elementwise_op.h 11.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14 15

#pragma once
C
chengduo 已提交
16

17
#include <string>
18
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
19 20
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
C
chengduo 已提交
21

22 23 24
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
G
gongweibao 已提交
25 26 27 28 29 30 31 32 33

namespace paddle {
namespace operators {

class ElementwiseOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  using Tensor = framework::Tensor;
C
chengduo 已提交
34 35

  void InferShape(framework::InferShapeContext *ctx) const override {
Q
Qiao Longfei 已提交
36
    PADDLE_ENFORCE(ctx->HasInput("X"),
C
caoying03 已提交
37
                   "Input(X) of elementwise op should not be null.");
Q
Qiao Longfei 已提交
38
    PADDLE_ENFORCE(ctx->HasInput("Y"),
C
caoying03 已提交
39
                   "Input(Y) of elementwise op should not be null.");
Q
Qiao Longfei 已提交
40 41 42
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of elementwise op should not be null.");

C
chengduo 已提交
43 44 45 46 47 48 49 50 51 52 53
    PADDLE_ENFORCE(
        ctx->GetInputsVarType("X").front() ==
            framework::proto::VarType::LOD_TENSOR,
        "The input var's type should be LoDTensor, but the received is %s",
        ctx->Inputs("X").front(), ctx->GetInputsVarType("X").front());
    PADDLE_ENFORCE(
        ctx->GetInputsVarType("Y").front() ==
            framework::proto::VarType::LOD_TENSOR,
        "The input var's type should be LoDTensor, but the received is %s",
        ctx->Inputs("Y").front(), ctx->GetInputsVarType("Y").front());

Q
Qiao Longfei 已提交
54 55
    auto x_dim = ctx->GetInputDim("X");
    auto y_dim = ctx->GetInputDim("Y");
G
gongweibao 已提交
56
    PADDLE_ENFORCE_GE(x_dim.size(), y_dim.size(),
57
                      "Rank of first input must >= rank of second input.");
58 59

    ctx->ShareDim("X", /*->*/ "Out");
Q
Qiao Longfei 已提交
60
    ctx->ShareLoD("X", /*->*/ "Out");
G
gongweibao 已提交
61
  }
62 63

  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
64 65
      const framework::ExecutionContext &ctx) const override {
    auto input_data_type = framework::GetDataTypeOfVar(ctx.InputVar("X"));
66 67 68 69 70 71 72 73 74 75

#ifdef PADDLE_WITH_MKLDNN
    if (platform::CanMKLDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
G
gongweibao 已提交
76 77
};

78 79
class ElementwiseOpInferVarType : public framework::VarTypeInference {
 public:
C
chengduo 已提交
80 81
  void operator()(const framework::OpDesc &op_desc,
                  framework::BlockDesc *block) const override {
82 83
    auto x_name = op_desc.Input("X")[0];
    auto out_name = op_desc.Output("Out")[0];
C
chengduo 已提交
84 85
    auto &x = block->FindRecursiveOrCreateVar(x_name);
    auto &out = block->FindRecursiveOrCreateVar(out_name);
86
    out.SetType(x.GetType());
87
    out.SetDataType(x.GetDataType());
88 89 90
  }
};

G
gongweibao 已提交
91 92
class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
93
  void Make() final {
C
caoying03 已提交
94 95
    AddInput("X", "(Tensor), The first input tensor of elementwise op.");
    AddInput("Y", "(Tensor), The second input tensor of elementwise op.");
96
    AddOutput("Out", "The output of elementwise op.");
G
gongweibao 已提交
97
    AddAttr<int>("axis",
C
caoying03 已提交
98 99
                 "(int, default -1). The start dimension index "
                 "for broadcasting Y onto X.")
G
gongweibao 已提交
100 101
        .SetDefault(-1)
        .EqualGreaterThan(-1);
102 103
    AddAttr<bool>("use_mkldnn", "(bool, default false). Used by MKLDNN.")
        .SetDefault(false);
Y
Yu Yang 已提交
104
    AddComment(string::Sprintf(R"DOC(
T
Tao Luo 已提交
105
Elementwise %s Operator
K
kexinzhao 已提交
106 107 108

