op_function_generator.cc 24.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <algorithm>
16 17 18
#include <fstream>
#include <iostream>
#include <string>
19 20 21
#ifndef _WIN32
#include <unistd.h>
#endif
22 23 24 25 26 27 28

#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/pybind/pybind.h"
#include "paddle/fluid/string/string_helper.h"
29
#ifdef PADDLE_WITH_ASCEND_CL
30 31
#include "paddle/fluid/framework/fleet/ascend_wrapper.h"
#endif
32

L
Leo Chen 已提交
33 34 35 36 37 38 39 40
// NOTE(zhiqiu): Commonly, the inputs in auto-generated OP function are
// determined by the OP`s proto automatically, i.e., all the inputs registered
// in OpMaker.
// However, some OPs have dispensable inputs, which means the input can
// be none for some conditions. It is discovered that most dispensable inputs
// is not used in imperative mode, so we drop those inputs when generating OP
// functions. While, for very few OPs, the dispensable inputs are used, we
// need to manually specify them in this map.
41 42
std::map<std::string, std::set<std::string>> op_ins_map = {
    {"layer_norm", {"X", "Scale", "Bias"}},
C
ceci3 已提交
43
    {"instance_norm", {"X", "Scale", "Bias"}},
44 45 46
    {"gru_unit", {"Input", "HiddenPrev", "Weight", "Bias"}},
    {"label_smooth", {"X", "PriorDist"}},
    {"assign", {"X"}},
47 48 49
    {"reshape2", {"X", "Shape"}},
    {"expand", {"X", "ExpandTimes"}},
    {"slice", {"Input", "StartsTensor", "EndsTensor"}},
L
Leo Chen 已提交
50 51
    {"fake_quantize_dequantize_moving_average_abs_max",
     {"X", "InScale", "InAccum", "InState"}},
52
    {"nll_loss", {"X", "Label", "Weight"}},
53
    {"bilinear_tensor_product", {"X", "Y", "Weight", "Bias"}},
54
    {"gather", {"X", "Index", "Axis"}},
55 56 57 58 59
    {"roi_pool", {"X", "ROIs", "RoisNum"}},
    {"roi_align", {"X", "ROIs", "RoisNum"}},
    {"collect_fpn_proposals",
     {"MultiLevelRois", "MultiLevelScores", "MultiLevelRoIsNum"}},
    {"distribute_fpn_proposals", {"FpnRois", "RoisNum"}},
60
    {"warpctc", {"Logits", "Label", "LogitsLength", "LabelLength"}},
61 62
    {"hierarchical_sigmoid",
     {"X", "W", "Label", "PathTable", "PathCode", "Bias"}},
63
    {"moving_average_abs_max_scale", {"X", "InAccum", "InState"}},
64
    {"multiclass_nms3", {"BBoxes", "Scores", "RoisNum"}},
65
    {"box_coder", {"PriorBox", "PriorBoxVar", "TargetBox"}},
66
    {"momentum", {"Param", "Grad", "Velocity", "LearningRate", "MasterParam"}},
67
    {"sparse_momentum", {"Param", "Grad", "Velocity", "Index", "LearningRate"}},
68
    {"rnn", {"Input", "PreState", "WeightList", "SequenceLength"}},
69
    {"run_program", {"X", "Params"}},
70 71 72 73 74
    {"matrix_rank", {"X", "TolTensor"}},
    {"adam",
     {"Param", "Grad", "LearningRate", "Moment1", "Moment2", "Beta1Pow",
      "Beta2Pow", "MasterParam"}},
};
L
Leo Chen 已提交
75 76 77 78 79 80 81 82 83 84 85 86

