op_function_generator.cc 25.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <algorithm>
16 17 18
#include <fstream>
#include <iostream>
#include <string>
19 20 21
#ifndef _WIN32
#include <unistd.h>
#endif
22 23 24 25 26 27 28

#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/pybind/pybind.h"
#include "paddle/fluid/string/string_helper.h"
29
#ifdef PADDLE_WITH_ASCEND_CL
30 31
#include "paddle/fluid/framework/fleet/ascend_wrapper.h"
#endif
32

L
Leo Chen 已提交
33 34 35 36 37 38 39 40
// NOTE(zhiqiu): Commonly, the inputs in auto-generated OP function are
// determined by the OP`s proto automatically, i.e., all the inputs registered
// in OpMaker.
// However, some OPs have dispensable inputs, which means the input can
// be none for some conditions. It is discovered that most dispensable inputs
// is not used in imperative mode, so we drop those inputs when generating OP
// functions. While, for very few OPs, the dispensable inputs are used, we
// need to manually specify them in this map.
41 42
std::map<std::string, std::set<std::string>> op_ins_map = {
    {"layer_norm", {"X", "Scale", "Bias"}},
L
Li Min 已提交
43 44 45
    {"fused_attention",
     {"X", "LnScale", "LnBias", "QKVW", "QKVBias", "SrcMask", "OutLinearW",
      "OutLinearBias", "Ln2Scale", "Ln2Bias"}},
C
ceci3 已提交
46
    {"instance_norm", {"X", "Scale", "Bias"}},
47 48 49
    {"gru_unit", {"Input", "HiddenPrev", "Weight", "Bias"}},
    {"label_smooth", {"X", "PriorDist"}},
    {"assign", {"X"}},
50 51 52
    {"reshape2", {"X", "Shape"}},
    {"expand", {"X", "ExpandTimes"}},
    {"slice", {"Input", "StartsTensor", "EndsTensor"}},
L
Leo Chen 已提交
53 54
    {"fake_quantize_dequantize_moving_average_abs_max",
     {"X", "InScale", "InAccum", "InState"}},
55
    {"nll_loss", {"X", "Label", "Weight"}},
56
    {"bilinear_tensor_product", {"X", "Y", "Weight", "Bias"}},
57
    {"gather", {"X", "Index", "Axis"}},
58 59
    {"roi_pool", {"X", "ROIs", "RoisNum"}},
    {"roi_align", {"X", "ROIs", "RoisNum"}},
60
    {"psroi_pool", {"X", "ROIs", "RoisNum"}},
61 62 63
    {"collect_fpn_proposals",
     {"MultiLevelRois", "MultiLevelScores", "MultiLevelRoIsNum"}},
    {"distribute_fpn_proposals", {"FpnRois", "RoisNum"}},
64
    {"warpctc", {"Logits", "Label", "LogitsLength", "LabelLength"}},
65 66
    {"hierarchical_sigmoid",
     {"X", "W", "Label", "PathTable", "PathCode", "Bias"}},
67
    {"moving_average_abs_max_scale", {"X", "InAccum", "InState"}},
68
    {"multiclass_nms3", {"BBoxes", "Scores", "RoisNum"}},
69
    {"box_coder", {"PriorBox", "PriorBoxVar", "TargetBox"}},
70
    {"momentum", {"Param", "Grad", "Velocity", "LearningRate", "MasterParam"}},
71
    {"sparse_momentum", {"Param", "Grad", "Velocity", "Index", "LearningRate"}},
72
    {"rnn", {"Input", "PreState", "WeightList", "SequenceLength"}},
73
    {"run_program", {"X", "Params"}},
S
Steffy-zxf 已提交
74
    {"faster_tokenizer", {"Text", "Vocab", "TextPair"}},
75 76 77 78
    {"matrix_rank", {"X", "TolTensor"}},
    {"adam",
     {"Param", "Grad", "LearningRate", "Moment1", "Moment2", "Beta1Pow",
      "Beta2Pow", "MasterParam"}},
79 80 81
    {"adamw",
     {"Param", "Grad", "LearningRate", "Moment1", "Moment2", "Beta1Pow",
      "Beta2Pow", "MasterParam"}},
82
};
L
Leo Chen 已提交
83 84 85 86 87 88 89 90 91 92 93 94

