test_imperative_ptb_rnn.py 14.8 KB
Newer Older
J
JiabinYang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import paddle.fluid as fluid
19
import paddle.fluid.core as core
L
lujun 已提交
20
from paddle.fluid.dygraph.nn import Embedding
J
JiabinYang 已提交
21 22
import paddle.fluid.framework as framework
from paddle.fluid.optimizer import SGDOptimizer
L
lujun 已提交
23
from paddle.fluid.dygraph.base import to_variable
24
from test_imperative_base import new_program_scope
J
JiabinYang 已提交
25
import numpy as np
26
import six
J
JiabinYang 已提交
27 28


29
class SimpleLSTMRNN(fluid.Layer):
J
JiabinYang 已提交
30
    def __init__(self,
X
Xin Pan 已提交
31
                 name_scope,
J
JiabinYang 已提交
32 33 34 35 36
                 hidden_size,
                 num_steps,
                 num_layers=2,
                 init_scale=0.1,
                 dropout=None):
X
Xin Pan 已提交
37
        super(SimpleLSTMRNN, self).__init__(name_scope)
J
JiabinYang 已提交
38 39 40 41
        self._hidden_size = hidden_size
        self._num_layers = num_layers
        self._init_scale = init_scale
        self._dropout = dropout
42 43
        self._input = None
        self._num_steps = num_steps
44 45
        self.cell_array = []
        self.hidden_array = []
J
JiabinYang 已提交
46

47
    def _build_once(self, input_embedding, init_hidden=None, init_cell=None):
J
JiabinYang 已提交
48 49 50 51 52 53
        self.weight_1_arr = []
        self.weight_2_arr = []
        self.bias_arr = []
        self.mask_array = []

        for i in range(self._num_layers):
54
            weight_1 = self.create_parameter(
55 56 57
                attr=fluid.ParamAttr(
                    initializer=fluid.initializer.UniformInitializer(
                        low=-self._init_scale, high=self._init_scale)),
J
JiabinYang 已提交
58 59 60 61
                shape=[self._hidden_size * 2, self._hidden_size * 4],
                dtype="float32",
                default_initializer=fluid.initializer.UniformInitializer(
                    low=-self._init_scale, high=self._init_scale))
62
            self.weight_1_arr.append(self.add_parameter('w_%d' % i, weight_1))
63
            bias_1 = self.create_parameter(
64 65 66 67
                attr=fluid.ParamAttr(
                    initializer=fluid.initializer.UniformInitializer(
                        low=-self._init_scale, high=self._init_scale)),
                shape=[self._hidden_size * 4],
J
JiabinYang 已提交
68 69
                dtype="float32",
                default_initializer=fluid.initializer.Constant(0.0))
70
            self.bias_arr.append(self.add_parameter('b_%d' % i, bias_1))
J
JiabinYang 已提交
71

72 73 74 75 76
    def forward(self, input_embedding, init_hidden=None, init_cell=None):
        self.cell_array = []
        self.hidden_array = []

        for i in range(self._num_layers):
J
JiabinYang 已提交
77 78 79 80 81 82 83 84 85 86 87 88
            pre_hidden = fluid.layers.slice(
                init_hidden, axes=[0], starts=[i], ends=[i + 1])
            pre_cell = fluid.layers.slice(
                init_cell, axes=[0], starts=[i], ends=[i + 1])
            pre_hidden = fluid.layers.reshape(
                pre_hidden, shape=[-1, self._hidden_size])
            pre_cell = fluid.layers.reshape(
                pre_cell, shape=[-1, self._hidden_size])
            self.hidden_array.append(pre_hidden)
            self.cell_array.append(pre_cell)

        res = []
89 90
        for index in range(self._num_steps):
            self._input = fluid.layers.slice(
J
JiabinYang 已提交
91
                input_embedding, axes=[1], starts=[index], ends=[index + 1])
92 93
            self._input = fluid.layers.reshape(
                self._input, shape=[-1, self._hidden_size])
J
JiabinYang 已提交
94 95 96 97 98 99
            for k in range(self._num_layers):
                pre_hidden = self.hidden_array[k]
                pre_cell = self.cell_array[k]
                weight_1 = self.weight_1_arr[k]
                bias = self.bias_arr[k]

