elementwise_op.h 5.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14 15

#pragma once
Y
Yi Wang 已提交
16 17
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
G
gongweibao 已提交
18 19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

class ElementwiseOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  using Tensor = framework::Tensor;
27
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
28
    PADDLE_ENFORCE(ctx->HasInput("X"),
C
caoying03 已提交
29
                   "Input(X) of elementwise op should not be null.");
Q
Qiao Longfei 已提交
30
    PADDLE_ENFORCE(ctx->HasInput("Y"),
C
caoying03 已提交
31
                   "Input(Y) of elementwise op should not be null.");
Q
Qiao Longfei 已提交
32 33 34 35 36
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of elementwise op should not be null.");

    auto x_dim = ctx->GetInputDim("X");
    auto y_dim = ctx->GetInputDim("Y");
G
gongweibao 已提交
37
    PADDLE_ENFORCE_GE(x_dim.size(), y_dim.size(),
38
                      "Rank of first input must >= rank of second input.");
Q
Qiao Longfei 已提交
39 40
    ctx->SetOutputDim("Out", x_dim);
    ctx->ShareLoD("X", /*->*/ "Out");
G
gongweibao 已提交
41 42 43
  }
};

C
chengduoZH 已提交
44 45 46 47 48 49 50 51 52 53
class ElementwiseOpInferVarType : public framework::VarTypeInference {
 public:
  void operator()(const framework::OpDesc& op_desc,
                  framework::BlockDesc* block) const override {
    auto x_var = op_desc.Input("X")[0];
    auto out_var = op_desc.Output("Out")[0];
    block->Var(out_var)->SetType(block->Var(x_var)->GetType());
  }
};

G
gongweibao 已提交
54 55
class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
56
  ElementwiseOpMaker(OpProto* proto, OpAttrChecker* op_checker)
G
gongweibao 已提交
57
      : OpProtoAndCheckerMaker(proto, op_checker) {
C
caoying03 已提交
58 59 60
    AddInput("X", "(Tensor), The first input tensor of elementwise op.");
    AddInput("Y", "(Tensor), The second input tensor of elementwise op.");
    AddOutput("Out", "The output of elementwise op.");
G
gongweibao 已提交
61
    AddAttr<int>("axis",
C
caoying03 已提交
62 63
                 "(int, default -1). The start dimension index "
                 "for broadcasting Y onto X.")
G
gongweibao 已提交
64 65 66
        .SetDefault(-1)
        .EqualGreaterThan(-1);
    comment_ = R"DOC(
K
kexinzhao 已提交
67 68 69 70
Limited Elementwise {name} Operator.

The equation is:

C
caoying03 已提交
71
$${equation}$$
K
kexinzhao 已提交
72

C
caoying03 已提交
73 74
$X$ is a tensor of any dimension and the dimensions of tensor $Y$ must be
smaller than or equal to the dimensions of $X$.
K
kexinzhao 已提交
75 76

There are two cases for this operator:
C
caoying03 已提交
77
1. The shape of $Y$ is same with $X$;
78 79 80
2. The shape of $Y$ is a congiguous subsequencet of $X$. The trailing dimensions
   of size 1 for $Y$ will be ignored for the consideration of subsequence.

K
kexinzhao 已提交
81 82

For case 2:
83

C
caoying03 已提交
84 85
$Y$ will be broadcasted to match the shape of $X$ and axis should be
set to index of the start dimension to broadcast $Y$ onto $X$.
K
kexinzhao 已提交
86

87 88
If axis is -1, it is treated as axis=rank(X)-rank(Y).

89 90
For example
  .. code-block:: python
G
gongweibao 已提交
91

92 93 94 95 96
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
    shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
    shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
97
    shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
98

C
caoying03 已提交
99 100
Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details)
information. However, the output only shares the LoD information with input $X$.
K
kexinzhao 已提交
101

G
gongweibao 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
)DOC";
    AddComment(comment_);
  }

 protected:
  std::string comment_;

  void Replace(std::string& src, std::string from, std::string to) {
    std::size_t len_from = std::strlen(from.c_str());
    std::size_t len_to = std::strlen(to.c_str());
    for (std::size_t pos = src.find(from); pos != std::string::npos;
         pos = src.find(from, pos + len_to)) {
      src.replace(pos, len_from, to);
    }
  }

  void SetComment(std::string name, std::string equation) {
    Replace(comment_, "{name}", name);
    Replace(comment_, "{equation}", equation);
  }
};

class ElementwiseOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

129
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
130 131 132 133 134 135 136 137
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
G
gongweibao 已提交
138 139

    PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
140
                      "Rank of first input must >= rank of second input.");
G
gongweibao 已提交
141

Q
Qiao Longfei 已提交
142 143 144 145
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
G
gongweibao 已提交
146
    }
Q
Qiao Longfei 已提交
147 148
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, y_dims);
G
gongweibao 已提交
149 150 151 152 153
    }
  }
};
}  // namespace operators
}  // namespace paddle