distribute_transpiler.py 82.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
typhoonzero 已提交
33
import math
34
import numpy as np
35
import collections
Q
Qiao Longfei 已提交
36
import logging
37

38
from .ps_dispatcher import RoundRobin, PSDispatcher
W
Wu Yi 已提交
39
from .. import core, framework, unique_name
T
typhoonzero 已提交
40
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
41 42
    default_startup_program, Block, \
    Parameter, grad_var_name
43
from .details import *
Q
Qiao Longfei 已提交
44
from ..distribute_lookup_table import find_distributed_lookup_table
45
from functools import reduce
46 47 48

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
49
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
50 51
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
52
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
53
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
54 55 56 57 58 59 60 61 62
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
63 64


T
typhoonzero 已提交
65 66 67 68 69 70
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
71

T
typhoonzero 已提交
72 73
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
74 75


76 77 78 79
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
80
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
81
    """
82 83 84 85 86 87
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
88
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
89 90 91

    Args:
        var_list (list): List of variables.
92 93
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
94 95
        min_block_size (int): Minimum splitted block size.
    Returns:
96
        blocks (list[(varname, block_id, current_block_size)]): A list
97
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
98 99 100
    """
    blocks = []
    for var in var_list:
101
        split_count = slice_count
T
typhoonzero 已提交
102 103 104 105
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
106
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
107 108 109 110 111 112 113 114 115
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
116
        # update split_count after aligning
T
typhoonzero 已提交
117
        split_count = int(math.ceil(var_numel / float(block_size)))
118
        for block_id in range(split_count):
T
typhoonzero 已提交
119 120 121 122 123 124 125
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
126 127
class DistributeTranspilerConfig(object):
    """
H
haowang101779990 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141
    .. py:attribute:: slice_var_up (bool)

          Do Tensor slice for pservers, default is True.

    .. py:attribute:: split_method (PSDispatcher)

          RoundRobin or HashName can be used.
          Try to choose the best method to balance loads for pservers.

    .. py:attribute:: min_block_size (int)

          Minimum number of splitted elements in block.

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
Tink_Y 已提交
142
          We can use bandwidth effiently when data size is larger than 2MB.If you
H
haowang101779990 已提交
143 144
          want to change it, please be sure you have read the slice_variable function.

G
gongweibao 已提交
145 146 147 148 149
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
150
    enable_dc_asgd = False
W
Wu Yi 已提交
151 152
    # supported modes: pserver, nccl2
    mode = "pserver"
153
    print_log = False
W
Wu Yi 已提交
154
    wait_port = True
G
gongweibao 已提交
155 156


Y
gen rst  
yi.wu 已提交
157
class DistributeTranspiler(object):
Y
yi.wu 已提交
158 159 160 161
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
W
Wu Yi 已提交
162
    Supports two modes: pserver mode and nccl2 mode.
Y
yi.wu 已提交
163

W
Wu Yi 已提交
164 165 166 167 168 169 170 171 172
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
173 174 175 176

    Examples:
        .. code-block:: python

T
Tink_Y 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
            role = os.getenv("PADDLE_TRAINING_ROLE")
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
190
                                                                pserver_program)
T
Tink_Y 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
            t = fluid.DistributeTranspiler(config=config)
            t.transpile(trainer_id, workers=workers, current_endpoint=curr_ep)
            exe = fluid.ParallelExecutor(
                use_cuda,
                loss_name=loss_var.name,
                num_trainers=len(trainers.split(",)),
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
205
    """
Y
Yancey1989 已提交
206

G
gongweibao 已提交
207 208 209 210 211 212 213 214 215
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

216 217 218
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
219 220 221
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
222 223 224 225
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
W
Wu Yi 已提交
226 227
                         startup_program=None,
                         wait_port=True):
W
Wu Yi 已提交
228 229 230 231 232 233
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
W
Wu Yi 已提交
234 235
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
                    "endpoint": current_endpoint,
                    "endpoint_list": worker_endpoints,
                    "trainer_id": trainer_id
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

