = DyGraphProgramDescTracerTestHelper(self)
            program = None
253

254
            for i in range(batch_num):
J
JiabinYang 已提交
255 256 257 258 259 260 261 262 263 264 265 266
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                x = to_variable(x_data)
                y = to_variable(y_data)
                init_hidden = to_variable(init_hidden_data)
                init_cell = to_variable(init_cell_data)
267
                if i % 5 == 0:
268 269 270
                    outs, traced_layer = TracedLayer.trace(
                        ptb_model, [x, y, init_hidden, init_cell])
                    outs_static = traced_layer([x, y, init_hidden, init_cell])
271
                    helper.assertEachVar(outs, outs_static)
272 273 274 275 276 277 278 279 280

                    if program is not None:
                        self.assertTrue(
                            is_equal_program(traced_layer.program, program))

                    program = traced_layer.program

                    traced_layer.save_inference_model(
                        './infe_imperative_ptb_rnn', feed=range(4))
281 282 283 284 285
                else:
                    outs = ptb_model(x, y, init_hidden, init_cell)

                dy_loss, last_hidden, last_cell = outs

J
JiabinYang 已提交
286
                if i == 0:
287
                    for param in ptb_model.parameters():
288
                        dy_param_init[param.name] = param.numpy()
L
lujun 已提交
289
                dy_loss.backward()
J
JiabinYang 已提交
290
                sgd.minimize(dy_loss)
291 292 293
                ptb_model.clear_gradients()
                if i == batch_num - 1:
                    for param in ptb_model.parameters():
294
                        dy_param_updated[param.name] = param.numpy()
295

296 297 298 299
            dy_loss_value = dy_loss.numpy()
            dy_last_cell_value = last_cell.numpy()
            dy_last_hidden_value = last_hidden.numpy()

300 301 302 303
        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            ptb_model = PtbModel(
X
Xin Pan 已提交
304
                "ptb_model",
305 306 307 308
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
309 310
                init_scale=init_scale,
                is_sparse=is_sparse)
311

312 313
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
314
            sgd = SGDOptimizer(learning_rate=1e-3)
315 316
            x = fluid.layers.data(
                name="x", shape=[-1, num_steps, 1], dtype='int64')
317 318 319 320 321 322 323 324 325 326 327 328
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
            init_hidden = fluid.layers.data(
                name="init_hidden", shape=[1], dtype='float32')
            init_cell = fluid.layers.data(
                name="init_cell", shape=[1], dtype='float32')

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)
            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()
            static_param_name_list = list()
329
            for param in ptb_model.parameters():
330 331 332 333 334 335
                static_param_name_list.append(param.name)

            out = exe.run(framework.default_startup_program(),
                          fetch_list=static_param_name_list)
            for i in range(len(static_param_name_list)):
                static_param_init[static_param_name_list[i]] = out[i]
J
JiabinYang 已提交
336 337 338
            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
339
            for i in range(batch_num):
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                fetch_list.extend(static_param_name_list)
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
359 360
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]
J
JiabinYang 已提交
361

362 363 364 365 366
                if i == batch_num - 1:
                    for k in range(3, len(out)):
                        static_param_updated[static_param_name_list[k -
                                                                    3]] = out[k]

367
        self.assertTrue(np.array_equal(static_loss_value, dy_loss_value))
368
        self.assertTrue(
369
            np.array_equal(static_last_cell_value, dy_last_cell_value))
370
        self.assertTrue(
371
            np.array_equal(static_last_hidden_value, dy_last_hidden_value))
372
        for key, value in six.iteritems(static_param_init):
373
            self.assertTrue(np.array_equal(value, dy_param_init[key]))
374
        for key, value in six.iteritems(static_param_updated):
375
            self.assertTrue(np.array_equal(value, dy_param_updated[key]))
J
JiabinYang 已提交
376 377 378 379


if __name__ == '__main__':
    unittest.main()