random.py 27.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define random functions  
S
silingtong123 已提交
16

C
cc 已提交
17
from ..fluid import core
18
from ..fluid.framework import in_dygraph_mode, Variable, convert_np_dtype_to_dtype_
C
cc 已提交
19
from ..fluid.layer_helper import LayerHelper
20
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, check_shape
21 22
from ..fluid.layers import utils
import paddle
S
silingtong123 已提交
23

24
__all__ = [
L
Leo Chen 已提交
25
    'bernoulli',
P
pangyoki 已提交
26
    'multinomial',
27 28
    'standard_normal',
    'normal',
P
pangyoki 已提交
29
    'uniform',
30 31 32
    'randn',
    'rand',
    'randint',
33
    'randperm',
34
]
S
silingtong123 已提交
35 36


L
Leo Chen 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
def bernoulli(x, name=None):
    """

    This OP returns a Tensor filled with random binary(0 or 1) number from a Bernoulli distribution.
    The input ``x`` is a tensor with probabilities for generating the random binary number.
    Each element in ``x`` should be in [0, 1], and the out is generated by:
    
    .. math::

        out_i ~ Bernoulli (x_i)

    Args:
        x(Tensor):  A tensor with probabilities for generating the random binary number. The data type 
            should be float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns: 
        Tensor: A Tensor filled with random binary number with the same shape and dtype as ``x``.

    Examples:
        .. code-block:: python

60
            import paddle
L
Leo Chen 已提交
61

62 63 64 65 66
            paddle.manual_seed(100) # on CPU device
            x = paddle.rand([2,3])
            print(x.numpy())
            # [[0.5535528  0.20714243 0.01162981]
            # [0.51577556 0.36369765 0.2609165 ]]
L
Leo Chen 已提交
67

68 69 70 71 72
            paddle.manual_seed(200) # on CPU device
            out = paddle.bernoulli(x)
            print(out.numpy())
            # [[0. 0. 0.]
            # [1. 1. 0.]]
L
Leo Chen 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

    """

    if in_dygraph_mode():
        return core.ops.bernoulli(x)

    check_variable_and_dtype(x, "x", ["float32", "float64"], "bernoulli")

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype)  # maybe set out to int32 ? 
    helper.append_op(
        type='bernoulli', inputs={"X": x}, outputs={'Out': out}, attrs={})
    return out


P
pangyoki 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
def multinomial(x, num_samples=1, replacement=False, name=None):
    """
    This OP returns a Tensor filled with random values sampled from a Multinomical
    distribution. The input ``x`` is a tensor with probabilities for generating the
    random number. Each element in ``x`` should be larger or equal to 0, but not all
    0. ``replacement`` indicates whether it is a replaceable sample. If ``replacement``
    is True, a category can be sampled more than once.

    Args:
        x(Tensor):  A tensor with probabilities for generating the random number. The data type
            should be float32, float64.
        num_samples(int, optional): Number of samples, default is 1.
        replacement(bool, optional): Whether it is a replaceable sample, default is False.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
        Tensor: A Tensor filled with sampled category index after ``num_samples`` times samples.

    Examples:
        .. code-block:: python

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
            import paddle

            paddle.manual_seed(100) # on CPU device
            x = paddle.rand([2,4])
            print(x.numpy())
            # [[0.5535528  0.20714243 0.01162981 0.51577556]
            # [0.36369765 0.2609165  0.18905126 0.5621971 ]]

            paddle.manual_seed(200) # on CPU device
            out1 = paddle.multinomial(x, num_samples=5, replacement=True)
            print(out1.numpy())
            # [[3 3 0 0 0]
            # [3 3 3 1 0]]

            # out2 = paddle.multinomial(x, num_samples=5)
            # InvalidArgumentError: When replacement is False, number of samples
            #  should be less than non-zero categories

            paddle.manual_seed(300) # on CPU device
            out3 = paddle.multinomial(x, num_samples=3)
            print(out3.numpy())
            # [[3 0 1]
            # [3 1 0]]
P
pangyoki 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