Q
Qiao Longfei 已提交
252
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
253
        sparse_update_ops = []
254
        sparse_update_op_types = ["lookup_table", "nce", "hierarchical_sigmoid"]
Q
Qiao Longfei 已提交
255 256
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
257
                    'remote_prefetch') is True:
Q
Qiao Longfei 已提交
258 259 260
                sparse_update_ops.append(op)
        return sparse_update_ops

Q
Qiao Longfei 已提交
261
    def _update_remote_sparse_update_op(self, param_varname, height_sections,
Q
Qiao Longfei 已提交
262
                                        endpint_map, table_names):
Q
Qiao Longfei 已提交
263 264 265
        for op in self.sparse_update_ops:
            if param_varname in op.input_arg_names:
                op._set_attr('epmap', endpint_map)
Q
Qiao Longfei 已提交
266
                op._set_attr('table_names', table_names)
Q
Qiao Longfei 已提交
267
                op._set_attr('height_sections', height_sections)
Q
Qiao Longfei 已提交
268 269 270 271 272 273 274
                op._set_attr('trainer_id', self.trainer_id)

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
275

276 277 278 279 280
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
281
                  sync_mode=True,
W
Wu Yi 已提交
282 283
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
284
        """
Y
yi.wu 已提交
285 286 287 288 289 290 291
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
292 293
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
294 295
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
296 297 298
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
299
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
300 301
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
302 303 304
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
305 306 307
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
308 309
        if startup_program is None:
            startup_program = default_startup_program()
310
        self.origin_program = program
W
Wu Yi 已提交
311 312
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
313

W
Wu Yi 已提交
314 315
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
316
            self.origin_program._trainers_endpoints = trainers.split(",")
W
Wu Yi 已提交
317 318 319 320
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
W
Wu Yi 已提交
321 322
                startup_program=startup_program,
                wait_port=self.config.wait_port)
W
Wu Yi 已提交
323 324
            return

325 326 327 328 329 330 331
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
332
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
333 334
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
335
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
336
        self.grad_name_to_param_name = dict()
337 338
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
339
            self.grad_name_to_param_name[grad_var.name] = param_var.name
340

Q
Qiao Longfei 已提交
341
        # get all sparse update ops
Q
Qiao Longfei 已提交
342
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
343
            self.origin_program)
Q
Qiao Longfei 已提交
344
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
345 346
        self.sparse_param_to_height_sections = dict()

T
tangwei12 已提交
347 348 349 350 351 352
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

353
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
354
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
355
        self._init_splited_vars()
356

G
gongweibao 已提交
357
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
358
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
359
        send_vars = []
360 361 362 363 364 365

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
366
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
367

G
gongweibao 已提交
368
        if not self.config.slice_var_up:
369 370
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
371

372
        self.grad_name_to_send_dummy_out = dict()
373
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
374
            eplist = ps_dispatcher.dispatch(splited_vars)
375

G
gongweibao 已提交
376
            if not self.config.slice_var_up:
377 378
                assert (len(splited_vars) == 1)

379
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
380
            if len(splited_vars) == 1:
381
                splited_grad_varname = splited_vars[0].name
382 383
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Q
Qiao Longfei 已提交
384 385
                if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                    sparse_param_name = self.grad_name_to_param_name[
Q
Qiao Longfei 已提交
386
                        grad_varname]
Q
Qiao Longfei 已提交
387 388 389 390
                    if self._is_input_of_remote_sparse_update_op(
                            sparse_param_name):
                        self.sparse_param_to_height_sections[
                            sparse_param_name] = [splited_vars[0].shape[0]]
Y
Yancey1989 已提交
391
            elif len(splited_vars) > 1:
392
                orig_var = program.global_block().vars[splited_grad_varname]
393 394
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Y
Yancey1989 已提交
395
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
396
                index += 1
Y
Yancey1989 已提交
397 398
            else:
                AssertionError("Can not insert the send op by original "
399
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
400

W
Wu Yi 已提交
401 402
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
403
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
404