// NOTE(zhiqiu): Like op_ins_map.
// Commonly, the outputs in auto-generated OP function are determined by the
// OP`s proto automatically, i.e., all the outputs registered in OpMaker.
// However, some OPs have dispensable outputs, which means the output can
// be none for some conditions. It is discovered that most dispensable outputs
// is not used in imperative mode, so we drop those outputs when generating OP
// functions. While, for very few OPs, the dispensable outputs are used, we
// need to manually specify them in this map.
std::map<std::string, std::set<std::string>> op_outs_map = {
    {"fake_quantize_dequantize_moving_average_abs_max",
     {"Out", "OutScale", "OutAccum", "OutState"}},
87 88 89
    {"batch_norm",
     {"Y", "MeanOut", "VarianceOut", "SavedMean", "SavedVariance",
      "ReserveSpace"}},
C
ceci3 已提交
90 91 92
    {"sync_batch_norm",
     {"Y", "MeanOut", "VarianceOut", "SavedMean", "SavedVariance",
      "ReserveSpace"}},
Z
Zhang Ting 已提交
93
    {"unique", {"Out", "Index", "Indices", "Counts"}},
D
duanboqiang 已提交
94
    {"unique_consecutive", {"Out", "Index", "Counts"}},
95 96
    {"generate_proposals", {"RpnRois", "RpnRoiProbs", "RpnRoisNum"}},
    {"collect_fpn_proposals", {"FpnRois", "RoisNum"}},
97
    {"matrix_nms", {"Out", "Index", "RoisNum"}},
98 99
    {"distribute_fpn_proposals",
     {"MultiFpnRois", "RestoreIndex", "MultiLevelRoIsNum"}},
100 101
    {"moving_average_abs_max_scale",
     {"Out", "OutScale", "OutAccum", "OutState"}},
102
    {"multiclass_nms3", {"Out", "NmsRoisNum"}},
103
    {"generate_proposals_v2", {"RpnRois", "RpnRoiProbs", "RpnRoisNum"}},
104
    {"momentum", {"ParamOut", "VelocityOut", "MasterParamOut"}},
105
    {"sparse_momentum", {"ParamOut", "VelocityOut"}},
106
    {"rnn", {"DropoutState", "Reserve", "Out", "State"}},
107 108
    {"lamb",
     {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut"}},
109
    {"run_program", {"DOut"}},
110 111 112
    {"adam",
     {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut",
      "MasterParamOut"}},
L
Leo Chen 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126
};