    """

    if in_dygraph_mode():
        return core.ops.multinomial(x, 'num_samples', num_samples,
                                    'replacement', replacement)

    check_variable_and_dtype(x, "x", ["float32", "float64"], "multinomial")

    helper = LayerHelper("multinomial", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=convert_np_dtype_to_dtype_('int64'))
    helper.append_op(
        type='multinomial',
        inputs={"X": x},
        outputs={'Out': out},
        attrs={'num_samples': num_samples,
               'replacement': replacement})
    return out


155
def gaussian(shape, mean=0.0, std=1.0, dtype=None, name=None):
156 157 158 159 160
    """
    This OP returns a Tensor filled with random values sampled from a Gaussian
    distribution, with ``shape`` and ``dtype``.

    Args:
161
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
162 163 164 165
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
166 167
        mean (float|int, optional): Mean of the output tensor, default is 0.0.
        std (float|int, optional): Standard deviation of the output tensor, default
168
            is 1.0.
169 170
        seed (int, optional): Random seed of generator.
        dtype (str|np.dtype, optional): The data type of the output Tensor.
171 172 173
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
174
        name (str, optional): The default value is None. Normally there is no
175 176 177 178 179 180 181
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a Gaussian
        distribution, with ``shape`` and ``dtype``. 
    """
182 183 184
    op_type_for_check = 'gaussian/standard_normal/randn/normal'
    seed = 0

185 186 187 188
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
        if dtype not in ['float32', 'float64']:
            raise TypeError(
189 190
                "{} only supports [float32, float64], but the default dtype is {}"
                .format(op_type_for_check, dtype))
191 192 193 194
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
195
        shape = utils.convert_shape_to_list(shape)
196 197 198 199 200
        return core.ops.gaussian_random('shape', shape, 'mean',
                                        float(mean), 'std',
                                        float(std), 'seed', seed, 'dtype',
                                        dtype)

201
    check_shape(shape, op_type_for_check)
202 203 204 205 206 207 208 209 210 211
    check_dtype(dtype, 'dtype', ['float32', 'float64'], op_type_for_check)

    inputs = {}
    attrs = {
        'mean': mean,
        'std': std,
        'seed': seed,
        'dtype': dtype,
        'use_mkldnn': False
    }
212
    utils.get_shape_tensor_inputs(
213 214
        inputs=inputs, attrs=attrs, shape=shape, op_type=op_type_for_check)

215
    helper = LayerHelper('gaussian', **locals())
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='gaussian_random',
        inputs=inputs,
        outputs={'Out': out},
        attrs=attrs)
    out.stop_gradient = True
    return out


def standard_normal(shape, dtype=None, name=None):
    """
    This OP returns a Tensor filled with random values sampled from a standard
    normal distribution with mean 0 and standard deviation 1, with ``shape``
    and ``dtype``.

    Args:
233
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
234 235 236 237
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
238
        dtype (str|np.dtype, optional): The data type of the output Tensor.
239 240 241
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a standard
        normal distribution with mean 0 and standard deviation 1, with
        ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            paddle.disable_static()

            # example 1: attr shape is a list which doesn't contain Tensor.
258
            out1 = paddle.standard_normal(shape=[2, 3])
259 260 261 262
            # [[-2.923464  ,  0.11934398, -0.51249987],  # random
            #  [ 0.39632758,  0.08177969,  0.2692008 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
263 264 265
            dim1 = paddle.full([1], 2, "int64")
            dim2 = paddle.full([1], 3, "int32")
            out2 = paddle.standard_normal(shape=[dim1, dim2, 2])
266 267 268 269 270 271 272 273
            # [[[-2.8852394 , -0.25898588],  # random
            #   [-0.47420555,  0.17683524],  # random
            #   [-0.7989969 ,  0.00754541]],  # random
            #  [[ 0.85201347,  0.32320443],  # random
            #   [ 1.1399018 ,  0.48336947],  # random
            #   [ 0.8086993 ,  0.6868893 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
274 275 276
            shape_tensor = paddle.to_tensor([2, 3])
            result_3 = paddle.standard_normal(shape_tensor)