// NOTE(zhiqiu): Like op_ins_map.
// Commonly, the outputs in auto-generated OP function are determined by the
// OP`s proto automatically, i.e., all the outputs registered in OpMaker.
// However, some OPs have dispensable outputs, which means the output can
// be none for some conditions. It is discovered that most dispensable outputs
// is not used in imperative mode, so we drop those outputs when generating OP
// functions. While, for very few OPs, the dispensable outputs are used, we
// need to manually specify them in this map.
std::map<std::string, std::set<std::string>> op_outs_map = {
    {"fake_quantize_dequantize_moving_average_abs_max",
     {"Out", "OutScale", "OutAccum", "OutState"}},
95 96 97
    {"batch_norm",
     {"Y", "MeanOut", "VarianceOut", "SavedMean", "SavedVariance",
      "ReserveSpace"}},
L
Li Min 已提交
98 99 100 101 102
    {"fused_attention",
     {"LnMean", "LnVariance", "LnOut", "QKVOut", "QKVBiasOut", "TransposeOut2",
      "QKOut", "QKTVOut", "SoftmaxOut", "AttnDropoutMaskOut", "AttnDropoutOut",
      "SrcMaskOut", "FMHAOut", "OutLinearOut", "DropoutMaskOut", "Ln2Mean",
      "Ln2Variance", "BiasDropoutResidualOut", "Y"}},
C
ceci3 已提交
103 104 105
    {"sync_batch_norm",
     {"Y", "MeanOut", "VarianceOut", "SavedMean", "SavedVariance",
      "ReserveSpace"}},
Z
Zhang Ting 已提交
106
    {"unique", {"Out", "Index", "Indices", "Counts"}},
D
duanboqiang 已提交
107
    {"unique_consecutive", {"Out", "Index", "Counts"}},
108 109
    {"generate_proposals", {"RpnRois", "RpnRoiProbs", "RpnRoisNum"}},
    {"collect_fpn_proposals", {"FpnRois", "RoisNum"}},
110
    {"matrix_nms", {"Out", "Index", "RoisNum"}},
111 112
    {"distribute_fpn_proposals",
     {"MultiFpnRois", "RestoreIndex", "MultiLevelRoIsNum"}},
113 114
    {"moving_average_abs_max_scale",
     {"Out", "OutScale", "OutAccum", "OutState"}},
115
    {"multiclass_nms3", {"Out", "NmsRoisNum"}},
116
    {"generate_proposals_v2", {"RpnRois", "RpnRoiProbs", "RpnRoisNum"}},
117
    {"momentum", {"ParamOut", "VelocityOut", "MasterParamOut"}},
118
    {"sparse_momentum", {"ParamOut", "VelocityOut"}},
119
    {"rnn", {"DropoutState", "Reserve", "Out", "State"}},
120 121
    {"lamb",
     {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut"}},
122
    {"run_program", {"DOut"}},
123 124 125
    {"adam",
     {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut",
      "MasterParamOut"}},
126 127 128
    {"adamw",
     {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut",
      "MasterParamOut"}},
L
Leo Chen 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142
};