100
                nn = fluid.layers.concat([self._input, pre_hidden], 1)
J
JiabinYang 已提交
101 102 103
                gate_input = fluid.layers.matmul(x=nn, y=weight_1)

                gate_input = fluid.layers.elementwise_add(gate_input, bias)
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
                i, j, f, o = fluid.layers.split(
                    gate_input, num_or_sections=4, dim=-1)
                c = pre_cell * fluid.layers.sigmoid(f) + fluid.layers.sigmoid(
                    i) * fluid.layers.tanh(j)
                m = fluid.layers.tanh(c) * fluid.layers.sigmoid(o)
                self.hidden_array[k] = m
                self.cell_array[k] = c
                self._input = m

                if self._dropout is not None and self._dropout > 0.0:
                    self._input = fluid.layers.dropout(
                        self._input,
                        dropout_prob=self._dropout,
                        dropout_implementation='upscale_in_train')
            res.append(
                fluid.layers.reshape(
                    self._input, shape=[1, -1, self._hidden_size]))
        real_res = fluid.layers.concat(res, 0)
        real_res = fluid.layers.transpose(x=real_res, perm=[1, 0, 2])
        last_hidden = fluid.layers.concat(self.hidden_array, 1)
        last_hidden = fluid.layers.reshape(
            last_hidden, shape=[-1, self._num_layers, self._hidden_size])
        last_hidden = fluid.layers.transpose(x=last_hidden, perm=[1, 0, 2])
        last_cell = fluid.layers.concat(self.cell_array, 1)
        last_cell = fluid.layers.reshape(
            last_cell, shape=[-1, self._num_layers, self._hidden_size])
        last_cell = fluid.layers.transpose(x=last_cell, perm=[1, 0, 2])
        return real_res, last_hidden, last_cell
J
JiabinYang 已提交
132 133


134
class PtbModel(fluid.Layer):
J
JiabinYang 已提交
135
    def __init__(self,
X
Xin Pan 已提交
136
                 name_scope,
J
JiabinYang 已提交
137 138 139 140 141 142
                 hidden_size,
                 vocab_size,
                 num_layers=2,
                 num_steps=20,
                 init_scale=0.1,
                 dropout=None):
X
Xin Pan 已提交
143
        super(PtbModel, self).__init__(name_scope)
J
JiabinYang 已提交
144 145 146 147 148 149 150
        self.hidden_size = hidden_size
        self.vocab_size = vocab_size
        self.init_scale = init_scale
        self.num_layers = num_layers
        self.num_steps = num_steps
        self.dropout = dropout
        self.simple_lstm_rnn = SimpleLSTMRNN(
X
Xin Pan 已提交
151
            self.full_name(),
J
JiabinYang 已提交
152 153 154 155 156
            hidden_size,
            num_steps,
            num_layers=num_layers,
            init_scale=init_scale,
            dropout=dropout)
157
        self.embedding = Embedding(
X
Xin Pan 已提交
158
            self.full_name(),
J
JiabinYang 已提交
159 160 161 162 163 164 165
            size=[vocab_size, hidden_size],
            dtype='float32',
            is_sparse=False,
            param_attr=fluid.ParamAttr(
                name='embedding_para',
                initializer=fluid.initializer.UniformInitializer(
                    low=-init_scale, high=init_scale)))
166
        self.softmax_weight = self.create_parameter(
167 168
            attr=fluid.ParamAttr(),
            shape=[self.hidden_size, self.vocab_size],
J
JiabinYang 已提交
169 170 171
            dtype="float32",
            default_initializer=fluid.initializer.UniformInitializer(
                low=-self.init_scale, high=self.init_scale))
172
        self.softmax_bias = self.create_parameter(
173 174
            attr=fluid.ParamAttr(),
            shape=[self.vocab_size],
J
JiabinYang 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
            dtype="float32",
            default_initializer=fluid.initializer.UniformInitializer(
                low=-self.init_scale, high=self.init_scale))

    def forward(self, input, label, init_hidden, init_cell):
        init_h = fluid.layers.reshape(
            init_hidden, shape=[self.num_layers, -1, self.hidden_size])

        init_c = fluid.layers.reshape(
            init_cell, shape=[self.num_layers, -1, self.hidden_size])

        x_emb = self.embedding(input)
        x_emb = fluid.layers.reshape(
            x_emb, shape=[-1, self.num_steps, self.hidden_size])
        if self.dropout is not None and self.dropout > 0.0:
            x_emb = fluid.layers.dropout(
                x_emb,
                dropout_prob=self.drop_out,
                dropout_implementation='upscale_in_train')
        rnn_out, last_hidden, last_cell = self.simple_lstm_rnn(x_emb, init_h,
                                                               init_c)
        rnn_out = fluid.layers.reshape(
            rnn_out, shape=[-1, self.num_steps, self.hidden_size])
198
        projection = fluid.layers.matmul(rnn_out, self.softmax_weight)
J
JiabinYang 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211
        projection = fluid.layers.elementwise_add(projection, self.softmax_bias)
        projection = fluid.layers.reshape(
            projection, shape=[-1, self.vocab_size])
        loss = fluid.layers.softmax_with_cross_entropy(
            logits=projection, label=label, soft_label=False)
        loss = fluid.layers.reshape(loss, shape=[-1, self.num_steps])
        loss = fluid.layers.reduce_mean(loss, dim=[0])
        loss = fluid.layers.reduce_sum(loss)
        loss.permissions = True