277 278 279 280
            # [[-2.878077 ,  0.17099959,  0.05111201]  # random
            #  [-0.3761474, -1.044801  ,  1.1870178 ]]  # random

    """
281
    return gaussian(shape=shape, mean=0.0, std=1.0, dtype=dtype, name=name)
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330


randn = standard_normal


def normal(mean=0.0, std=1.0, shape=None, name=None):
    """
    This OP returns a Tensor filled with random values sampled from a normal
    distribution with ``mean`` and ``std`` (standard deviation) .

    If ``mean`` is a Tensor, the output Tensor has the same shape and data type as ``mean``.
    If ``mean`` is not a Tensor and ``std`` is a Tensor, the output Tensor has the same shape and data type as ``std``.
    If ``mean`` and ``std`` are not a Tensor, the output Tensor has the same shape as ``shape``, with data type float32.

    If ``mean`` and ``std`` are Tensor, the num of elements of ``mean`` and ``std`` should be the same.

    Args:
        mean (float|Tensor, optional): The mean of the output Tensor's normal distribution.
            If ``mean`` is float, all elements of the output Tensor shared the same mean.
            If ``mean`` is a Tensor(data type supports float32, float64), it has per-element means.
            Default is 0.0
        std (float|Tensor, optional): The  standard deviation of the output Tensor's normal distribution.
            If ``std`` is float, all elements of the output Tensor shared the same standard deviation.
            If ``std`` is a Tensor(data type supports float32, float64), it has per-element standard deviations.
            Defaule is 1.0
        shape (list|tuple|Tensor, optional): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64). If ``mean`` or ``std`` is a Tensor, the shape of the output
            Tensor is the same as ``mean`` or ``std`` , attr ``shape`` is ignored.
            Default is None
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor filled with random values sampled from a normal distribution with ``mean`` and ``std`` .

    Examples:
        .. code-block:: python

            import paddle

            paddle.disable_static()

            out1 = paddle.normal(shape=[2, 3])
            # [[ 0.17501129  0.32364586  1.561118  ]  # random
            #  [-1.7232178   1.1545963  -0.76156676]]  # random

331
            mean_tensor = paddle.to_tensor([1.0, 2.0, 3.0])
332 333 334
            out2 = paddle.normal(mean=mean_tensor)
            # [ 0.18644847 -1.19434458  3.93694787]  # random

335
            std_tensor = paddle.to_tensor([1.0, 2.0, 3.0])
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
            out3 = paddle.normal(mean=mean_tensor, std=std_tensor)
            # [1.00780561 3.78457445 5.81058198]  # random

    """
    if not in_dygraph_mode():
        check_type(mean, 'mean', (int, float, Variable), 'normal')
        check_type(std, 'std', (int, float, Variable), 'normal')
        if isinstance(mean, Variable):
            check_dtype(
                mean.dtype, 'mean', ['float32', 'float64'], 'normal',
                "If mean is Tensor, it's data type only support float32, float64."
            )
        if isinstance(std, Variable):
            check_dtype(
                std.dtype, 'std', ['float32', 'float64'], 'normal',
                "If std is Tensor, it's data type only support float32, float64."
            )
        if shape is not None:
354
            check_shape(shape, 'normal')
355 356 357 358 359 360 361 362 363 364 365 366 367 368

    if isinstance(mean, Variable):
        if isinstance(std, Variable):
            if std.dtype != mean.dtype:
                std = paddle.cast(std, mean.dtype)
            mean_shape = paddle.shape(mean)
            std = paddle.reshape(std, mean_shape)
        else:
            std = float(std)
        out = standard_normal(paddle.shape(mean), mean.dtype, name)
    elif isinstance(std, Variable):
        mean = float(mean)
        out = standard_normal(paddle.shape(std), std.dtype, name)
    else:
369
        return gaussian(shape=shape, mean=mean, std=std, name=name)
370 371 372 373 374 375 376

    out = out * std + mean
    if not in_dygraph_mode():
        out.stop_grediant = True
    return out