// NOTE(zhiqiu): Commonly, the outputs in auto-generated OP function are
// generated in C++ automatically.
// However, some OPs need to pass the outputs from Python instead of generating
// them in C++. There are mainly 2 reasons for that,
// (1) Optimizer OPs need to update the input param in-place, like sgd.
//     So they need to pass the output which is same as input param.
// (2) Very few python APIs has out in their arguments, like fill_constant.
//     So they need to pass the python output to C++.
//     Actually, this is not a good design, since it may break the SSA graph,
//     especially in declarative mode.
// For those OPs, we need to manually specify the outs need to pass in this map.
std::map<std::string, std::set<std::string>> op_passing_outs_map = {
143 144
    {"sgd", {"ParamOut"}},
    {"adam",
145 146
     {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut",
      "MasterParamOut"}},
Z
zhaoyingli 已提交
147
    {"adamw",
148 149
     {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut",
      "MasterParamOut"}},
150 151 152
    {"average_accumulates",
     {"out_sum_1", "out_sum_2", "out_sum_3", "out_num_accumulates",
      "out_old_num_accumulates", "out_num_updates"}},
153
    {"momentum", {"ParamOut", "VelocityOut", "MasterParamOut"}},
154
    {"sparse_momentum", {"ParamOut", "VelocityOut"}},
155
    {"batch_norm", {"MeanOut", "VarianceOut"}},
C
ceci3 已提交
156
    {"sync_batch_norm", {"MeanOut", "VarianceOut"}},
157
    {"accuracy", {"Correct", "Total"}},
158
    {"fill_constant", {"Out"}},
L
lilong12 已提交
159
    {"recv_v2", {"Out"}},
160
    {"partial_recv", {"Out"}},
L
Leo Chen 已提交
161
    {"matmul", {"Out"}},
162
    {"c_broadcast", {"Out"}},
K
kuizhiqing 已提交
163 164
    {"c_sync_calc_stream", {"Out"}},
    {"c_sync_comm_stream", {"Out"}},
165 166 167 168 169 170 171
    {"c_reduce_sum", {"Out"}},
    {"c_reduce_max", {"Out"}},
    {"c_reduce_min", {"Out"}},
    {"c_reduce_prod", {"Out"}},
    {"c_reduce", {"Out"}},
    {"c_scatter", {"Out"}},
    {"barrier", {"Out"}},
L
Leo Chen 已提交
172
    {"fake_quantize_dequantize_moving_average_abs_max",
173
     {"Out", "OutScale", "OutAccum", "OutState"}},
174
    {"fake_quantize_dequantize_abs_max", {"Out", "OutScale"}},
H
huangxu96 已提交
175
    {"fake_channel_wise_quantize_dequantize_abs_max", {"Out", "OutScale"}},
176 177 178
    {"check_finite_and_unscale", {"Out", "FoundInfinite"}},
    {"update_loss_scaling",
     {"Out", "LossScaling", "OutGoodSteps", "OutBadSteps"}},
179 180
    {"moving_average_abs_max_scale",
     {"Out", "OutScale", "OutAccum", "OutState"}},
181 182
    {"lamb",
     {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut"}},
183
    {"rnn", {"DropoutState"}},
184
    {"run_program", {"Out", "DOut", "OutScope"}},
185 186
    {"clear_float_status", {"FloatStatusOut"}},
    {"get_float_status", {"FloatStatusOut"}},
L
Leo Chen 已提交
187
};
188

189 190 191
// NOTE(pangyoki): Tensor View Strategy.
// In this case, a new output varbase will be created, and this varbase will
// reuse the input varbase's allocation.
192 193 194
// It's a map. The key of outer map is the view op name, the value is
// a pair which implies the mapping relationship between the input and
// output varbase.
195 196 197 198 199 200 201
std::map<std::string, std::pair<std::string, std::string>> view_op_map = {
    {"squeeze2", {"X", "Out"}},  // "X" -> "Out"
    {"unsqueeze2", {"X", "Out"}},
    {"reshape2", {"X", "Out"}},
    {"flatten_contiguous_range", {"X", "Out"}},
};

202 203 204 205 206 207 208 209
// NOTE(pangyoki): Inplace OP with duplicable input.
// The set includes inplace ops that have duplicable input.
// The first Varbase in input needs to be specified for the inplace strategy
// and share Varbase with the output.
std::set<std::string> inplace_op_duplicable_ins_set = {
    "sum",
};