// NOTE(zhiqiu): Commonly, the outputs in auto-generated OP function are
// generated in C++ automatically.
// However, some OPs need to pass the outputs from Python instead of generating
// them in C++. There are mainly 2 reasons for that,
// (1) Optimizer OPs need to update the input param in-place, like sgd.
//     So they need to pass the output which is same as input param.
// (2) Very few python APIs has out in their arguments, like fill_constant.
//     So they need to pass the python output to C++.
//     Actually, this is not a good design, since it may break the SSA graph,
//     especially in declarative mode.
// For those OPs, we need to manually specify the outs need to pass in this map.
std::map<std::string, std::set<std::string>> op_passing_outs_map = {
127 128
    {"sgd", {"ParamOut"}},
    {"adam",
129 130
     {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut",
      "MasterParamOut"}},
Z
zhaoyingli 已提交
131 132
    {"adamw",
     {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut"}},
133 134 135
    {"average_accumulates",
     {"out_sum_1", "out_sum_2", "out_sum_3", "out_num_accumulates",
      "out_old_num_accumulates", "out_num_updates"}},
136
    {"momentum", {"ParamOut", "VelocityOut", "MasterParamOut"}},
137
    {"sparse_momentum", {"ParamOut", "VelocityOut"}},
138
    {"batch_norm", {"MeanOut", "VarianceOut"}},
C
ceci3 已提交
139
    {"sync_batch_norm", {"MeanOut", "VarianceOut"}},
140
    {"accuracy", {"Correct", "Total"}},
141
    {"fill_constant", {"Out"}},
L
lilong12 已提交
142
    {"recv_v2", {"Out"}},
143
    {"partial_recv", {"Out"}},
L
Leo Chen 已提交
144
    {"matmul", {"Out"}},
145
    {"c_broadcast", {"Out"}},
K
kuizhiqing 已提交
146 147
    {"c_sync_calc_stream", {"Out"}},
    {"c_sync_comm_stream", {"Out"}},
148 149 150 151 152 153 154
    {"c_reduce_sum", {"Out"}},
    {"c_reduce_max", {"Out"}},
    {"c_reduce_min", {"Out"}},
    {"c_reduce_prod", {"Out"}},
    {"c_reduce", {"Out"}},
    {"c_scatter", {"Out"}},
    {"barrier", {"Out"}},
L
Leo Chen 已提交
155
    {"fake_quantize_dequantize_moving_average_abs_max",
156
     {"Out", "OutScale", "OutAccum", "OutState"}},
157
    {"fake_quantize_dequantize_abs_max", {"Out", "OutScale"}},
H
huangxu96 已提交
158
    {"fake_channel_wise_quantize_dequantize_abs_max", {"Out", "OutScale"}},
159 160 161
    {"check_finite_and_unscale", {"Out", "FoundInfinite"}},
    {"update_loss_scaling",
     {"Out", "LossScaling", "OutGoodSteps", "OutBadSteps"}},
162 163
    {"moving_average_abs_max_scale",
     {"Out", "OutScale", "OutAccum", "OutState"}},
164 165
    {"lamb",
     {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut"}},
166
    {"rnn", {"DropoutState"}},
167
    {"run_program", {"Out", "DOut", "OutScope"}},
168 169
    {"clear_float_status", {"FloatStatusOut"}},
    {"get_float_status", {"FloatStatusOut"}},
L
Leo Chen 已提交
170
};
171

172 173 174
// NOTE(pangyoki): Tensor View Strategy.
// In this case, a new output varbase will be created, and this varbase will
// reuse the input varbase's allocation.
175 176 177
// It's a map. The key of outer map is the view op name, the value is
// a pair which implies the mapping relationship between the input and
// output varbase.
178 179 180 181 182 183 184
std::map<std::string, std::pair<std::string, std::string>> view_op_map = {
    {"squeeze2", {"X", "Out"}},  // "X" -> "Out"
    {"unsqueeze2", {"X", "Out"}},
    {"reshape2", {"X", "Out"}},
    {"flatten_contiguous_range", {"X", "Out"}},
};

185 186 187 188 189 190 191 192
// NOTE(pangyoki): Inplace OP with duplicable input.
// The set includes inplace ops that have duplicable input.
// The first Varbase in input needs to be specified for the inplace strategy
// and share Varbase with the output.
std::set<std::string> inplace_op_duplicable_ins_set = {
    "sum",
};

193
// clang-format off
194
const char* OUT_INITIALIZER_TEMPLATE =
195
    R"({"%s", {std::shared_ptr<imperative::VarBase>(new imperative::VarBase("auto_"+std::to_string(VarBaseUniqueNameID++)+"_"))}})";
196 197 198 199
const char* OUT_DUPLICABLE_INITIALIZER_TEMPLATE = R"({"%s", ConstructDuplicableOutput(%s)})";

const char* INPUT_INITIALIZER_TEMPLATE = R"({"%s", {%s}})";
const char* INPUT_LIST_INITIALIZER_TEMPLATE = R"({"%s", %s})";
L
Leo Chen 已提交
200

201 202 203 204
const char* INPUT_INITIALIZER_TEMPLATE_WITH_NULL = R"(
    if (%s != nullptr) {
      ins["%s"] = {%s};
    }
205
)";
L
Leo Chen 已提交
206

207
const char* INPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST = R"(
L
Leo Chen 已提交
208
    if (%s.size() != 0) {
209 210
      ins["%s"] = %s;
    }
L
Leo Chen 已提交
211 212
)";