W
Wu Yi 已提交
405 406 407 408
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
409
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
410
                index=index + 1,
411
                type="send",
Y
update  
Yancey1989 已提交
412
                inputs={"X": splited_vars},
413
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
414 415
                attrs={
                    "epmap": eplist,
416
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
417 418 419 420
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
                    ],
421
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
422
                })
Y
update  
Yancey1989 已提交
423 424
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
425 426

        if self.sync_mode:
W
Wu Yi 已提交
427 428
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
429 430 431 432
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
433
            input_deps = list(self.grad_name_to_send_dummy_out.values())
434

Y
Yancey1989 已提交
435 436
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
437
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
438
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
439 440
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
441 442
                    "sync_mode": self.sync_mode,
                    "trainer_id": self.trainer_id,
Y
Yancey1989 已提交
443
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
444
                })
Y
Yancey1989 已提交
445

G
gongweibao 已提交
446
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
447
        recv_vars = []
Y
update  
Yancey1989 已提交
448
        for _, var in enumerate(send_vars):
449
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
450
        ps_dispatcher.reset()
Y
Yancey1989 已提交
451 452
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
453
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
454 455
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
456

Y
Yancey1989 已提交
457
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
458
        all_recv_outputs = []
459
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
460
            eps = []
Q
Qiao Longfei 已提交
461
            table_names = []
Y
Yancey1989 已提交
462 463 464
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
465
                table_names.append(var.name)
W
Wu Yi 已提交
466 467 468 469
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
470
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
471
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
472

W
Wu Yi 已提交
473 474 475 476 477 478 479 480 481
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
482 483 484
            if param_varname in self.sparse_param_to_height_sections:
                height_sections = self.sparse_param_to_height_sections[
                    param_varname]
Q
Qiao Longfei 已提交
485 486
                self._update_remote_sparse_update_op(
                    param_varname, height_sections, eps, table_names)
Q
Qiao Longfei 已提交
487
            else:
Q
Qiao Longfei 已提交
488
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
489 490 491 492 493 494 495 496 497 498 499 500
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
                        [param_varname, recv_op_role_var_name],
                        "sync_mode": not self.sync_mode
                    })
T
typhoonzero 已提交
501

Q
qiaolongfei 已提交
502
        if self.sync_mode:
W
Wu Yi 已提交
503
            # form a WAW dependency
Q
qiaolongfei 已提交
504 505 506
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
507
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
508 509
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
510
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
511 512
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
513

514
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
515 516
            if len(splited_var) <= 1:
                continue
517
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
518 519 520 521 522 523 524 525 526
            if param_varname not in self.sparse_param_to_height_sections:
                program.global_block().append_op(
                    type="concat",
                    inputs={"X": splited_var},
                    outputs={"Out": [orig_param]},
                    attrs={
                        "axis": 0,
                        RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                    })
T
typhoonzero 已提交
527

G
gongweibao 已提交
528 529
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

530
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
531 532
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
533
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
534

W
Wu Yi 已提交
535
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
536 537 538 539 540 541
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
542
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
543
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
T
typhoonzero 已提交
544
        lr_ops = self._get_lr_ops()
545
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
546 547
        delete_ops(self.origin_program.global_block(), lr_ops)

548 549
        # delete table init op
        if self.has_distributed_lookup_table:
550 551 552
            table_var = self.startup_program.global_block().vars[
                self.table_name]
            table_param_init_op = []
553 554
            for op in self.startup_program.global_block().ops:
                if self.table_name in op.output_arg_names:
555 556 557 558 559
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
Q
Qiao Longfei 已提交
560
            table_init_op = table_param_init_op[0]
561 562 563 564 565 566
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)
567

568
        self.origin_program.__str__()
G
gongweibao 已提交
569

W
Wu Yi 已提交
570 571 572
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

573
        return self.origin_program
T
typhoonzero 已提交
574

W
Wu Yi 已提交
575
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
576 577 578 579
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
580
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
581
            eplist (list): A list of strings indicating
G
gongweibao 已提交
582 583 584 585

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
586
        startup_program = self.startup_program
G
gongweibao 已提交
587 588 589 590