210
// clang-format off
211
const char* OUT_INITIALIZER_TEMPLATE =
212
    R"({"%s", {std::shared_ptr<imperative::VarBase>(new imperative::VarBase("auto_"+std::to_string(VarBaseUniqueNameID++)+"_"))}})";
213 214 215 216
const char* OUT_DUPLICABLE_INITIALIZER_TEMPLATE = R"({"%s", ConstructDuplicableOutput(%s)})";

const char* INPUT_INITIALIZER_TEMPLATE = R"({"%s", {%s}})";
const char* INPUT_LIST_INITIALIZER_TEMPLATE = R"({"%s", %s})";
L
Leo Chen 已提交
217

218 219 220 221
const char* INPUT_INITIALIZER_TEMPLATE_WITH_NULL = R"(
    if (%s != nullptr) {
      ins["%s"] = {%s};
    }
222
)";
L
Leo Chen 已提交
223

224
const char* INPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST = R"(
L
Leo Chen 已提交
225
    if (%s.size() != 0) {
226 227
      ins["%s"] = %s;
    }
L
Leo Chen 已提交
228 229
)";

230 231
const char* OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL = R"(
    outs["%s"] = {%s};
232 233
)";

234 235
const char* OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST = R"(
    outs["%s"] = %s;
L
Leo Chen 已提交
236
)";
237 238 239 240
// if inputs is list, no need {}
const char* ARG_OUT_NUM = R"(%sNum)";
const char* ARG_OUT_NUM_TYPE = R"(size_t )";

241 242 243 244 245 246 247
const char* IN_VAR_TYPE = R"(py::handle)";
const char* IN_VAR_LIST_TYPE = R"(py::handle)";

const char* OUT_VAR_TYPE = R"(std::shared_ptr<imperative::VarBase>)";
const char* OUT_VAR_LIST_TYPE = R"(std::vector<std::shared_ptr<imperative::VarBase>>)";

const char* CAST_VAR_TEMPLATE = R"(
248
    auto %s = GetVarBaseFromArgs("%s", "%s", args, %d, %s);)";
249 250

const char* CAST_VAR_LIST_TEMPLATE = R"(
251
    auto %s = GetVarBaseListFromArgs("%s", "%s", args, %d, %s);)";
252

253 254
const char* CAST_SIZE_T_TEMPLATE = R"(
    auto %s = GetUnsignedLongFromArgs("%s", "%s", args, %d, %s);)";
255

256 257 258 259 260 261 262 263 264
const char* ARG_TEMPLATE = R"(const %s& %s)";

const char* RETURN_TUPLE_TYPE = R"(std::tuple<%s>)";
const char* RETURN_TUPLE_TEMPLATE = R"(std::make_tuple(%s))";
const char* RETURN_LIST_TEMPLATE = R"(outs["%s"])";
const char* RETURN_TEMPLATE = R"(outs["%s"][0])";

const char* FUNCTION_ARGS = R"(%s, const py::args& args)";
const char* FUNCTION_ARGS_NO_INPUT = R"(const py::args& args)";
265

266
const char* HANDLE_VIEW_BETWEEN_INPUT_AND_OUTPUT = R"(
267 268 269 270
    if (ins.count("%s") && outs.count("%s")) {
      HandleViewBetweenInputAndOutput(ins["%s"][0], outs["%s"][0]);
    })";

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
const char* INPLACE_DUPLICABLE_INPUT = R"([0])";

const char* INPLACE_LEAF_ERROR_MESSAGE = R"(Leaf Var (%s) that doesn't stop gradient can't use inplace strategy.)";

const char* INPLACE_STRATEGY_TEMPLATE =
R"(
    PADDLE_ENFORCE_EQ(
      %s->IsLeaf() && !%s->OverridedStopGradient(), false,
      platform::errors::InvalidArgument("%s", %s->Name()));
    %s->BumpInplaceVersion();
    VLOG(3) << "Var(" << %s->Name() << ") uses Inplace Strategy.";
)";

const char* INPLACE_MAPPING_TEMPLATE = R"({"%s", "%s"})";