213 214
const char* OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL = R"(
    outs["%s"] = {%s};
215 216
)";

217 218
const char* OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST = R"(
    outs["%s"] = %s;
L
Leo Chen 已提交
219
)";
220 221 222 223
// if inputs is list, no need {}
const char* ARG_OUT_NUM = R"(%sNum)";
const char* ARG_OUT_NUM_TYPE = R"(size_t )";

224 225 226 227 228 229 230
const char* IN_VAR_TYPE = R"(py::handle)";
const char* IN_VAR_LIST_TYPE = R"(py::handle)";

const char* OUT_VAR_TYPE = R"(std::shared_ptr<imperative::VarBase>)";
const char* OUT_VAR_LIST_TYPE = R"(std::vector<std::shared_ptr<imperative::VarBase>>)";

const char* CAST_VAR_TEMPLATE = R"(
231
    auto %s = GetVarBaseFromArgs("%s", "%s", args, %d, %s);)";
232 233

const char* CAST_VAR_LIST_TEMPLATE = R"(
234
    auto %s = GetVarBaseListFromArgs("%s", "%s", args, %d, %s);)";
235

236 237
const char* CAST_SIZE_T_TEMPLATE = R"(
    auto %s = GetUnsignedLongFromArgs("%s", "%s", args, %d, %s);)";
238

239 240 241 242 243 244 245 246 247
const char* ARG_TEMPLATE = R"(const %s& %s)";

const char* RETURN_TUPLE_TYPE = R"(std::tuple<%s>)";
const char* RETURN_TUPLE_TEMPLATE = R"(std::make_tuple(%s))";
const char* RETURN_LIST_TEMPLATE = R"(outs["%s"])";
const char* RETURN_TEMPLATE = R"(outs["%s"][0])";

const char* FUNCTION_ARGS = R"(%s, const py::args& args)";
const char* FUNCTION_ARGS_NO_INPUT = R"(const py::args& args)";
248

249
const char* HANDLE_VIEW_BETWEEN_INPUT_AND_OUTPUT = R"(
250 251 252 253
    if (ins.count("%s") && outs.count("%s")) {
      HandleViewBetweenInputAndOutput(ins["%s"][0], outs["%s"][0]);
    })";

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
const char* INPLACE_DUPLICABLE_INPUT = R"([0])";

const char* INPLACE_LEAF_ERROR_MESSAGE = R"(Leaf Var (%s) that doesn't stop gradient can't use inplace strategy.)";

const char* INPLACE_STRATEGY_TEMPLATE =
R"(
    PADDLE_ENFORCE_EQ(
      %s->IsLeaf() && !%s->OverridedStopGradient(), false,
      platform::errors::InvalidArgument("%s", %s->Name()));
    %s->BumpInplaceVersion();
    VLOG(3) << "Var(" << %s->Name() << ") uses Inplace Strategy.";
)";

const char* INPLACE_MAPPING_TEMPLATE = R"({"%s", "%s"})";

269
const char* OP_FUNCTION_TEMPLATE =
270
R"(
271
static PyObject * %s(PyObject *self, PyObject *args, PyObject *kwargs)
272
{
273 274
  PyThreadState *tstate = nullptr;
  try
275
  {
276 277 278 279
    %s
    framework::AttributeMap attrs;
    ConstructAttrMapFromPyArgs("%s", args, %d, PyTuple_GET_SIZE(args) , attrs);
    tstate = PyEval_SaveThread();
280
    %s
281 282 283
    imperative::NameVarBaseMap outs = %s;
    imperative::NameVarBaseMap ins = %s;
    %s
284
    imperative::GetCurrentTracer()->TraceOp("%s", ins, outs, attrs, {%s});
285 286
    PyEval_RestoreThread(tstate);
    tstate = nullptr;
287
    %s
288
  }
289 290 291 292 293 294 295
  catch(...) {
    if (tstate) {
      PyEval_RestoreThread(tstate);
    }
    ThrowExceptionToPython(std::current_exception());
    return nullptr;
  }
296
})";
297

