Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
d980d251
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d980d251
编写于
5月 18, 2020
作者:
L
Leo Chen
提交者:
GitHub
5月 18, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
specify outs, test=develop (#24537)
上级
16817c70
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
97 addition
and
31 deletion
+97
-31
paddle/fluid/pybind/op_function_generator.cc
paddle/fluid/pybind/op_function_generator.cc
+97
-31
未找到文件。
paddle/fluid/pybind/op_function_generator.cc
浏览文件 @
d980d251
...
...
@@ -24,13 +24,48 @@
#include "paddle/fluid/pybind/pybind.h"
#include "paddle/fluid/string/string_helper.h"
// NOTE(zhiqiu): Commonly, the inputs in auto-generated OP function are
// determined by the OP`s proto automatically, i.e., all the inputs registered
// in OpMaker.
// However, some OPs have dispensable inputs, which means the input can
// be none for some conditions. It is discovered that most dispensable inputs
// is not used in imperative mode, so we drop those inputs when generating OP
// functions. While, for very few OPs, the dispensable inputs are used, we
// need to manually specify them in this map.
std
::
map
<
std
::
string
,
std
::
set
<
std
::
string
>>
op_ins_map
=
{
{
"layer_norm"
,
{
"X"
,
"Scale"
,
"Bias"
}},
{
"gru_unit"
,
{
"Input"
,
"HiddenPrev"
,
"Weight"
,
"Bias"
}},
{
"label_smooth"
,
{
"X"
,
"PriorDist"
}},
{
"assign"
,
{
"X"
}},
{
"fake_quantize_dequantize_moving_average_abs_max"
,
{
"X"
,
"InScale"
,
"InAccum"
,
"InState"
}},
};
std
::
map
<
std
::
string
,
std
::
set
<
std
::
string
>>
op_passing_out_map
=
{
// NOTE(zhiqiu): Like op_ins_map.
// Commonly, the outputs in auto-generated OP function are determined by the
// OP`s proto automatically, i.e., all the outputs registered in OpMaker.
// However, some OPs have dispensable outputs, which means the output can
// be none for some conditions. It is discovered that most dispensable outputs
// is not used in imperative mode, so we drop those outputs when generating OP
// functions. While, for very few OPs, the dispensable outputs are used, we
// need to manually specify them in this map.
std
::
map
<
std
::
string
,
std
::
set
<
std
::
string
>>
op_outs_map
=
{
{
"fake_quantize_dequantize_moving_average_abs_max"
,
{
"Out"
,
"OutScale"
,
"OutAccum"
,
"OutState"
}},
};
// NOTE(zhiqiu): Commonly, the outputs in auto-generated OP function are
// generated in C++ automatically.
// However, some OPs need to pass the outputs from Python instead of generating
// them in C++. There are mainly 2 reasons for that,
// (1) Optimizer OPs need to update the input param in-place, like sgd.
// So they need to pass the output which is same as input param.
// (2) Very few python APIs has out in their arguments, like fill_constant.
// So they need to pass the python output to C++.
// Actually, this is not a good design, since it may break the SSA graph,
// especially in declarative mode.
// For those OPs, we need to manually specify the outs need to pass in this map.
std
::
map
<
std
::
string
,
std
::
set
<
std
::
string
>>
op_passing_outs_map
=
{
{
"sgd"
,
{
"ParamOut"
}},
{
"adam"
,
{
"ParamOut"
,
"Moment1Out"
,
"Moment2Out"
,
"Beta1PowOut"
,
"Beta2PowOut"
}},
...
...
@@ -38,7 +73,10 @@ std::map<std::string, std::set<std::string>> op_passing_out_map = {
{
"batch_norm"
,
{
"MeanOut"
,
"VarianceOut"
}},
{
"accuracy"
,
{
"Correct"
,
"Total"
}},
{
"fill_constant"
,
{
"Out"
}},
{
"matmul"
,
{
"Out"
}}};
{
"matmul"
,
{
"Out"
}},
{
"fake_quantize_dequantize_moving_average_abs_max"
,
{
"OutScale"
,
"OutAccum"
,
"OutState"
}},
};
// clang-format off
const
char
*
OUT_INITIALIZER_TEMPLATE
=
...