286
const char* OP_FUNCTION_TEMPLATE =
287
R"(
288
static PyObject * %s(PyObject *self, PyObject *args, PyObject *kwargs)
289
{
290 291
  PyThreadState *tstate = nullptr;
  try
292
  {
293 294 295 296
    %s
    framework::AttributeMap attrs;
    ConstructAttrMapFromPyArgs("%s", args, %d, PyTuple_GET_SIZE(args) , attrs);
    tstate = PyEval_SaveThread();
297
    %s
298 299 300
    imperative::NameVarBaseMap outs = %s;
    imperative::NameVarBaseMap ins = %s;
    %s
301
    imperative::GetCurrentTracer()->TraceOp("%s", ins, outs, attrs, {%s});
302 303
    PyEval_RestoreThread(tstate);
    tstate = nullptr;
304
    %s
305
  }
306 307 308 309 310 311 312
  catch(...) {
    if (tstate) {
      PyEval_RestoreThread(tstate);
    }
    ThrowExceptionToPython(std::current_exception());
    return nullptr;
  }
313
})";
314

315
const char* PYBIND_ITEM_TEMPLATE = R"(  {"%s", (PyCFunction)(void(*)(void))%s, METH_VARARGS | METH_KEYWORDS, "C++ interface function for %s in dygraph."},)";
316

317
// clang-format on
L
Leo Chen 已提交
318 319
static inline bool FindInsMap(const std::string& op_type,
                              const std::string& in_name) {
320 321 322
  return op_ins_map[op_type].count(in_name);
}

L
Leo Chen 已提交
323 324 325 326 327 328 329 330
static inline bool FindOutsMap(const std::string& op_type,
                               const std::string& out_name) {
  return op_outs_map[op_type].count(out_name);
}

static inline bool FindPassingOutsMap(const std::string& op_type,
                                      const std::string& out_name) {
  return op_passing_outs_map[op_type].count(out_name);
331
}
332

333 334 335 336
static inline bool FindDuplicableInputInplaceOpSet(const std::string& op_type) {
  return inplace_op_duplicable_ins_set.count(op_type);
}

337 338 339 340
static inline bool FindViewOpMap(const std::string& op_type) {
  return view_op_map.count(op_type);
}

341 342 343 344
static inline std::string TempName(const std::string& name) {
  return name + '_';
}

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
std::string GenerateOpFunctionsBody(
    const paddle::framework::proto::OpProto* op_proto, std::string func_name,
    bool use_inplace_strategy = false,
    std::map<std::string, std::string> inplace_map = {}) {
  auto& op_type = op_proto->type();
  std::string input_args = "";
  std::string ins_initializer = "{";
  std::string ins_initializer_with_null = "";
  std::string py_arg = "";
  int arg_idx = 0;
  int input_args_num = 0;
  std::string ins_cast_str = "";
  std::string view_strategy_str = "";
  std::string inplace_strategy_str = "";
  for (auto& input : op_proto->inputs()) {
    auto& in_name = input.name();
    // skip those dispensable inputs, like ResidualData in conv2d
    if (input.dispensable() && !FindInsMap(op_type, in_name)) {
      continue;
    }
    const auto in_type = input.duplicable() ? IN_VAR_LIST_TYPE : IN_VAR_TYPE;
    auto input_arg =
        paddle::string::Sprintf(ARG_TEMPLATE, in_type, TempName(in_name));
    input_args += input_arg;
    input_args += ",";
    input_args_num++;
    const auto in_cast_type =
        input.duplicable() ? CAST_VAR_LIST_TEMPLATE : CAST_VAR_TEMPLATE;
    auto dispensable = input.dispensable() ? "true" : "false";
374 375
    ins_cast_str += paddle::string::Sprintf(in_cast_type, in_name, op_type,
                                            in_name, arg_idx++, dispensable);
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395

    if (input.dispensable()) {
      const auto in_template = input.duplicable()
                                   ? INPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST
                                   : INPUT_INITIALIZER_TEMPLATE_WITH_NULL;
      ins_initializer_with_null +=
          paddle::string::Sprintf(in_template, in_name, in_name, in_name);
    } else {
      const auto in_template = input.duplicable()
                                   ? INPUT_LIST_INITIALIZER_TEMPLATE
                                   : INPUT_INITIALIZER_TEMPLATE;
      ins_initializer += paddle::string::Sprintf(in_template, in_name, in_name);
      ins_initializer += ",";
    }
  }
  if (ins_initializer.back() == ',') {
    ins_initializer.pop_back();
  }
  ins_initializer += "}";

