test_layers.py 70.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
from __future__ import print_function
Q
Qiao Longfei 已提交
16 17
import unittest

18 19 20 21 22 23
import contextlib
import numpy as np
import decorators

import paddle
import paddle.fluid as fluid
24
from paddle.fluid.layers.device import get_places
25 26 27
import paddle.fluid.nets as nets
from paddle.fluid.framework import Program, program_guard, default_main_program
from paddle.fluid.param_attr import ParamAttr
28
from paddle.fluid import core
J
jerrywgz 已提交
29
from paddle.fluid.initializer import Constant
30 31
import paddle.fluid.layers as layers
from test_imperative_base import new_program_scope
L
lujun 已提交
32 33
from paddle.fluid.dygraph import nn
from paddle.fluid.dygraph import base
34 35 36 37 38 39 40 41 42 43 44


class LayerTest(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.seed = 111

    @classmethod
    def tearDownClass(cls):
        pass

45 46 47 48 49 50 51 52
    def _get_place(self, force_to_use_cpu=False):
        # this option for ops that only have cpu kernel
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()
53 54 55 56 57 58 59 60

    @contextlib.contextmanager
    def static_graph(self):
        with new_program_scope():
            fluid.default_startup_program().random_seed = self.seed
            fluid.default_main_program().random_seed = self.seed
            yield

61
    def get_static_graph_result(self, feed, fetch_list, with_lod=False):
62 63 64 65
        exe = fluid.Executor(self._get_place())
        exe.run(fluid.default_startup_program())
        return exe.run(fluid.default_main_program(),
                       feed=feed,
66 67
                       fetch_list=fetch_list,
                       return_numpy=(not with_lod))
68 69

    @contextlib.contextmanager
70
    def dynamic_graph(self, force_to_use_cpu=False):
L
lujun 已提交
71
        with fluid.dygraph.guard(
72
                self._get_place(force_to_use_cpu=force_to_use_cpu)):
73 74 75 76 77 78
            fluid.default_startup_program().random_seed = self.seed
            fluid.default_main_program().random_seed = self.seed
            yield


class TestLayer(LayerTest):
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
    def test_layer_norm(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False)
            ret = layers.layer_norm(t)
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret])[0]
        with self.static_graph():
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False)
            lm = nn.LayerNorm('layer_norm')
            ret = lm(t)
            static_ret2 = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret])[0]
        with self.dynamic_graph():
            lm = nn.LayerNorm('layer_norm')
            dy_ret = lm(base.to_variable(inp))

        self.assertTrue(np.allclose(static_ret, static_ret2))
        self.assertTrue(np.allclose(dy_ret._numpy(), static_ret2))

107 108 109 110 111 112 113 114 115 116 117 118 119 120
    def test_relu(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            ret = layers.relu(t)
            static_ret = self.get_static_graph_result(
                feed={'t': np.ones(
                    [3, 3], dtype='float32')}, fetch_list=[ret])[0]

        with self.dynamic_graph():
            t = np.ones([3, 3], dtype='float32')
            dy_ret = layers.relu(base.to_variable(t))

        self.assertTrue(np.allclose(static_ret, dy_ret._numpy()))

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
    def test_matmul(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            ret = layers.matmul(t, t2)
            static_ret = self.get_static_graph_result(
                feed={
                    't': np.ones(
                        [3, 3], dtype='float32'),
                    't2': np.ones(
                        [3, 3], dtype='float32')
                },
                fetch_list=[ret])[0]

        with self.dynamic_graph():
            t = np.ones([3, 3], dtype='float32')
            t2 = np.ones([3, 3], dtype='float32')
X
polish  
Xin Pan 已提交
138
            dy_ret = layers.matmul(base.to_variable(t), base.to_variable(t2))
139 140 141

        self.assertTrue(np.allclose(static_ret, dy_ret._numpy()))

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    def test_conv2d(self):
        with self.static_graph():
            images = layers.data(name='pixel', shape=[3, 5, 5], dtype='float32')
            ret = layers.conv2d(input=images, num_filters=3, filter_size=[2, 2])
            static_ret = self.get_static_graph_result(
                feed={'pixel': np.ones(
                    [2, 3, 5, 5], dtype='float32')},
                fetch_list=[ret])[0]

        with self.static_graph():
            images = layers.data(name='pixel', shape=[3, 5, 5], dtype='float32')
            conv2d = nn.Conv2D(
                'conv2d', num_channels=3, num_filters=3, filter_size=[2, 2])
            ret = conv2d(images)
            static_ret2 = self.get_static_graph_result(
                feed={'pixel': np.ones(
                    [2, 3, 5, 5], dtype='float32')},
                fetch_list=[ret])[0]

        with self.dynamic_graph():
            images = np.ones([2, 3, 5, 5], dtype='float32')
            conv2d = nn.Conv2D(
                'conv2d', num_channels=3, num_filters=3, filter_size=[2, 2])
            dy_ret = conv2d(base.to_variable(images))

        self.assertTrue(np.allclose(static_ret, dy_ret._numpy()))
        self.assertTrue(np.allclose(static_ret, static_ret2))
Y
Yu Yang 已提交
169