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
591
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
612
                inputs={"X": []},
G
gongweibao 已提交
613 614 615 616 617 618
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
619 620
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
621 622 623
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
624
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
625 626 627 628 629
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
630
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
631
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
632 633
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
634
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
635
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
636 637 638 639 640 641 642 643 644 645
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
646 647 648 649 650 651 652 653
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
654 655
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
656
        Get parameter server side program.
657

Y
yi.wu 已提交
658 659
        Args:
            endpoint (str): current parameter server endpoint.
660

Y
yi.wu 已提交
661 662
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
663
        """
Y
yi.wu 已提交
664 665 666 667
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
T
typhoonzero 已提交
668 669
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
670
        pserver_program.random_seed = self.origin_program.random_seed
671
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
672 673 674 675 676 677 678 679
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
680 681 682 683 684
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
685 686 687 688 689 690 691 692 693
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
694
            if self.sync_mode and self.trainer_num > 1:
695
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
696 697 698 699 700 701 702 703 704
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
705

706 707 708
        self._slice_params_and_optimizes = self._get_slice_vars_and_attrs(
            endpoint)

Q
qiaolongfei 已提交
709
        # step 3
710
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
711 712 713
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
714
        # step 3.2
T
typhoonzero 已提交
715 716 717 718
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
719 720
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
721
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
722
        # step 3.3
W
Wu Yi 已提交
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
741
        # Iterate through the ops, and if an op and the optimize ops
742
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
743
        # append it into the sub program.
T
typhoonzero 已提交
744 745 746

        global_ops = []

Y
wip  
yi.wu 已提交
747 748
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
749
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
750
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
751
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
752
            elif op not in lr_ops:
Q
Qiyang Min 已提交
753
                self._append_pserver_non_opt_ops(block, op)
754 755 756 757 758 759

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
760

Y
Yancey1989 已提交
761
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
762 763 764 765 766 767 768 769
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
770
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
771 772 773

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
774
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
775 776

            # clone ops
Y
Yancey1989 已提交
777 778
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
779
                # clone sub_block of op
Y
Yancey1989 已提交
780
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
781 782

            # reset the block of op
W
Wu Yi 已提交
783
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
784

785
        # append lr decay ops to the child block if exists
786
        lr_ops = self._get_lr_ops()
787 788
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
789
        if len(lr_ops) > 0:
W
Wu Yi 已提交
790
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
791
                pserver_program.num_blocks - 1)
792
            optimize_blocks.append(lr_decay_block)
793
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
794
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
795
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
796 797
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
798

T
typhoonzero 已提交
799
        # append op to the current block
Q
qiaolongfei 已提交
800
        grad_to_block_id = []
Q
qiaolongfei 已提交
801
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
802
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
803
            per_opt_block = pserver_program._create_block(pre_block_idx)
804
            optimize_blocks.append(per_opt_block)
805
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
806
            # append grad merging ops before clip and weight decay
807 808
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
809
            for _, op in enumerate(self.optimize_ops):
810 811 812 813 814
                # find the origin grad var before clipping/L2Decay,
                # merged_var should be the input var name of L2Decaybuil
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
815 816 817
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
818 819 820 821 822 823
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
824
                            op not in global_ops:
825 826 827 828 829
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
830

831
        # dedup grad to ids list
W
Wu Yi 已提交
832
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
833
        # append global ops
834
        if global_ops:
W
Wu Yi 已提交
835
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
836
                pserver_program.num_blocks - 1)
837
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
838
            for glb_op in global_ops:
X
Xi Chen 已提交
839
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
840
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
841

842
        # process distributed lookup_table
Q
qiaolongfei 已提交
843
        prefetch_var_name_to_block_id = []
844 845
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
846
            table_opt_block = self._create_table_optimize_block(
847
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
848
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
849
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
850
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
851 852
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
853

T
tangwei12 已提交
854
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
855 856
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
857

858
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
859 860
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
861 862 863 864 865 866
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
867
        attrs = {
868
            "optimize_blocks": optimize_blocks,
869 870 871
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
872
            "grad_to_block_id": grad_to_block_id,
873
        }
T
tangwei12 已提交
874 875