396
  if (!input_args.empty() && input_args.back() == ',') {
397 398 399 400 401 402 403 404 405 406 407 408
    input_args.pop_back();
  }

  // Generate outs initializer
  std::string outs_initializer = "{";
  std::string outs_initializer_with_null = "";
  std::string inplace_mapping_str = "";
  std::string return_str = "";

  int outs_num = 0;
  for (auto& output : op_proto->outputs()) {
    auto& out_name = output.name();
409

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
    // skip those dispensable oututs
    if (output.dispensable() && !FindOutsMap(op_type, out_name)) {
      continue;
    }
    const auto out_type =
        output.duplicable() ? OUT_VAR_LIST_TYPE : OUT_VAR_TYPE;
    const auto return_template =
        output.duplicable() ? RETURN_LIST_TEMPLATE : RETURN_TEMPLATE;

    if (FindPassingOutsMap(op_type, out_name)) {
      if (input_args != "") {
        input_args += ",";
      }
      input_args += out_type;
      input_args += out_name;
      input_args_num++;

      if (output.dispensable()) {
        const auto out_template =
            output.duplicable() ? OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST
                                : OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL;
        outs_initializer_with_null +=
            paddle::string::Sprintf(out_template, out_name, out_name);
      } else {
        const auto out_template = output.duplicable()
                                      ? INPUT_LIST_INITIALIZER_TEMPLATE
                                      : INPUT_INITIALIZER_TEMPLATE;
        outs_initializer +=
            paddle::string::Sprintf(out_template, out_name, out_name);
        outs_initializer += ",";
      }
441 442 443 444 445 446

      const auto in_cast_type =
          output.duplicable() ? CAST_VAR_LIST_TEMPLATE : CAST_VAR_TEMPLATE;
      auto dispensable = output.dispensable() ? "true" : "false";
      ins_cast_str += paddle::string::Sprintf(in_cast_type, out_name, op_type,
                                              out_name, arg_idx++, dispensable);
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
    } else if (use_inplace_strategy && inplace_map.count(out_name)) {
      PADDLE_ENFORCE_NE(
          inplace_map[out_name], "",
          paddle::platform::errors::InvalidArgument(
              "Inplace op %s has no input corresponding to output %s.", op_type,
              out_name));

      // TODO(pangyoki): Inplace op don't have duplicable output in temporary,
      // so don't support duplicable output now.
      const auto out_template = INPUT_INITIALIZER_TEMPLATE;

      auto inplace_input_name = inplace_map[out_name];
      inplace_mapping_str += paddle::string::Sprintf(
          INPLACE_MAPPING_TEMPLATE, inplace_input_name, out_name);
      inplace_mapping_str += ",";

      // If inplace op has duplicable input, the first Varbase in input will
      // share Varbase with output.
      if (FindDuplicableInputInplaceOpSet(op_type)) {
        inplace_input_name += INPLACE_DUPLICABLE_INPUT;
      }

      // Leaf Var that doesn't stop gradient can't use inplace strategy.
      // Increase inplace_version.
      inplace_strategy_str += paddle::string::Sprintf(
          INPLACE_STRATEGY_TEMPLATE, inplace_input_name, inplace_input_name,
          INPLACE_LEAF_ERROR_MESSAGE, inplace_input_name, inplace_input_name,
          inplace_input_name);
      outs_initializer +=
          paddle::string::Sprintf(out_template, out_name, inplace_input_name);
      outs_initializer += ",";
    } else {
      // There are few Operators that have duplicable output, like `Out` in
      // split op. We need to specify the number of variables for the
      // duplicable output, as the argument OutNum;
      if (output.duplicable()) {
        if (input_args != "") {
          input_args += ",";
        }
        auto out_num_str = paddle::string::Sprintf(ARG_OUT_NUM, out_name);
        input_args += ARG_OUT_NUM_TYPE;
        input_args += out_num_str;
        input_args_num++;
        outs_initializer += paddle::string::Sprintf(
            OUT_DUPLICABLE_INITIALIZER_TEMPLATE, out_name, out_num_str);
492 493 494 495 496