377
def uniform(shape, dtype=None, min=-1.0, max=1.0, seed=0, name=None):
P
pangyoki 已提交
378 379 380 381 382
    """
    This OP returns a Tensor filled with random values sampled from a uniform
    distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Examples:
李灿 已提交
383

P
pangyoki 已提交
384
    ::
李灿 已提交
385

P
pangyoki 已提交
386 387 388 389 390 391 392 393 394 395 396
        Input:
          shape = [1, 2]
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
        shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
397 398 399 400
        dtype(str|np.dtype, optional): The data type of the output Tensor.
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
P
pangyoki 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
        seed(int, optional): Random seed used for generating samples. 0 means
            use a seed generated by the system. Note that if seed is not 0,
            this operator will always generate the same random numbers every
            time. Default is 0.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Raises:
        TypeError: If ``shape`` is not list, tuple, Tensor.
        TypeError: If ``dtype`` is not float32, float64.

    Examples:
        .. code-block:: python
            
            import paddle

            paddle.disable_static()

            # example 1:
            # attr shape is a list which doesn't contain Tensor.
            result_1 = paddle.tensor.random.uniform(shape=[3, 4])
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357],
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249],
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]]

            # example 2:
            # attr shape is a list which contains Tensor.
437 438
            dim_1 = paddle.full([1], 2, "int64")
            dim_2 = paddle.full([1], 3, "int32")
P
pangyoki 已提交
439 440 441 442 443 444
            result_2 = paddle.tensor.random.uniform(shape=[dim_1, dim_2])
            # [[-0.9951253,   0.30757582, 0.9899647 ],
            #  [ 0.5864527,   0.6607096,  -0.8886161 ]]

            # example 3:
            # attr shape is a Tensor, the data type must be int64 or int32.
445
            shape_tensor = paddle.to_tensor([2, 3])
P
pangyoki 已提交
446 447 448 449 450 451 452 453
            result_3 = paddle.tensor.random.uniform(shape_tensor)
            # if shape_tensor's value is [2, 3]
            # result_3 is:
            # [[-0.8517412,  -0.4006908,   0.2551912 ],
            #  [ 0.3364414,   0.36278176, -0.16085452]]


    """
454 455 456 457
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
        if dtype not in ['float32', 'float64']:
            raise TypeError(
458 459
                "uniform/rand only supports [float32, float64], but the default dtype is {}".
                format(dtype))
460

P
pangyoki 已提交
461 462 463 464
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
465
        shape = utils.convert_shape_to_list(shape)
P
pangyoki 已提交
466 467 468 469
        return core.ops.uniform_random('shape', shape, 'min',
                                       float(min), 'max',
                                       float(max), 'seed', seed, 'dtype', dtype)

470 471
    check_type(shape, 'shape', (list, tuple, Variable), 'uniform/rand')
    check_dtype(dtype, 'dtype', ('float32', 'float64'), 'uniform/rand')
P
pangyoki 已提交
472 473 474

    inputs = dict()
    attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype}
475
    utils.get_shape_tensor_inputs(
476
        inputs=inputs, attrs=attrs, shape=shape, op_type='uniform/rand')
P
pangyoki 已提交
477

478
    helper = LayerHelper("uniform", **locals())
P
pangyoki 已提交
479 480 481 482 483 484 485
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="uniform_random", inputs=inputs, attrs=attrs,
        outputs={"Out": out})
    return out