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
876
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
877 878
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
879

T
tangwei12 已提交
880 881 882 883
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
884 885 886 887 888
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
889
            attrs=attrs)
890

T
tangwei12 已提交
891
        # add distributed attrs
892 893
        pserver_program._slice_vars_and_attrs = list(
            self._slice_params_and_optimizes.values())
894

W
Wu Yi 已提交
895
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
896 897
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
898 899
        return pserver_program

W
Wu Yi 已提交
900 901 902 903 904 905
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
906

W
Wu Yi 已提交
907 908 909 910
        Returns:
            tuple: (main_program, startup_program), of type "Program"
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
911 912
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
913 914
        return pserver_prog, pserver_startup

915 916
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
917
                            pserver_program=None,
918
                            startup_program=None):
T
typhoonzero 已提交
919
        """
W
Wu Yi 已提交
920 921
        **Deprecated**

T
typhoonzero 已提交
922 923 924
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
925 926 927

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
928 929
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
930
                when initalizing
931

Y
yi.wu 已提交
932 933
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
934 935
        """
        s_prog = Program()
W
Wu Yi 已提交
936
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
937
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
938 939 940 941 942 943 944 945 946 947 948
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
949
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
950
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
951
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
952 953 954 955
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
956
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
957 958
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
959 960 961 962 963 964 965 966 967 968
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
969 970

            if op_on_pserver:
971 972 973
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
974 975 976
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
W
Wu Yi 已提交
977
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
978 979 980 981
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
982
                    attrs=op.all_attrs())
W
Wu Yi 已提交
983 984 985 986 987 988 989 990 991
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
992 993

        # add slice vars
994
        s_prog._slice_vars_and_attrs = pserver_program._slice_vars_and_attrs
995

T
typhoonzero 已提交
996 997
        return s_prog

T
tangwei12 已提交
998
    def _get_slice_vars_and_attrs(self, endpoint):
999
        slice_vars_and_attrs = {}
T
tangwei12 已提交
1000
        block_suffix = "block"
1001
        for param in self.param_grad_ep_mapping[endpoint]["params"]:
T
tangwei12 已提交
1002
            orig_var_name, block_name, _ = self._get_varname_parts(param.name)
T
tangwei12 已提交
1003
            if not block_name:
1004 1005
                continue

T
tangwei12 已提交
1006
            block_idx = int(block_name.split(block_suffix)[1])
1007 1008
            orig_var = self.origin_program.global_block().vars[orig_var_name]

T
tangwei12 已提交
1009
            skip_dim0 = 0
1010 1011
            slice_vars = self.param_var_mapping[orig_var_name]
            for slice_var in slice_vars[:block_idx]:
T
tangwei12 已提交
1012
                skip_dim0 += slice_var.shape[0]
1013
            slice_vars_and_attrs[param.name] = [orig_var, skip_dim0, param]
T
tangwei12 已提交
1014
        return slice_vars_and_attrs
1015

1016 1017
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1057
    def _init_splited_vars(self):
Y
yi.wu 已提交
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1081
        if self.config.slice_var_up:
Y
yi.wu 已提交
1082 1083
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1084 1085 1086
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1087
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1088 1089
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1090 1091 1092
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1093 1094 1095 1096
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1097 1098
        assert (len(grad_blocks) == len(param_blocks))

1099
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1100 1101
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1102
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1103 1104 1105 1106
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1107
        # dict(grad_splited_var -> param_splited_var)
1108
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1109 1110 1111
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1112
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1113
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1114 1115

        # create mapping of endpoint -> split var to create pserver side program
1116
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1126
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1127 1128
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1129
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1130
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1131 1132
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1133 1134
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1135 1136 1137 1138 1139 1140

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1141 1142
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1143
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1144 1145 1146
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1147 1148
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1149 1150
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1151 1152 1153
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1154
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1155
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1156 1157

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1158
                    self.all_out_emb_vars.append(out_var)
1159 1160