        auto dispensable = output.dispensable() ? "true" : "false";
        ins_cast_str +=
            paddle::string::Sprintf(CAST_SIZE_T_TEMPLATE, out_num_str, op_type,
                                    out_num_str, arg_idx++, dispensable);
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
      } else {
        outs_initializer +=
            paddle::string::Sprintf(OUT_INITIALIZER_TEMPLATE, out_name);
      }
      outs_initializer += ",";
    }

    return_str += paddle::string::Sprintf(return_template, out_name);
    return_str += ",";
    outs_num += 1;
  }
  if (outs_initializer.back() == ',') {
    outs_initializer.pop_back();
    return_str.pop_back();
  }
  outs_initializer += "}";
513
  if (!inplace_mapping_str.empty() && inplace_mapping_str.back() == ',') {
514 515 516 517 518 519 520 521 522 523
    inplace_mapping_str.pop_back();
  }
  if (!use_inplace_strategy && FindViewOpMap(op_type)) {
    std::string viwe_input_name = view_op_map[op_type].first;
    std::string viwe_output_name = view_op_map[op_type].second;
    view_strategy_str += paddle::string::Sprintf(
        HANDLE_VIEW_BETWEEN_INPUT_AND_OUTPUT, viwe_input_name, viwe_output_name,
        viwe_input_name, viwe_output_name);
  }
  if (outs_num == 0) {
524
    return_str = "Py_INCREF(Py_None);\n    return Py_None;";
525
  } else if (outs_num == 1) {
526
    return_str = "return MakeReturnPyObject(" + return_str + ");";
527
  } else {
528
    return_str = "return MakeReturnPyObject(" +
529
                 paddle::string::Sprintf(RETURN_TUPLE_TEMPLATE, return_str) +
530
                 ");";
531 532 533 534 535 536 537 538 539 540
  }
  std::string function_args = "";
  if (input_args == "") {
    function_args = FUNCTION_ARGS_NO_INPUT;
  } else {
    function_args = paddle::string::Sprintf(FUNCTION_ARGS, input_args);
  }

  // generate op funtcion body
  auto op_function_str = paddle::string::Sprintf(
541 542 543 544
      OP_FUNCTION_TEMPLATE, func_name, ins_cast_str, op_type, input_args_num,
      inplace_strategy_str, outs_initializer, ins_initializer,
      ins_initializer_with_null + outs_initializer_with_null +
          view_strategy_str,
545 546 547 548 549
      op_type, inplace_mapping_str, return_str);

  return op_function_str;
}

550
static std::tuple<std::vector<std::string>, std::vector<std::string>>
551
GenerateOpFunctions() {
552 553
  auto& op_info_map = paddle::framework::OpInfoMap::Instance().map();

554
  std::vector<std::string> op_function_list, bind_function_list;
555 556
  auto& all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();

557 558 559 560 561 562 563
  for (auto& pair : op_info_map) {
    auto& op_info = pair.second;
    auto op_proto = op_info.proto_;
    if (op_proto == nullptr) {
      continue;
    }
    auto& op_type = op_proto->type();
564 565 566 567 568
    // Skip ooerator which is not inherit form OperatorWithKernel, like while,
    // since only OperatorWithKernel can run in dygraph mode.
    if (!all_kernels.count(op_type)) {
      continue;
    }
569

570 571 572 573 574 575 576 577 578 579 580 581 582 583
    // NOTE(pangyoki): Inplace Strategy.
    // In this case, output will reuse input varbase.
    // Dygraph mode needs to be aligned with the in-place strategy in static
    // mode, and the mapping relationships between output and input that have
    // been defined in static mode should be used in dygraph mode.
    // Find which ops need to use Inplace strategy in static mode, and get the
    // mapping relationship between Inplace output and input.
    auto& infer_inplace =
        paddle::framework::OpInfoMap::Instance().Get(op_type).infer_inplace_;
    std::map<std::string, std::string> inplace_map;
    if (infer_inplace) {
      auto in_to_outs = infer_inplace(true);
      for (auto& inplace_pair : in_to_outs) {
        inplace_map[inplace_pair.second] = inplace_pair.first;
584 585
      }
    }
586

