elementwise_op.h 7.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14 15

#pragma once
16
#include <string>
17
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
18 19
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
20 21 22
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
G
gongweibao 已提交
23 24 25 26 27 28 29 30 31

namespace paddle {
namespace operators {

class ElementwiseOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  using Tensor = framework::Tensor;
32
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
33
    PADDLE_ENFORCE(ctx->HasInput("X"),
C
caoying03 已提交
34
                   "Input(X) of elementwise op should not be null.");
Q
Qiao Longfei 已提交
35
    PADDLE_ENFORCE(ctx->HasInput("Y"),
C
caoying03 已提交
36
                   "Input(Y) of elementwise op should not be null.");
Q
Qiao Longfei 已提交
37 38 39 40 41
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of elementwise op should not be null.");

    auto x_dim = ctx->GetInputDim("X");
    auto y_dim = ctx->GetInputDim("Y");
G
gongweibao 已提交
42
    PADDLE_ENFORCE_GE(x_dim.size(), y_dim.size(),
43
                      "Rank of first input must >= rank of second input.");
Q
Qiao Longfei 已提交
44 45
    ctx->SetOutputDim("Out", x_dim);
    ctx->ShareLoD("X", /*->*/ "Out");
G
gongweibao 已提交
46
  }
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto input_data_type =
        framework::ToDataType(ctx.Input<Tensor>("X")->type());

#ifdef PADDLE_WITH_MKLDNN
    if (platform::CanMKLDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
G
gongweibao 已提交
62 63
};

64 65 66 67 68 69 70 71 72 73 74 75
class ElementwiseOpInferVarType : public framework::VarTypeInference {
 public:
  void operator()(const framework::OpDesc& op_desc,
                  framework::BlockDesc* block) const override {
    auto x_name = op_desc.Input("X")[0];
    auto out_name = op_desc.Output("Out")[0];
    auto& x = block->FindRecursiveOrCreateVar(x_name);
    auto& out = block->FindRecursiveOrCreateVar(out_name);
    out.SetType(x.GetType());
  }
};

G
gongweibao 已提交
76 77
class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
78
  void Make() final {
C
caoying03 已提交
79 80
    AddInput("X", "(Tensor), The first input tensor of elementwise op.");
    AddInput("Y", "(Tensor), The second input tensor of elementwise op.");
81
    AddOutput("Out", "The output of elementwise op.").Reuse("X");
G
gongweibao 已提交
82
    AddAttr<int>("axis",
C
caoying03 已提交
83 84
                 "(int, default -1). The start dimension index "
                 "for broadcasting Y onto X.")
G
gongweibao 已提交
85 86
        .SetDefault(-1)
        .EqualGreaterThan(-1);
87 88
    AddAttr<bool>("use_mkldnn", "(bool, default false). Used by MKLDNN.")
        .SetDefault(false);
Y
Yu Yang 已提交
89
    AddComment(string::Sprintf(R"DOC(
L
Luo Tao 已提交
90
Limited Elementwise %s Operator
K
kexinzhao 已提交
91 92 93

The equation is:

Y
Yu Yang 已提交
94
$$%s$$
K
kexinzhao 已提交
95

L
Luo Tao 已提交
96 97
- $X$: a tensor of any dimension. 
- $Y$: a tensor whose dimensions must be less than or equal to the dimensions of $X$.
K
kexinzhao 已提交
98 99

There are two cases for this operator:
100

L
Luo Tao 已提交
101 102
1. The shape of $Y$ is the same with $X$.
2. The shape of $Y$ is a continuous subsequence of $X$.
K
kexinzhao 已提交
103 104

For case 2:
105

L
Luo Tao 已提交
106 107 108 109 110
1. Broadcast $Y$ to match the shape of $X$, where $axis$ is the start dimension index 
   for broadcasting $Y$ onto $X$. 
2. If $axis$ is -1 (default), $axis = rank(X) - rank(Y)$.
3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of 
   subsequence, such as shape(Y) = (2, 1) => (2).
K
kexinzhao 已提交
111

L
Luo Tao 已提交
112
For example:
113

114
  .. code-block:: python
G
gongweibao 已提交
115

116 117
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
L
Luo Tao 已提交
118
    shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
119 120
    shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
121
    shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
122

L
Luo Tao 已提交
123 124
The inputs $X$ and $Y$ can carry the different LoD information. 
But the output only shares the LoD information with the input $X$.
K
kexinzhao 已提交
125

Y
Yu Yang 已提交
126 127
)DOC",
                               GetName(), GetEquation()));
G
gongweibao 已提交
128 129 130
  }

 protected:
Y
Yu Yang 已提交
131 132
  virtual std::string GetName() const = 0;
  virtual std::string GetEquation() const = 0;
G
gongweibao 已提交
133 134 135 136 137 138 139
};

class ElementwiseOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

140
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
141 142 143 144 145 146 147 148
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
G
gongweibao 已提交
149 150

    PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
151
                      "Rank of first input must >= rank of second input.");
G
gongweibao 已提交
152

Q
Qiao Longfei 已提交
153 154 155 156
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
G
gongweibao 已提交
157
    }
Q
Qiao Longfei 已提交
158 159
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, y_dims);
G
gongweibao 已提交
160 161
    }
  }
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto input_data_type =
        framework::ToDataType(ctx.Input<Tensor>("X")->type());

#ifdef PADDLE_WITH_MKLDNN
    if (platform::CanMKLDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
G
gongweibao 已提交
177 178 179
};
}  // namespace operators
}  // namespace paddle
Y
Yu Yang 已提交
180 181 182 183 184 185 186 187 188 189

#define REGISTER_ELEMWISE_OP(op_type, op_name, equation)                \
  class __ElemwiseOp##op_type##Maker__                                  \
      : public ::paddle::operators::ElementwiseOpMaker {                \
   protected:                                                           \
    virtual std::string GetName() const { return op_name; }             \
    virtual std::string GetEquation() const { return equation; }        \
  };                                                                    \
  REGISTER_OPERATOR(op_type, ::paddle::operators::ElementwiseOp,        \
                    __ElemwiseOp##op_type##Maker__,                     \
190
                    ::paddle::operators::ElementwiseOpInferVarType,     \
Y
Yu Yang 已提交
191 192
                    ::paddle::framework::DefaultGradOpDescMaker<true>); \
  REGISTER_OPERATOR(op_type##_grad, ::paddle::operators::ElementwiseOpGrad)