The equation is:

Y
Yu Yang 已提交
109
$$%s$$
K
kexinzhao 已提交
110

L
Luo Tao 已提交
111 112
- $X$: a tensor of any dimension. 
- $Y$: a tensor whose dimensions must be less than or equal to the dimensions of $X$.
K
kexinzhao 已提交
113 114

There are two cases for this operator:
115

L
Luo Tao 已提交
116 117
1. The shape of $Y$ is the same with $X$.
2. The shape of $Y$ is a continuous subsequence of $X$.
K
kexinzhao 已提交
118 119

For case 2:
120

L
Luo Tao 已提交
121 122 123 124 125
1. Broadcast $Y$ to match the shape of $X$, where $axis$ is the start dimension index 
   for broadcasting $Y$ onto $X$. 
2. If $axis$ is -1 (default), $axis = rank(X) - rank(Y)$.
3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of 
   subsequence, such as shape(Y) = (2, 1) => (2).
K
kexinzhao 已提交
126

L
Luo Tao 已提交
127
For example:
128

129
  .. code-block:: python
G
gongweibao 已提交
130

131 132
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
L
Luo Tao 已提交
133
    shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
134 135
    shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
136
    shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
137

L
Luo Tao 已提交
138 139
The inputs $X$ and $Y$ can carry the different LoD information. 
But the output only shares the LoD information with the input $X$.
K
kexinzhao 已提交
140

Y
Yu Yang 已提交
141 142
)DOC",
                               GetName(), GetEquation()));
G
gongweibao 已提交
143 144 145
  }

 protected:
Y
Yu Yang 已提交
146
  virtual std::string GetName() const = 0;
C
chengduo 已提交
147

Y
Yu Yang 已提交
148
  virtual std::string GetEquation() const = 0;
G
gongweibao 已提交
149 150 151 152 153 154 155
};

class ElementwiseOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

C
chengduo 已提交
156
  void InferShape(framework::InferShapeContext *ctx) const override {
Q
Qiao Longfei 已提交
157 158 159 160 161 162 163 164
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
G
gongweibao 已提交
165 166

    PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
167
                      "Rank of first input must >= rank of second input.");
G
gongweibao 已提交
168

Q
Qiao Longfei 已提交
169 170 171
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
172 173
      ctx->ShareDim("X", /*->*/ x_grad_name);
      ctx->ShareLoD("X", /*->*/ x_grad_name);
G
gongweibao 已提交
174
    }
Q
Qiao Longfei 已提交
175
    if (ctx->HasOutput(y_grad_name)) {
176 177
      ctx->ShareDim("Y", /*->*/ y_grad_name);
      ctx->ShareLoD("Y", /*->*/ y_grad_name);
G
gongweibao 已提交
178 179
    }
  }
180 181

  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
182
      const framework::ExecutionContext &ctx) const override {
183 184
    auto input_data_type = framework::ToDataType(
        ctx.Input<Tensor>(framework::GradVarName("Out"))->type());
185 186 187 188 189 190 191 192 193 194

#ifdef PADDLE_WITH_MKLDNN
    if (platform::CanMKLDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
G
gongweibao 已提交
195
};
196 197 198 199 200 201 202 203

// For Add, Sub op, the X, Out is not needed.
class ElementwiseOpExplicitGrad : public ElementwiseOpGrad {
 public:
  using operators::ElementwiseOpGrad::ElementwiseOpGrad;
  using operators::ElementwiseOpGrad::GetExpectedKernelType;
  using Tensor = framework::Tensor;

C
chengduo 已提交
204
  void InferShape(framework::InferShapeContext *ctx) const override {
205 206 207 208 209
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");