298
const char* PYBIND_ITEM_TEMPLATE = R"(  {"%s", (PyCFunction)(void(*)(void))%s, METH_VARARGS | METH_KEYWORDS, "C++ interface function for %s in dygraph."},)";
299

300
// clang-format on
L
Leo Chen 已提交
301 302
static inline bool FindInsMap(const std::string& op_type,
                              const std::string& in_name) {
303 304 305
  return op_ins_map[op_type].count(in_name);
}

L
Leo Chen 已提交
306 307 308 309 310 311 312 313
static inline bool FindOutsMap(const std::string& op_type,
                               const std::string& out_name) {
  return op_outs_map[op_type].count(out_name);
}

static inline bool FindPassingOutsMap(const std::string& op_type,
                                      const std::string& out_name) {
  return op_passing_outs_map[op_type].count(out_name);
314
}
315

316 317 318 319
static inline bool FindDuplicableInputInplaceOpSet(const std::string& op_type) {
  return inplace_op_duplicable_ins_set.count(op_type);
}

320 321 322 323
static inline bool FindViewOpMap(const std::string& op_type) {
  return view_op_map.count(op_type);
}

324 325 326 327
static inline std::string TempName(const std::string& name) {
  return name + '_';
}

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
std::string GenerateOpFunctionsBody(
    const paddle::framework::proto::OpProto* op_proto, std::string func_name,
    bool use_inplace_strategy = false,
    std::map<std::string, std::string> inplace_map = {}) {
  auto& op_type = op_proto->type();
  std::string input_args = "";
  std::string ins_initializer = "{";
  std::string ins_initializer_with_null = "";
  std::string py_arg = "";
  int arg_idx = 0;
  int input_args_num = 0;
  std::string ins_cast_str = "";
  std::string view_strategy_str = "";
  std::string inplace_strategy_str = "";
  for (auto& input : op_proto->inputs()) {
    auto& in_name = input.name();
    // skip those dispensable inputs, like ResidualData in conv2d
    if (input.dispensable() && !FindInsMap(op_type, in_name)) {
      continue;
    }
    const auto in_type = input.duplicable() ? IN_VAR_LIST_TYPE : IN_VAR_TYPE;
    auto input_arg =
        paddle::string::Sprintf(ARG_TEMPLATE, in_type, TempName(in_name));
    input_args += input_arg;
    input_args += ",";
    input_args_num++;
    const auto in_cast_type =
        input.duplicable() ? CAST_VAR_LIST_TEMPLATE : CAST_VAR_TEMPLATE;
    auto dispensable = input.dispensable() ? "true" : "false";
357 358
    ins_cast_str += paddle::string::Sprintf(in_cast_type, in_name, op_type,
                                            in_name, arg_idx++, dispensable);
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378

    if (input.dispensable()) {
      const auto in_template = input.duplicable()
                                   ? INPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST
                                   : INPUT_INITIALIZER_TEMPLATE_WITH_NULL;
      ins_initializer_with_null +=
          paddle::string::Sprintf(in_template, in_name, in_name, in_name);
    } else {
      const auto in_template = input.duplicable()
                                   ? INPUT_LIST_INITIALIZER_TEMPLATE
                                   : INPUT_INITIALIZER_TEMPLATE;
      ins_initializer += paddle::string::Sprintf(in_template, in_name, in_name);
      ins_initializer += ",";
    }
  }
  if (ins_initializer.back() == ',') {
    ins_initializer.pop_back();
  }
  ins_initializer += "}";

379
  if (!input_args.empty() && input_args.back() == ',') {
380 381 382 383 384 385 386 387 388 389 390 391
    input_args.pop_back();
  }