                    # delete lookup_table_op
1161
                    delete_ops(program.global_block(), [op])
1162 1163 1164
                    # break for loop
                    break

S
seiriosPlus 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1211
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1212
        # 2. add split_ids_op and send_op to send gradient to pservers
1213

1214 1215
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1216
        table_grad_name = grad_var_name(self.table_name)
1217 1218 1219 1220
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1221
                program.global_block()._insert_op(
1222 1223 1224 1225 1226
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1227 1228
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1229
                program.global_block()._insert_op(
1230
                    index=op_index + 2,
1231
                    type="send",
1232
                    inputs={'X': self.trainer_side_table_grad_list},
1233 1234 1235 1236 1237
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1238
                    attrs={
1239
                        "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
1240
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1241
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1242 1243 1244 1245 1246
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1247
                    })
1248 1249 1250 1251 1252 1253
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1254
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1280
        return prefetch_var_name_to_block_id
1281 1282

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1283
                                     pre_block_idx, grad_to_block_id):
1284
        # STEP: create table optimize block
1285
        table_opt_block = pserver_program._create_block(pre_block_idx)
1286
        # create table param and grad var in pserver program
1287 1288
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1289 1290 1291
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1292 1293
        ][0]

Y
Yancey1989 已提交
1294 1295
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1296

T
tangwei12 已提交
1297
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1298 1299
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1300 1301 1302
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1303 1304
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1305
            shape=table_shape,
Y
Yancey1989 已提交
1306 1307 1308
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1309

1310 1311
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1312
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1313
            self.origin_program.global_block().vars[grad_var_name(
1314
                self.table_name)])
1315

1316 1317 1318
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1319

1320 1321 1322
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1323
            pserver_side_table_grad_list = [
1324 1325 1326 1327 1328 1329 1330 1331 1332
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1333
            # append sum op for pserver_side_table_grad_list
1334 1335
            table_opt_block.append_op(
                type="sum",
1336
                inputs={"X": pserver_side_table_grad_list},
1337 1338
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1339 1340
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1341
            origin_grad_name = grad_var.name
1342 1343
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1344 1345
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1346
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1347
            grad_var = pserver_program.global_block()._rename_var(
1348
                origin_grad_name, splited_grad_name)
1349 1350 1351 1352 1353 1354 1355

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1356
        # only support sgd now
1357 1358 1359
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1360
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1361

1362 1363 1364
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1365 1366
        return table_opt_block

T
tangwei12 已提交
1367 1368 1369 1370 1371
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1372
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1373
            name="kLookupTablePath",
T
tangwei12 已提交
1374 1375
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1376

W
Wu Yi 已提交
1377
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1378
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1379 1380 1381 1382
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1383
            attrs={'file_path': "none"})
T
tangwei12 已提交
1384 1385 1386

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1387 1388 1389 1390 1391
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1392
        Create vars for each split.
T
typhoonzero 已提交
1393 1394
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1395 1396 1397 1398
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1399
        Returns:
1400
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1401
                from original var name to each var split.
T
typhoonzero 已提交
1402
        """
1403 1404

        # varname->[(block_id, current_block_size)]
1405
        block_map = collections.OrderedDict()
1406

1407
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1408 1409
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1410
            if varname not in block_map:
T
typhoonzero 已提交
1411
                block_map[varname] = []
1412
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1413

M
minqiyang 已提交
1414
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1415
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1416
            if len(splited) == 1:
1417
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1418
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1419
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1420
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1421 1422 1423 1424 1425
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1426
                continue
T
typhoonzero 已提交
1427
            var_mapping[varname] = []
T
typhoonzero 已提交
1428 1429 1430 1431
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1432

T
typhoonzero 已提交
1433
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1434
                size = block[1]
M
minqiyang 已提交
1435
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1436 1437 1438
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1439
                new_var_name = ""
1440
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1441
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1442
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1443 1444
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1445
                                   (varname, i)
T
typhoonzero 已提交
1446
                var = program.global_block().create_var(
T
typhoonzero 已提交
1447 1448
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1449
                    dtype=orig_var.dtype,
1450
                    type=orig_var.type,
T
typhoonzero 已提交
1451
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1452
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1453
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1454
        return var_mapping
T
done  
typhoonzero 已提交
1455