587
    std::string func_name = "imperative_" + op_type;
588
    std::string op_function_str = GenerateOpFunctionsBody(op_proto, func_name);
589 590

    // generate pybind item
591
    auto bind_function_str = paddle::string::Sprintf(
592
        PYBIND_ITEM_TEMPLATE, op_type, func_name, op_type);
593 594 595

    op_function_list.emplace_back(std::move(op_function_str));
    bind_function_list.emplace_back(std::move(bind_function_str));
596 597 598 599 600 601 602 603 604 605 606

    if (infer_inplace) {
      // Reuse Varbase Inplace OP: op_type_.
      // The inplace OP needs a new implementation method.
      std::string inplace_op_type = op_type + "_";
      std::string inplace_func_name = "imperative_" + inplace_op_type;
      std::string inplace_op_function_str = GenerateOpFunctionsBody(
          op_proto, inplace_func_name, true, inplace_map);

      // generate pybind item
      auto inplace_bind_function_str =
607 608
          paddle::string::Sprintf(PYBIND_ITEM_TEMPLATE, inplace_op_type,
                                  inplace_func_name, inplace_op_type);
609 610 611 612

      op_function_list.emplace_back(std::move(inplace_op_function_str));
      bind_function_list.emplace_back(std::move(inplace_bind_function_str));
    }
613
  }
614
  return std::make_tuple(op_function_list, bind_function_list);
615 616 617 618 619 620 621 622
}

int main(int argc, char* argv[]) {
  if (argc != 2) {
    std::cerr << "argc must be 2" << std::endl;
    return -1;
  }

623
#ifdef PADDLE_WITH_ASCEND_CL
624 625 626 627
  auto ascend_ptr = paddle::framework::AscendInstance::GetInstance();
  ascend_ptr->InitGEForUT();
#endif

628 629 630
  std::vector<std::string> headers{"\"paddle/fluid/imperative/tracer.h\"",
                                   "\"pybind11/detail/common.h\"",
                                   "<Python.h>"};
631 632 633 634 635 636 637 638 639

  std::ofstream out(argv[1], std::ios::out);

  out << "#pragma once\n\n";

  for (auto& header : headers) {
    out << "#include  " + header + "\n";
  }

640 641 642
  out << "\n\n";

  auto op_funcs = GenerateOpFunctions();
643

644
  out << "namespace paddle {\n"
645 646
      << "namespace pybind {\n\n";
  out << "std::atomic<int> VarBaseUniqueNameID{0};\n";
647 648
  out << paddle::string::join_strings(std::get<0>(op_funcs), '\n');
  out << "\n\n";
649

650 651 652 653
  out << "static PyMethodDef ExtestMethods[] = {\n"
      << paddle::string::join_strings(std::get<1>(op_funcs), '\n')
      << "\n  {nullptr,nullptr,0,nullptr}"
      << "};\n\n";
654

655 656 657 658 659 660 661 662
  out << "inline void BindOpFunctions(pybind11::module *module) {\n"
      << "  auto m = module->def_submodule(\"ops\");\n"
      << "  if (PyModule_AddFunctions(m.ptr(), ExtestMethods) < 0) {\n"
      << "    PADDLE_THROW(platform::errors::Fatal (\"Add functions to "
         "core.ops failed!\"));\n"
      << "  }\n\n"
      << "  InitOpsAttrTypeMap();"
      << "}\n\n"
663 664 665 666
      << "} // namespace pybind\n"
      << "} // namespace paddle\n";

  out.close();
667

668
#ifdef PADDLE_WITH_ASCEND_CL
669 670
  ge::GEFinalize();
#endif
671

672 673
  return 0;
}