  // Generate outs initializer
  std::string outs_initializer = "{";
  std::string outs_initializer_with_null = "";
  std::string inplace_mapping_str = "";
  std::string return_str = "";

  int outs_num = 0;
  for (auto& output : op_proto->outputs()) {
    auto& out_name = output.name();
392

393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
    // skip those dispensable oututs
    if (output.dispensable() && !FindOutsMap(op_type, out_name)) {
      continue;
    }
    const auto out_type =
        output.duplicable() ? OUT_VAR_LIST_TYPE : OUT_VAR_TYPE;
    const auto return_template =
        output.duplicable() ? RETURN_LIST_TEMPLATE : RETURN_TEMPLATE;

    if (FindPassingOutsMap(op_type, out_name)) {
      if (input_args != "") {
        input_args += ",";
      }
      input_args += out_type;
      input_args += out_name;
      input_args_num++;

      if (output.dispensable()) {
        const auto out_template =
            output.duplicable() ? OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST
                                : OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL;
        outs_initializer_with_null +=
            paddle::string::Sprintf(out_template, out_name, out_name);
      } else {
        const auto out_template = output.duplicable()
                                      ? INPUT_LIST_INITIALIZER_TEMPLATE
                                      : INPUT_INITIALIZER_TEMPLATE;
        outs_initializer +=
            paddle::string::Sprintf(out_template, out_name, out_name);
        outs_initializer += ",";
      }
424 425 426 427 428 429

      const auto in_cast_type =
          output.duplicable() ? CAST_VAR_LIST_TEMPLATE : CAST_VAR_TEMPLATE;
      auto dispensable = output.dispensable() ? "true" : "false";
      ins_cast_str += paddle::string::Sprintf(in_cast_type, out_name, op_type,
                                              out_name, arg_idx++, dispensable);
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
    } else if (use_inplace_strategy && inplace_map.count(out_name)) {
      PADDLE_ENFORCE_NE(
          inplace_map[out_name], "",
          paddle::platform::errors::InvalidArgument(
              "Inplace op %s has no input corresponding to output %s.", op_type,
              out_name));

      // TODO(pangyoki): Inplace op don't have duplicable output in temporary,
      // so don't support duplicable output now.
      const auto out_template = INPUT_INITIALIZER_TEMPLATE;

      auto inplace_input_name = inplace_map[out_name];
      inplace_mapping_str += paddle::string::Sprintf(
          INPLACE_MAPPING_TEMPLATE, inplace_input_name, out_name);
      inplace_mapping_str += ",";

      // If inplace op has duplicable input, the first Varbase in input will
      // share Varbase with output.
      if (FindDuplicableInputInplaceOpSet(op_type)) {
        inplace_input_name += INPLACE_DUPLICABLE_INPUT;
      }

      // Leaf Var that doesn't stop gradient can't use inplace strategy.
      // Increase inplace_version.
      inplace_strategy_str += paddle::string::Sprintf(
          INPLACE_STRATEGY_TEMPLATE, inplace_input_name, inplace_input_name,
          INPLACE_LEAF_ERROR_MESSAGE, inplace_input_name, inplace_input_name,
          inplace_input_name);
      outs_initializer +=
          paddle::string::Sprintf(out_template, out_name, inplace_input_name);
      outs_initializer += ",";
    } else {
      // There are few Operators that have duplicable output, like `Out` in
      // split op. We need to specify the number of variables for the
      // duplicable output, as the argument OutNum;
      if (output.duplicable()) {
        if (input_args != "") {
          input_args += ",";
        }
        auto out_num_str = paddle::string::Sprintf(ARG_OUT_NUM, out_name);
        input_args += ARG_OUT_NUM_TYPE;
        input_args += out_num_str;
        input_args_num++;
        outs_initializer += paddle::string::Sprintf(
            OUT_DUPLICABLE_INITIALIZER_TEMPLATE, out_name, out_num_str);
475 476 477 478 479