    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
210 211
      ctx->ShareDim(framework::GradVarName("Out"), /*->*/ x_grad_name);
      ctx->ShareLoD(framework::GradVarName("Out"), /*->*/ x_grad_name);
212 213 214 215
    }
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(y_grad_name)) {
      PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
216 217 218

      ctx->ShareDim("Y", /*->*/ y_grad_name);
      ctx->ShareLoD("Y", /*->*/ y_grad_name);
219 220 221 222
    }
  }
};

223 224 225
template <typename T>
class ElemwiseGradKernel : public framework::OpKernel<T> {
 public:
C
chengduo 已提交
226 227
  void Compute(const framework::ExecutionContext &context) const override {
    auto *dx =
228 229
        context.Output<framework::LoDTensor>(framework::GradVarName("X"));
    if (dx != nullptr) {
C
chengduo 已提交
230
      auto &dout =
231 232 233 234 235 236
          *context.Input<framework::LoDTensor>(framework::GradVarName("Out"));
      dx->set_lod(dout.lod());
    }
  }
};

G
gongweibao 已提交
237 238
}  // namespace operators
}  // namespace paddle
Y
Yu Yang 已提交
239

240 241 242 243 244 245 246 247 248 249 250
/*
*/

#define REGISTER_ELEMWISE_GRAD_MAKER(kernel_type, op_name)                   \
  class kernel_type##GradMaker                                               \
      : public paddle::framework::SingleGradOpDescMaker {                    \
   public:                                                                   \
    using ::paddle::framework::SingleGradOpDescMaker::SingleGradOpDescMaker; \
                                                                             \
   protected:                                                                \
    std::unique_ptr<paddle::framework::OpDesc> Apply() const override {      \
C
chengduo 已提交
251
      auto *op = new paddle::framework::OpDesc();                            \
252 253 254 255 256 257 258 259 260 261 262
      op->SetType(#kernel_type "_grad");                                     \
      op->SetInput("Y", Input("Y"));                                         \
      op->SetInput(::paddle::framework::GradVarName("Out"),                  \
                   OutputGrad("Out"));                                       \
      op->SetAttrMap(Attrs());                                               \
      op->SetOutput(::paddle::framework::GradVarName("X"), InputGrad("X"));  \
      op->SetOutput(::paddle::framework::GradVarName("Y"), InputGrad("Y"));  \
      return std::unique_ptr<::paddle::framework::OpDesc>(op);               \
    }                                                                        \
  }

Y
Yu Yang 已提交
263 264 265 266 267 268 269 270 271
#define REGISTER_ELEMWISE_OP(op_type, op_name, equation)                \
  class __ElemwiseOp##op_type##Maker__                                  \
      : public ::paddle::operators::ElementwiseOpMaker {                \
   protected:                                                           \
    virtual std::string GetName() const { return op_name; }             \
    virtual std::string GetEquation() const { return equation; }        \
  };                                                                    \
  REGISTER_OPERATOR(op_type, ::paddle::operators::ElementwiseOp,        \
                    __ElemwiseOp##op_type##Maker__,                     \
272
                    ::paddle::operators::ElementwiseOpInferVarType,     \
Y
Yu Yang 已提交
273 274
                    ::paddle::framework::DefaultGradOpDescMaker<true>); \
  REGISTER_OPERATOR(op_type##_grad, ::paddle::operators::ElementwiseOpGrad)
275 276 277 278 279 280 281 282 283 284 285 286 287 288

#define REGISTER_ELEMWISE_EXPLICIT_OP(op_type, op_name, equation, ...) \
  class __ElemwiseOp##op_type##Maker__                                 \
      : public ::paddle::operators::ElementwiseOpMaker {               \
   protected:                                                          \
    virtual std::string GetName() const { return op_name; }            \
    virtual std::string GetEquation() const { return equation; }       \
  };                                                                   \
  REGISTER_OPERATOR(op_type, ::paddle::operators::ElementwiseOp,       \
                    __ElemwiseOp##op_type##Maker__,                    \
                    ::paddle::operators::ElementwiseOpInferVarType,    \
                    op_type##GradMaker);                               \
  REGISTER_OPERATOR(op_type##_grad,                                    \
                    ::paddle::operators::ElementwiseOpExplicitGrad)