M
minqiyang 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    def test_gru_unit(self):
        lod = [[2, 4, 3]]
        D = 5
        T = sum(lod[0])
        N = len(lod[0])

        input = np.random.rand(T, 3 * D).astype('float32')
        hidden_input = np.random.rand(T, D).astype('float32')

        with self.static_graph():
            x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
            hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
            updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
                input=x, hidden=hidden, size=D * 3)
            static_ret = self.get_static_graph_result(
                feed={'x': input,
                      'hidden': hidden_input},
                fetch_list=[updated_hidden, reset_hidden_pre, gate])

        with self.static_graph():
            x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
            hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
            updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
                input=x, hidden=hidden, size=D * 3)
            gru = nn.GRUUnit('gru', size=D * 3)
            updated_hidden, reset_hidden_pre, gate = gru(x, hidden)

            static_ret2 = self.get_static_graph_result(
                feed={'x': input,
                      'hidden': hidden_input},
                fetch_list=[updated_hidden, reset_hidden_pre, gate])

        with self.dynamic_graph():
            gru = nn.GRUUnit('gru', size=D * 3)
            dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

        for i in range(len(static_ret)):
            self.assertTrue(np.allclose(static_ret[i], static_ret2[i]))
            self.assertTrue(np.allclose(static_ret[i], dy_ret[i]._numpy()))

X
Xin Pan 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
    def test_elementwise_math(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 1.1
        n3 = np.ones([3, 3], dtype='float32') * 2
        n4 = np.ones([3, 3], dtype='float32') * 3
        n5 = np.ones([3, 3], dtype='float32') * 4
        n6 = np.ones([3, 3], dtype='float32') * 5

        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            t3 = layers.data(name='t3', shape=[3, 3], dtype='float32')
            t4 = layers.data(name='t4', shape=[3, 3], dtype='float32')
            t5 = layers.data(name='t5', shape=[3, 3], dtype='float32')
            t6 = layers.data(name='t6', shape=[3, 3], dtype='float32')

            ret = layers.elementwise_add(t, t2)
            ret = layers.elementwise_pow(ret, t3)
            ret = layers.elementwise_div(ret, t4)
            ret = layers.elementwise_sub(ret, t5)
            ret = layers.elementwise_mul(ret, t6)

            static_ret = self.get_static_graph_result(
                feed={
                    't': n,
                    't2': n2,
                    't3': n3,
                    't4': n4,
                    't5': n5,
                    't6': n6
                },
                fetch_list=[ret])[0]

        with self.dynamic_graph():
            ret = layers.elementwise_add(n, n2)
            ret = layers.elementwise_pow(ret, n3)
            ret = layers.elementwise_div(ret, n4)
            ret = layers.elementwise_sub(ret, n5)
            dy_ret = layers.elementwise_mul(ret, n6)
        self.assertTrue(
            np.allclose(static_ret, dy_ret._numpy()),
            '%s vs %s' % (static_ret, dy_ret._numpy()))

    def test_elementwise_minmax(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 2

        with self.dynamic_graph():
            min_ret = layers.elementwise_min(n, n2)
            max_ret = layers.elementwise_max(n, n2)

        self.assertTrue(np.allclose(n, min_ret._numpy()))
        self.assertTrue(np.allclose(n2, max_ret._numpy()))

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
    def test_sequence_conv(self):
        inp_np = np.arange(12).reshape([3, 4]).astype('float32')
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        with self.static_graph():
            seq = layers.data(
                name='seq_in',
                shape=[3, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            out = layers.sequence_conv(seq, 2)
            static_rlt = self.get_static_graph_result(
                feed={
                    "seq_in": fluid.create_lod_tensor(
                        data=inp_np,
                        recursive_seq_lens=[[1, 1, 1]],
                        place=place)
                },
                fetch_list=[out],
                with_lod=True)[0]

        with self.static_graph():
            seq = layers.data(
                name='seq_in',
                shape=[3, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            seq_conv = nn.SequenceConv('seq_conv', num_filters=2)
            out = seq_conv(seq)
            static_rlt2 = self.get_static_graph_result(
                feed={
                    "seq_in": fluid.create_lod_tensor(
                        data=inp_np,
                        recursive_seq_lens=[[1, 1, 1]],
                        place=place)
                },
                fetch_list=[out],
                with_lod=True)[0]
        self.assertTrue(
            np.allclose(np.array(static_rlt), np.array(static_rlt2)))