        auto dispensable = output.dispensable() ? "true" : "false";
        ins_cast_str +=
            paddle::string::Sprintf(CAST_SIZE_T_TEMPLATE, out_num_str, op_type,
                                    out_num_str, arg_idx++, dispensable);
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
      } else {
        outs_initializer +=
            paddle::string::Sprintf(OUT_INITIALIZER_TEMPLATE, out_name);
      }
      outs_initializer += ",";
    }

    return_str += paddle::string::Sprintf(return_template, out_name);
    return_str += ",";
    outs_num += 1;
  }
  if (outs_initializer.back() == ',') {
    outs_initializer.pop_back();
    return_str.pop_back();
  }
  outs_initializer += "}";
496
  if (!inplace_mapping_str.empty() && inplace_mapping_str.back() == ',') {
497 498 499 500 501 502 503 504 505 506
    inplace_mapping_str.pop_back();
  }
  if (!use_inplace_strategy && FindViewOpMap(op_type)) {
    std::string viwe_input_name = view_op_map[op_type].first;
    std::string viwe_output_name = view_op_map[op_type].second;
    view_strategy_str += paddle::string::Sprintf(
        HANDLE_VIEW_BETWEEN_INPUT_AND_OUTPUT, viwe_input_name, viwe_output_name,
        viwe_input_name, viwe_output_name);
  }
  if (outs_num == 0) {
507
    return_str = "Py_INCREF(Py_None);\n    return Py_None;";
508
  } else if (outs_num == 1) {
509
    return_str = "return MakeReturnPyObject(" + return_str + ");";
510
  } else {
511
    return_str = "return MakeReturnPyObject(" +
512
                 paddle::string::Sprintf(RETURN_TUPLE_TEMPLATE, return_str) +
513
                 ");";
514 515 516 517 518 519 520 521 522 523
  }
  std::string function_args = "";
  if (input_args == "") {
    function_args = FUNCTION_ARGS_NO_INPUT;
  } else {
    function_args = paddle::string::Sprintf(FUNCTION_ARGS, input_args);
  }

  // generate op funtcion body
  auto op_function_str = paddle::string::Sprintf(
524 525 526 527
      OP_FUNCTION_TEMPLATE, func_name, ins_cast_str, op_type, input_args_num,
      inplace_strategy_str, outs_initializer, ins_initializer,
      ins_initializer_with_null + outs_initializer_with_null +
          view_strategy_str,
528 529 530 531 532
      op_type, inplace_mapping_str, return_str);

  return op_function_str;
}

533
static std::tuple<std::vector<std::string>, std::vector<std::string>>
534
GenerateOpFunctions() {
535 536
  auto& op_info_map = paddle::framework::OpInfoMap::Instance().map();

537
  std::vector<std::string> op_function_list, bind_function_list;
538 539
  auto& all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();

540 541 542 543 544 545 546
  for (auto& pair : op_info_map) {
    auto& op_info = pair.second;
    auto op_proto = op_info.proto_;
    if (op_proto == nullptr) {
      continue;
    }
    auto& op_type = op_proto->type();
547 548 549 550 551
    // Skip ooerator which is not inherit form OperatorWithKernel, like while,
    // since only OperatorWithKernel can run in dygraph mode.
    if (!all_kernels.count(op_type)) {
      continue;
    }
552

553 554 555 556 557 558 559 560 561 562 563 564 565 566
    // NOTE(pangyoki): Inplace Strategy.
    // In this case, output will reuse input varbase.
    // Dygraph mode needs to be aligned with the in-place strategy in static
    // mode, and the mapping relationships between output and input that have
    // been defined in static mode should be used in dygraph mode.
    // Find which ops need to use Inplace strategy in static mode, and get the
    // mapping relationship between Inplace output and input.
    auto& infer_inplace =
        paddle::framework::OpInfoMap::Instance().Get(op_type).infer_inplace_;
    std::map<std::string, std::string> inplace_map;
    if (infer_inplace) {
      auto in_to_outs = infer_inplace(true);
      for (auto& inplace_pair : in_to_outs) {
        inplace_map[inplace_pair.second] = inplace_pair.first;
567 568
      }
    }
569