1456
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1457 1458 1459 1460 1461 1462
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1463
            persistable=persistable)
T
done  
typhoonzero 已提交
1464

Y
Yancey1989 已提交
1465
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1466 1467 1468 1469
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
Q
Qiao Longfei 已提交
1470
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
1471
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
1472 1473
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
1474
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1475 1476 1477 1478
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1479 1480 1481 1482
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1483 1484 1485 1486
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1487
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1488 1489 1490 1491
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1492 1493 1494 1495
                attrs={
                    "sections": sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1496 1497 1498
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1499

T
typhoonzero 已提交
1500 1501 1502 1503
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1504
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
1517
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
1518 1519
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1520 1521
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1522
                return param_shape
1523 1524 1525
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
1526 1527 1528
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
1529 1530
        elif op_type == "sgd":
            pass
1531 1532 1533 1534
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
1535 1536
        return orig_shape

1537 1538
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1539
        orig_var_name = ""
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1550
        else:
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
1573
            return None
1574 1575 1576 1577
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1578
        else:
1579
            merged_var_name = orig_varname
1580 1581

        merged_var = pserver_block.vars[merged_var_name]
1582 1583 1584
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1585
            for i in range(self.trainer_num):
1586
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1587
                                   (merged_var_name, i)
1588 1589 1590 1591
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1592 1593
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1594 1595 1596 1597 1598
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1599
        return merged_var
T
typhoonzero 已提交
1600

W
Wu Yi 已提交
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

1663
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1664
                            grad_to_block_id, origin_program, merged_var):
1665
        program = optimize_block.program
T
typhoonzero 已提交
1666
        pserver_block = program.global_block()
1667
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
1678 1679 1680 1681
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
1682
        for key in opt_op.input_names:
T
typhoonzero 已提交
1683
            if key == "Grad":
W
Wu Yi 已提交
1684 1685 1686 1687
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
                    new_inputs[key] = merged_var
T
typhoonzero 已提交
1688
            elif key == "Param":
W
Wu Yi 已提交
1689
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1690 1691
                if not param_block:
                    return
T
typhoonzero 已提交
1692
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1693
                    name=param_block.name,
T
typhoonzero 已提交
1694
                    persistable=True,
T
typhoonzero 已提交
1695 1696 1697
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1698
            elif key == "LearningRate":
1699
                # learning rate variable has already be created by non-optimize op,
1700
                # don't create it once again.
1701
                lr_varname = opt_op.input(key)[0]
1702
                if lr_varname in pserver_block.vars:
1703 1704 1705 1706 1707 1708 1709 1710 1711
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1712

T
typhoonzero 已提交
1713
        for key in opt_op.input_names:
1714
            new_shape = None
W
Wu Yi 已提交
1715
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1716
                continue
1717
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
1718
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
1719
            # update accumulator variable shape
1720 1721
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
1722
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1723 1724 1725 1726 1727
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1728

1729 1730 1731 1732 1733 1734 1735
            # var shape been changed
            if new_shape != var.shape:
                slice_var_args = self._slice_params_and_optimizes[
                    param_var.name]
                self._slice_params_and_optimizes[
                    var.name] = [var, slice_var_args[1], tmpvar]

1736
        # change output's ParamOut variable
1737 1738
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1739
        outputs["ParamOut"] = new_inputs["Param"]
1740
        optimize_block.append_op(
T
typhoonzero 已提交
1741 1742
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1743
            outputs=outputs,
G
gongweibao 已提交
1744
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1745

1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
1757
        grad_block = None
M
minqiyang 已提交
1758
        for _, g in six.iteritems(var_dict):
1759
            if self._orig_varname(g.name) == self._orig_varname(var.name):
1760
                # skip per trainer vars
1761
                if g.name.find(".trainer_") == -1:
1762 1763 1764 1765 1766
                    # only param or grads have splited blocks
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or\
                        self._orig_varname(g.name) in self.param_name_to_grad_name:
                        grad_block = g
                        break
1767 1768
        return grad_block