486
def randint(low=0, high=None, shape=[1], dtype=None, name=None):
S
silingtong123 已提交
487
    """
488 489 490
    This OP returns a Tensor filled with random integers from a discrete uniform
    distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
    If ``high`` is None (the default), the range is [0, ``low``).
S
silingtong123 已提交
491 492

    Args:
493
        low (int): The lower bound on the range of random values to generate.
494 495
            The ``low`` is included in the range. If ``high`` is None, the
            range is [0, ``low``). Default is 0.
496
        high (int, optional): The upper bound on the range of random values to
497 498
            generate, the ``high`` is excluded in the range. Default is None
            (see above for behavior if high = None). Default is None.
499
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
500 501 502 503
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64). Default is [1].
504
        dtype (str|np.dtype, optional): The data type of the
505 506
            output tensor. Supported data types: int32, int64. If ``dytpe``
            is None, the data type is int64. Default is None.
507
        name (str, optional): The default value is None.  Normally there is no
508 509
            need for user to set this property.  For more information, please
            refer to :ref:`api_guide_Name`.
S
silingtong123 已提交
510 511

    Returns: 
512 513
        Tensor: A Tensor filled with random integers from a discrete uniform
        distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
S
silingtong123 已提交
514 515 516

    Examples:
        .. code-block:: python
517

518
            import paddle
519

520
            paddle.disable_static()
521

522 523
            # example 1:
            # attr shape is a list which doesn't contain Tensor.
524
            out1 = paddle.randint(low=-5, high=5, shape=[3])
525 526 527 528
            # [0, -3, 2]  # random

            # example 2:
            # attr shape is a list which contains Tensor.
529 530 531
            dim1 = paddle.full([1], 2, "int64")
            dim2 = paddle.full([1], 3, "int32")
            out2 = paddle.randint(low=-5, high=5, shape=[dim1, dim2], dtype="int32")
532 533 534 535 536
            # [[0, -1, -3],  # random
            #  [4, -2,  0]]  # random

            # example 3:
            # attr shape is a Tensor
537 538 539 540

            shape_tensor = paddle.to_tensor(3)
            result_3 = paddle.randint(low=-5, high=5, shape=shape_tensor)

541 542 543 544
            # [-2, 2, 3]  # random

            # example 4:
            # data type is int32
545
            out4 = paddle.randint(low=-5, high=5, shape=[3], dtype='int32')
546 547 548 549 550
            # [-5, 4, -4]  # random

            # example 5:
            # Input only one parameter
            # low=0, high=10, shape=[1], dtype='int64'
551
            out5 = paddle.randint(10)
552
            # [7]  # random
S
silingtong123 已提交
553

554 555
    """
    if high is None:
556 557 558 559
        if low <= 0:
            raise ValueError(
                "If high is None, low must be greater than 0, but received low = {0}.".
                format(low))
560 561
        high = low
        low = 0
S
silingtong123 已提交
562 563
    if dtype is None:
        dtype = 'int64'
564 565
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
S
silingtong123 已提交
566 567

    if in_dygraph_mode():
568
        shape = utils.convert_shape_to_list(shape)
569 570
        return core.ops.randint('shape', shape, 'low', low, 'high', high,
                                'seed', 0, 'dtype', dtype)
S
silingtong123 已提交
571

572
    check_shape(shape, 'randint')
573 574
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'randint')
    if low >= high:
S
silingtong123 已提交
575 576 577 578
        raise ValueError(
            "randint's low must less then high, but received low = {0}, "
            "high = {1}".format(low, high))

579 580
    inputs = dict()
    attrs = {'low': low, 'high': high, 'seed': 0, 'dtype': dtype}
581
    utils.get_shape_tensor_inputs(
582 583 584 585 586 587
        inputs=inputs, attrs=attrs, shape=shape, op_type='randint')

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(dtype=dtype)
    helper.append_op(
        type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs)
S
silingtong123 已提交
588
    return out
C
cc 已提交
589 590