570
    std::string func_name = "imperative_" + op_type;
571
    std::string op_function_str = GenerateOpFunctionsBody(op_proto, func_name);
572 573

    // generate pybind item
574
    auto bind_function_str = paddle::string::Sprintf(
575
        PYBIND_ITEM_TEMPLATE, op_type, func_name, op_type);
576 577 578

    op_function_list.emplace_back(std::move(op_function_str));
    bind_function_list.emplace_back(std::move(bind_function_str));
579 580 581 582 583 584 585 586 587 588 589

    if (infer_inplace) {
      // Reuse Varbase Inplace OP: op_type_.
      // The inplace OP needs a new implementation method.
      std::string inplace_op_type = op_type + "_";
      std::string inplace_func_name = "imperative_" + inplace_op_type;
      std::string inplace_op_function_str = GenerateOpFunctionsBody(
          op_proto, inplace_func_name, true, inplace_map);

      // generate pybind item
      auto inplace_bind_function_str =
590 591
          paddle::string::Sprintf(PYBIND_ITEM_TEMPLATE, inplace_op_type,
                                  inplace_func_name, inplace_op_type);
592 593 594 595

      op_function_list.emplace_back(std::move(inplace_op_function_str));
      bind_function_list.emplace_back(std::move(inplace_bind_function_str));
    }
596
  }
597
  return std::make_tuple(op_function_list, bind_function_list);
598 599 600 601 602 603 604 605
}

int main(int argc, char* argv[]) {
  if (argc != 2) {
    std::cerr << "argc must be 2" << std::endl;
    return -1;
  }

606
#ifdef PADDLE_WITH_ASCEND_CL
607 608 609 610
  auto ascend_ptr = paddle::framework::AscendInstance::GetInstance();
  ascend_ptr->InitGEForUT();
#endif

611 612 613
  std::vector<std::string> headers{"\"paddle/fluid/imperative/tracer.h\"",
                                   "\"pybind11/detail/common.h\"",
                                   "<Python.h>"};
614 615 616 617 618 619 620 621 622

  std::ofstream out(argv[1], std::ios::out);

  out << "#pragma once\n\n";

  for (auto& header : headers) {
    out << "#include  " + header + "\n";
  }

623 624 625
  out << "\n\n";

  auto op_funcs = GenerateOpFunctions();
626

627
  out << "namespace paddle {\n"
628 629
      << "namespace pybind {\n\n";
  out << "std::atomic<int> VarBaseUniqueNameID{0};\n";
630 631
  out << paddle::string::join_strings(std::get<0>(op_funcs), '\n');
  out << "\n\n";
632

633 634 635 636
  out << "static PyMethodDef ExtestMethods[] = {\n"
      << paddle::string::join_strings(std::get<1>(op_funcs), '\n')
      << "\n  {nullptr,nullptr,0,nullptr}"
      << "};\n\n";
637

638 639 640 641 642 643 644 645
  out << "inline void BindOpFunctions(pybind11::module *module) {\n"
      << "  auto m = module->def_submodule(\"ops\");\n"
      << "  if (PyModule_AddFunctions(m.ptr(), ExtestMethods) < 0) {\n"
      << "    PADDLE_THROW(platform::errors::Fatal (\"Add functions to "
         "core.ops failed!\"));\n"
      << "  }\n\n"
      << "  InitOpsAttrTypeMap();"
      << "}\n\n"
646 647 648 649
      << "} // namespace pybind\n"
      << "} // namespace paddle\n";

  out.close();
650

651
#ifdef PADDLE_WITH_ASCEND_CL
652 653
  ge::GEFinalize();
#endif
654

655 656
  return 0;
}