    def test_conv2d_transpose(self):
        inp_np = np.arange(0, 24).reshape([2, 3, 2, 2]).astype('float32')
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            out = layers.conv2d_transpose(
                input=img, num_filters=10, output_size=28)
            static_rlt = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out])[0]
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            conv2d_transpose = nn.Conv2DTranspose(
                'conv2d_transpose', num_filters=10, output_size=28)
            out = conv2d_transpose(img)
            static_rlt2 = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out])[0]
        with self.dynamic_graph():
            conv2d_transpose = nn.Conv2DTranspose(
                'conv2d_transpose', num_filters=10, output_size=28)
            dy_rlt = conv2d_transpose(base.to_variable(inp_np))
        self.assertTrue(np.allclose(static_rlt2, static_rlt))
        self.assertTrue(np.allclose(dy_rlt._numpy(), static_rlt))

    def test_bilinear_tensor_product(self):
        inp_np_x = np.array([[1, 2, 3]]).astype('float32')
        inp_np_y = np.array([[4, 5, 6]]).astype('float32')

        with self.static_graph():
            data_x = layers.data(
                name='x',
                shape=[1, 3],
                dtype="float32",
                append_batch_size=False)
            data_y = layers.data(
                name='y',
                shape=[1, 3],
                dtype="float32",
                append_batch_size=False)
            out = layers.bilinear_tensor_product(data_x, data_y, 6)

            static_rlt = self.get_static_graph_result(
                feed={'x': inp_np_x,
                      'y': inp_np_y}, fetch_list=[out])[0]
        with self.static_graph():
            data_x = layers.data(
                name='x',
                shape=[1, 3],
                dtype="float32",
                append_batch_size=False)
            data_y = layers.data(
                name='y',
                shape=[1, 3],
                dtype="float32",
                append_batch_size=False)
            btp = nn.BilinearTensorProduct('btp', 6)
            out = btp(data_x, data_y)
            static_rlt2 = self.get_static_graph_result(
                feed={'x': inp_np_x,
                      'y': inp_np_y}, fetch_list=[out])[0]
        with self.dynamic_graph():
            btp = nn.BilinearTensorProduct('btp', 6)
            dy_rlt = btp(base.to_variable(inp_np_x), base.to_variable(inp_np_y))

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
        self.assertTrue(np.allclose(dy_rlt._numpy(), static_rlt))

    def test_prelu(self):
        inp_np = np.ones([5, 200, 100, 100]).astype('float32')

        with self.static_graph():
            data_t = layers.data(
                name="input",
                shape=[5, 200, 100, 100],
                dtype="float32",
                append_batch_size=False)
            mode = 'channel'
            out = layers.prelu(
                data_t, mode, param_attr=ParamAttr(initializer=Constant(1.0)))
            static_rlt = self.get_static_graph_result(
                feed={"input": inp_np}, fetch_list=[out])[0]

        with self.static_graph():
            data_t = layers.data(
                name="input",
                shape=[5, 200, 100, 100],
                dtype="float32",
                append_batch_size=False)
            mode = 'channel'
            prelu = nn.PRelu(
                'prelu',
                mode=mode,
                param_attr=ParamAttr(initializer=Constant(1.0)))
            out = prelu(data_t)
            static_rlt2 = self.get_static_graph_result(
                feed={"input": inp_np}, fetch_list=[out])[0]

        with self.dynamic_graph():
            mode = 'channel'
            prelu = nn.PRelu(
                'prelu',
                mode=mode,
                param_attr=ParamAttr(initializer=Constant(1.0)))
            dy_rlt = prelu(base.to_variable(inp_np))

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
        self.assertTrue(np.allclose(dy_rlt._numpy(), static_rlt))

    def test_embeding(self):
        inp_word = np.array([[[1]]]).astype('int64')
        dict_size = 20
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
            emb = layers.embedding(
                input=data_t,
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=False)
            static_rlt = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb])[0]
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
            emb2 = nn.Embedding(
                name_scope='embedding',
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=False)
            emb_rlt = emb2(data_t)
            static_rlt2 = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb_rlt])[0]
        with self.dynamic_graph():
            emb2 = nn.Embedding(
                name_scope='embedding',
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=False)
            static_rlt3 = emb2(base.to_variable(inp_word))