...
@@ -47,17 +85,30 @@ const char* OUT_DUPLICABLE_INITIALIZER_TEMPLATE = R"({"%s", ConstructDuplicableO
const
char
*
INPUT_INITIALIZER_TEMPLATE
=
R"({"%s", {%s}})"
;
const
char
*
INPUT_LIST_INITIALIZER_TEMPLATE
=
R"({"%s", %s})"
;
const
char
*
INPUT_INITIALIZER_TEMPLATE_WITH_NULL
=
R"(
if (%s != nullptr) {
ins["%s"] = {%s};
}
const
char
*
INPUT_INITIALIZER_TEMPLATE_WITH_NULL
=
R"(
if (%s != nullptr) {
ins["%s"] = {%s};
}
)"
;
const
char
*
INPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST
=
R"(
if (%s != nullptr) {
ins["%s"] = %s;
}
const
char
*
INPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST
=
R"(
if (%s.size() != 0) {
ins["%s"] = %s;
}
)"
;
const
char
*
OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL
=
R"(
if (%s != nullptr) {
outs["%s"] = {%s};
}
)"
;
const
char
*
OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST
=
R"(
if (%s.size() != 0) {
outs["%s"] = %s;
}
)"
;
// if inputs is list, no need {}
const
char
*
ARG_OUT_NUM
=
R"(%sNum)"
;
const
char
*
ARG_OUT_NUM_TYPE
=
R"(size_t )"
;
...
...
@@ -95,14 +146,19 @@ R"(
const
char
*
PYBIND_ITEM_TEMPLATE
=
R"( %s.def("%s", &%s);)"
;
// clang-format on
static
inline
bool
FindIn
putInSpecialization
(
const
std
::
string
&
op_type
,
const
std
::
string
&
in_name
)
{
static
inline
bool
FindIn
sMap
(
const
std
::
string
&
op_type
,
const
std
::
string
&
in_name
)
{
return
op_ins_map
[
op_type
].
count
(
in_name
);
}
static
inline
bool
FindOutoutInSpecialization
(
const
std
::
string
&
op_type
,
const
std
::
string
&
out_name
)
{
return
op_passing_out_map
[
op_type
].
count
(
out_name
);
static
inline
bool
FindOutsMap
(
const
std
::
string
&
op_type
,
const
std
::
string
&
out_name
)
{
return
op_outs_map
[
op_type
].
count
(
out_name
);
}
static
inline
bool
FindPassingOutsMap
(
const
std
::
string
&
op_type
,
const
std
::
string
&
out_name
)
{
return
op_passing_outs_map
[
op_type
].
count
(
out_name
);
}
static
std
::
tuple
<
std
::
vector
<
std
::
string
>
,
std
::
vector
<
std
::
string
>>
...
...
@@ -131,7 +187,7 @@ GenerateOpFunctions(const std::string& module_name) {
for
(
auto
&
input
:
op_proto
->
inputs
())
{
auto
&
in_name
=
input
.
name
();
// skip those dispensable inputs, like ResidualData in conv2d
if
(
input
.
dispensable
()
&&
!
FindIn
putInSpecialization
(
op_type
,
in_name
))
{
if
(
input
.
dispensable
()
&&
!
FindIn
sMap
(
op_type
,
in_name
))
{
continue
;
}
const
auto
in_type
=
input
.
duplicable
()
?
VAR_LIST_TYPE
:
VAR_TYPE
;
...
...