        return loss, last_hidden, last_cell


L
lujun 已提交
212
class TestDygraphPtbRnn(unittest.TestCase):
213
    def test_ptb_rnn_cpu_float32(self):
J
JiabinYang 已提交
214 215 216 217 218 219 220
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
221
        batch_num = 200
J
JiabinYang 已提交
222

L
lujun 已提交
223
        with fluid.dygraph.guard():
J
JiabinYang 已提交
224 225 226 227
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            # TODO: marsyang1993 Change seed to
            ptb_model = PtbModel(
X
Xin Pan 已提交
228
                "ptb_model",
J
JiabinYang 已提交
229 230 231 232 233 234 235
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

            sgd = SGDOptimizer(learning_rate=1e-3)
236 237
            dy_param_updated = dict()
            dy_param_init = dict()
J
JiabinYang 已提交
238 239 240
            dy_loss = None
            last_hidden = None
            last_cell = None
241 242

            for i in range(batch_num):
J
JiabinYang 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                x = to_variable(x_data)
                y = to_variable(y_data)
                init_hidden = to_variable(init_hidden_data)
                init_cell = to_variable(init_cell_data)
                dy_loss, last_hidden, last_cell = ptb_model(x, y, init_hidden,
                                                            init_cell)
                if i == 0:
258
                    for param in ptb_model.parameters():
259
                        dy_param_init[param.name] = param.numpy()
L
lujun 已提交
260
                dy_loss.backward()
J
JiabinYang 已提交
261
                sgd.minimize(dy_loss)
262 263 264
                ptb_model.clear_gradients()
                if i == batch_num - 1:
                    for param in ptb_model.parameters():
265
                        dy_param_updated[param.name] = param.numpy()
266

267 268 269 270
            dy_loss_value = dy_loss.numpy()
            dy_last_cell_value = last_cell.numpy()
            dy_last_hidden_value = last_hidden.numpy()

271 272 273 274
        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            ptb_model = PtbModel(
X
Xin Pan 已提交
275
                "ptb_model",
276 277 278 279 280 281
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale)

282 283
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
284
            sgd = SGDOptimizer(learning_rate=1e-3)
285 286
            x = fluid.layers.data(
                name="x", shape=[-1, num_steps, 1], dtype='int64')
287 288 289 290 291 292 293 294 295 296 297 298
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
            init_hidden = fluid.layers.data(
                name="init_hidden", shape=[1], dtype='float32')
            init_cell = fluid.layers.data(
                name="init_cell", shape=[1], dtype='float32')

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)
            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()
            static_param_name_list = list()
299
            for param in ptb_model.parameters():
300 301 302 303 304 305
                static_param_name_list.append(param.name)

            out = exe.run(framework.default_startup_program(),
                          fetch_list=static_param_name_list)
            for i in range(len(static_param_name_list)):
                static_param_init[static_param_name_list[i]] = out[i]
J
JiabinYang 已提交
306 307 308
            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
309
            for i in range(batch_num):
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                fetch_list.extend(static_param_name_list)
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
329 330
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]
J
JiabinYang 已提交
331

332 333 334 335 336
                if i == batch_num - 1:
                    for k in range(3, len(out)):
                        static_param_updated[static_param_name_list[k -
                                                                    3]] = out[k]

337
        self.assertTrue(np.array_equal(static_loss_value, dy_loss_value))
338
        self.assertTrue(
339
            np.array_equal(static_last_cell_value, dy_last_cell_value))
340
        self.assertTrue(
341
            np.array_equal(static_last_hidden_value, dy_last_hidden_value))
342
        for key, value in six.iteritems(static_param_init):
343
            self.assertTrue(np.array_equal(value, dy_param_init[key]))
344
        for key, value in six.iteritems(static_param_updated):
345
            self.assertTrue(np.array_equal(value, dy_param_updated[key]))
J
JiabinYang 已提交
346 347 348 349


if __name__ == '__main__':
    unittest.main()