Q
Qiyang Min 已提交
1769 1770 1771
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1772
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1773 1774 1775 1776
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1777
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1778 1779 1780

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1781
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1782 1783 1784 1785
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1786
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1787

Y
Yancey1989 已提交
1788
        return block.append_op(
G
gongweibao 已提交
1789
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1790 1791

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1792
        program = optimize_block.program
1793
        # Append the ops for parameters that do not need to be optimized/updated
1794 1795
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1796
        for key, varlist in six.iteritems(inputs):
1797 1798
            if not isinstance(varlist, list):
                varlist = [varlist]
1799 1800 1801
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
1802
                # for inputs/outputs
1803
                grad_block = self._get_pserver_grad_param_var(
1804 1805
                    var, program.global_block().vars)
                if grad_block:
1806
                    varlist[i] = grad_block
1807
                elif var.name not in program.global_block().vars:
1808 1809 1810 1811 1812
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
1813

1814 1815
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1816
        for key, varlist in six.iteritems(outputs):
1817 1818
            if not isinstance(varlist, list):
                varlist = [varlist]
1819 1820 1821
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
1822 1823
                    var, program.global_block().vars)
                if grad_block:
1824
                    varlist[i] = grad_block
1825
                elif var.name not in program.global_block().vars:
1826 1827 1828 1829 1830
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
1831

Y
Yancey1989 已提交
1832
        return optimize_block.append_op(
T
typhoonzero 已提交
1833
            type=opt_op.type,
T
typhoonzero 已提交
1834 1835
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1836
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1837

1838 1839 1840 1841
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1842
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
1843
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1844 1845 1846 1847 1848 1849
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1850 1851
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1852 1853 1854 1855 1856 1857
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1858
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1859
        if "Param" in op.input_names and \
T
tangwei12 已提交
1860
                "LearningRate" in op.input_names:
1861 1862 1863 1864 1865 1866 1867
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1868
        if op.input("Param")[0] in param_names:
1869 1870 1871
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1872
                param = op.input("Param")[0]
T
typhoonzero 已提交
1873
                if same_or_split_var(n, param) and n != param:
1874 1875 1876
                    return True
            return False

T
typhoonzero 已提交
1877
    def _get_input_map_from_op(self, varmap, op):
1878
        """Returns a dict from op input name to the vars in varmap."""
1879
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1891
        """Returns a dict from op output name to the vars in varmap."""
1892
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1893 1894 1895 1896 1897 1898 1899 1900 1901
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1902 1903

    def _get_lr_ops(self):
1904 1905 1906
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
X
fix  
Xin Pan 已提交
1907 1908 1909 1910
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
1911 1912 1913 1914 1915
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
1916 1917 1918 1919
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1920
            if self._is_optimizer_op(op):
1921 1922 1923 1924
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1925
        block = self.origin_program.global_block()
1926 1927 1928 1929 1930
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1931

1932 1933 1934 1935 1936
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
1937
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1938 1939 1940 1941 1942 1943
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1944 1945
                    # we only need to append op for once
                    break
1946
        return lr_ops
Y
Yancey1989 已提交
1947

W
Wu Yi 已提交
1948 1949 1950 1951 1952
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
1953 1954
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
1955 1956 1957
            return True
        return False

Y
Yancey1989 已提交
1958
    def _get_optimize_pass(self):
1959
        """
1960
        Get optimizer operators, parameters and gradients from origin_program
1961 1962 1963 1964
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1965 1966 1967
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1968 1969
        # tmp set to dedup
        optimize_params = set()
1970
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1971
        for op in block.ops:
W
Wu Yi 已提交
1972
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1973
                opt_ops.append(op)
1974 1975 1976 1977 1978 1979
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
1980 1981
                        params_grads.append([
                            origin_var_dict[param_name],
1982
                            origin_var_dict[grad_name]
1983
                        ])
Y
Yancey1989 已提交
1984 1985 1986
            else:
                pass
        return opt_ops, params_grads