591
def randperm(n, dtype="int64", name=None):
C
cc 已提交
592
    """
593 594
    This OP returns a 1-D Tensor filled with random permutation values from 0
    to n-1, with ``dtype``.
C
cc 已提交
595 596

    Args:
597 598
        n (int): The upper bound (exclusive), and it should be greater than 0.
        dtype (str|np.dtype, optional): The data type of
599 600
            the output Tensor. Supported data types: int32, int64, float32,
            float64. Default is int64.
601
        name (str, optional): The default value is None. Normally there is no
602 603
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
C
cc 已提交
604 605

    Returns:
606 607
        Tensor: A 1-D Tensor filled with random permutation values from 0
        to n-1, with ``dtype``.
C
cc 已提交
608 609 610 611

    Examples:
        .. code-block:: python

612
            import paddle
C
cc 已提交
613

614
            paddle.disable_static()
C
cc 已提交
615

616
            out1 = paddle.randperm(5)
617
            # [4, 1, 2, 3, 0]  # random
C
cc 已提交
618

619
            out2 = paddle.randperm(7, 'int32')
620
            # [1, 6, 2, 0, 4, 3, 5]  # random
C
cc 已提交
621 622
 
    """
623 624 625 626 627
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
        return core.ops.randperm('n', n, 'seed', 0, 'dtype', dtype)
C
cc 已提交
628 629 630

    if n < 1:
        raise ValueError("The input n should be greater than 0 in randperm op.")
631 632
    check_dtype(dtype, 'dtype', ['int64', 'int32', 'float32', 'float64'],
                'randperm')
C
cc 已提交
633 634

    helper = LayerHelper("randperm", **locals())
635 636 637 638
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {'n': n, 'dtype': dtype, 'seed': 0}
    helper.append_op(
        type='randperm', inputs={}, outputs={'Out': out}, attrs=attrs)
639
    out.stop_gradient = True
C
cc 已提交
640
    return out
X
Xing Wu 已提交
641 642


643
def rand(shape, dtype=None, name=None):
X
Xing Wu 已提交
644
    """
645 646
    This OP returns a Tensor filled with random values sampled from a uniform
    distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
647 648

    Args:
649
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
650 651 652 653
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
654
        dtype (str|np.dtype, optional): The data type of the output Tensor.
655 656 657
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
658
        name (str, optional): The default value is None. Normally there is no
659 660
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
661

X
Xing Wu 已提交
662
    Returns:
663 664
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
665 666 667 668

    Examples:
        .. code-block:: python

669
            import paddle
670

671 672
            paddle.disable_static()
            # example 1: attr shape is a list which doesn't contain Tensor.
673
            out1 = paddle.rand(shape=[2, 3])
674 675 676 677
            # [[0.451152  , 0.55825245, 0.403311  ],  # random
            #  [0.22550228, 0.22106001, 0.7877319 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
678 679 680
            dim1 = paddle.full([1], 2, "int64")
            dim2 = paddle.full([1], 3, "int32")
            out2 = paddle.rand(shape=[dim1, dim2, 2])
681 682 683 684 685 686 687 688
            # [[[0.8879919 , 0.25788337],  # random
            #   [0.28826773, 0.9712097 ],  # random
            #   [0.26438272, 0.01796806]],  # random
            #  [[0.33633623, 0.28654453],  # random
            #   [0.79109055, 0.7305809 ],  # random
            #   [0.870881  , 0.2984597 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
689 690 691
            shape_tensor = paddle.to_tensor([2, 3])
            result_3 = paddle.rand(shape_tensor)

692 693
            # [[0.22920267, 0.841956  , 0.05981819],  # random
            #  [0.4836288 , 0.24573246, 0.7516129 ]]  # random
X
Xing Wu 已提交
694 695

    """
696
    return uniform(shape, dtype, min=0.0, max=1.0, name=name)