@@ -165,30 +221,41 @@ GenerateOpFunctions(const std::string& module_name) {
// Generate outs initializer
std
::
string
outs_initializer
=
"{"
;
std
::
string
outs_initializer_with_null
=
""
;
std
::
string
return_type
=
""
;
std
::
string
return_str
=
""
;
int
outs_num
=
0
;
for
(
auto
&
output
:
op_proto
->
outputs
())
{
if
(
output
.
dispensable
())
{
auto
&
out_name
=
output
.
name
();
// skip those dispensable oututs
if
(
output
.
dispensable
()
&&
!
FindOutsMap
(
op_type
,
out_name
))
{
continue
;
}
const
auto
out_type
=
output
.
duplicable
()
?
VAR_LIST_TYPE
:
VAR_TYPE
;
const
auto
return_template
=
output
.
duplicable
()
?
RETURN_LIST_TEMPLATE
:
RETURN_TEMPLATE
;
auto
&
out_name
=
output
.
name
();
std
::
string
out_initializer_str
;
if
(
FindOutoutInSpecialization
(
op_type
,
out_name
))
{
if
(
FindPassingOutsMap
(
op_type
,
out_name
))
{
if
(
input_args
!=
""
)
{
input_args
+=
","
;
}
input_args
+=
out_type
;
input_args
+=
out_name
;
const
auto
out_template
=
output
.
duplicable
()
?
INPUT_LIST_INITIALIZER_TEMPLATE
:
INPUT_INITIALIZER_TEMPLATE
;
out_initializer_str
+=
paddle
::
string
::
Sprintf
(
out_template
,
out_name
,
out_name
);
if
(
output
.
dispensable
())
{
const
auto
out_template
=
output
.
duplicable
()
?
OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST
:
OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL
;
outs_initializer_with_null
+=
paddle
::
string
::
Sprintf
(
out_template
,
out_name
,
out_name
,
out_name
);
}
else
{
const
auto
out_template
=
output
.
duplicable
()
?
INPUT_LIST_INITIALIZER_TEMPLATE
:
INPUT_INITIALIZER_TEMPLATE
;
outs_initializer
+=
paddle
::
string
::
Sprintf
(
out_template
,
out_name
,
out_name
);
outs_initializer
+=
","
;
}
}
else
{
// There are few Operators that have duplicable output, like `Out` in
// split op. We need to specify the number of variables for the
...
...
@@ -200,12 +267,13 @@ GenerateOpFunctions(const std::string& module_name) {
auto
out_num_str
=
paddle
::
string
::
Sprintf
(
ARG_OUT_NUM
,
out_name
);
input_args
+=
ARG_OUT_NUM_TYPE
;
input_args
+=
out_num_str
;
out
_initializer_str
=
paddle
::
string
::
Sprintf
(
out
s_initializer
+
=
paddle
::
string
::
Sprintf
(
OUT_DUPLICABLE_INITIALIZER_TEMPLATE
,
out_name
,
out_num_str
);
}
else
{
out
_initializer_str
=
out
s_initializer
+
=
paddle
::
string
::
Sprintf
(
OUT_INITIALIZER_TEMPLATE
,
out_name
);
}
outs_initializer
+=
","
;
}
return_type
+=
out_type
;
...
...
@@ -213,9 +281,6 @@ GenerateOpFunctions(const std::string& module_name) {
return_str
+=
paddle
::
string
::
Sprintf
(
return_template
,
out_name
);
return_str
+=
","
;
outs_num
+=
1
;
outs_initializer
+=
out_initializer_str
;
outs_initializer
+=
","
;
}
if
(
outs_initializer
.
back
()
==
','
)
{
outs_initializer
.
pop_back
();
...
...
@@ -241,7 +306,8 @@ GenerateOpFunctions(const std::string& module_name) {
// generate op funtcion body
auto
op_function_str
=
paddle
::
string
::
Sprintf
(
OP_FUNCTION_TEMPLATE
,
return_type
,
func_name
,
function_args
,
outs_initializer
,
ins_initializer
,
ins_initializer_with_null
,
op_type
,
outs_initializer
,
ins_initializer
,
ins_initializer_with_null
+
outs_initializer_with_null
,
op_type
,
return_str
);
// generate pybind item
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录