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
        self.assertTrue(np.allclose(static_rlt3._numpy(), static_rlt))

    def test_nce(self):
        window_size = 5
        dict_size = 20
        label_word = int(window_size // 2) + 1
        inp_word = np.array([[[1]], [[2]], [[3]], [[4]], [[5]]]).astype('int64')
        nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')
        seed = 1
        with self.static_graph():
            words = []
            for i in range(window_size):
                words.append(
                    layers.data(
                        name='word_{0}'.format(i), shape=[1], dtype='int64'))

            embs = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(
                    input=words[i],
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            nce_loss = layers.nce(input=embs,
                                  label=words[label_word],
                                  num_total_classes=dict_size,
                                  num_neg_samples=2,
                                  sampler="custom_dist",
                                  custom_dist=nid_freq_arr.tolist(),
                                  seed=seed,
                                  param_attr='nce.w',
                                  bias_attr='nce.b')
            feed_dict = dict()
            for i in range(window_size):
                feed_dict['word_{0}'.format(i)] = inp_word[i]
            static_rlt = self.get_static_graph_result(
                feed=feed_dict, fetch_list=[nce_loss])[0]
        with self.static_graph():
            words = []
            for i in range(window_size):
                words.append(
                    layers.data(
                        name='word_{0}'.format(i), shape=[1], dtype='int64'))

            emb = nn.Embedding(
                'embedding',
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=False)

            embs2 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs2.append(emb_rlt)

            embs2 = layers.concat(input=embs2, axis=1)
            nce = nn.NCE('nce',
                         num_total_classes=dict_size,
                         num_neg_samples=2,
                         sampler="custom_dist",
                         custom_dist=nid_freq_arr.tolist(),
                         seed=seed,
                         param_attr='nce.w',
                         bias_attr='nce.b')

            nce_loss2 = nce(embs2, words[label_word])
            feed_dict = dict()
            for i in range(len(words)):
                feed_dict['word_{0}'.format(i)] = inp_word[i]

            static_rlt2 = self.get_static_graph_result(
                feed=feed_dict, fetch_list=[nce_loss2])[0]

        with self.dynamic_graph(force_to_use_cpu=True):
            words = []
            for i in range(window_size):
                words.append(base.to_variable(inp_word[i]))

            emb = nn.Embedding(
                'embedding',
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=False)

            embs3 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs3.append(emb_rlt)

            embs3 = layers.concat(input=embs3, axis=1)
            nce = nn.NCE('nce',
                         num_total_classes=dict_size,
                         num_neg_samples=2,
                         sampler="custom_dist",
                         custom_dist=nid_freq_arr.tolist(),
                         seed=seed,
                         param_attr='nce.w',
                         bias_attr='nce.b')

            nce_loss3 = nce(embs3, words[label_word])

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
        self.assertTrue(np.allclose(nce_loss3._numpy(), static_rlt))

L
lujun 已提交
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
    def test_conv3d(self):
        with self.static_graph():
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32')
            ret = layers.conv3d(
                input=images, num_filters=3, filter_size=[2, 2, 2])
            static_ret = self.get_static_graph_result(
                feed={'pixel': np.ones(
                    [2, 3, 6, 6, 6], dtype='float32')},
                fetch_list=[ret])[0]

        with self.static_graph():
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32')
            conv3d = nn.Conv3D(
                'conv3d', num_channels=3, num_filters=3, filter_size=[2, 2, 2])
            ret = conv3d(images)
            static_ret2 = self.get_static_graph_result(
                feed={'pixel': np.ones(
                    [2, 3, 6, 6, 6], dtype='float32')},
                fetch_list=[ret])[0]

        with self.dynamic_graph():
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            conv3d = nn.Conv3D(
                'conv3d', num_channels=3, num_filters=3, filter_size=[2, 2, 2])
            dy_ret = conv3d(base.to_variable(images))

        self.assertTrue(np.allclose(static_ret, dy_ret._numpy()))
        self.assertTrue(np.allclose(static_ret, static_ret2))

    def test_row_conv(self):
        input = np.arange(15).reshape([3, 5]).astype('float32')
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        with self.static_graph():
            x = layers.data(
                name='X',
                shape=[3, 5],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            ret = layers.row_conv(input=x, future_context_size=2)
            static_ret = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1, 1]], place=place)
                },
                fetch_list=[ret],
                with_lod=True)[0]

        with self.static_graph():
            x = layers.data(
                name='X',
                shape=[3, 5],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            rowConv = nn.RowConv('RowConv', future_context_size=2)
            ret = rowConv(x)
            static_ret2 = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
629
                        data=input, recursive_seq_lens=[[1, 1, 1]], place=place)
L
lujun 已提交
630
                },
631 632
                fetch_list=[ret],
                with_lod=True)[0]
L
lujun 已提交
633

634
        # TODO: dygraph can't support LODTensor
L
lujun 已提交
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833

        self.assertTrue(np.allclose(static_ret, static_ret2))

    def test_group_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            ret = layers.group_norm(input=X, groups=2)
            static_ret = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place)
                },
                fetch_list=[ret],
                with_lod=True)[0]

        with self.static_graph():
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            groupNorm = nn.GroupNorm('GroupNorm', groups=2)
            ret = groupNorm(X)
            static_ret2 = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place)
                },
                fetch_list=[ret],
                with_lod=True)[0]

        with self.dynamic_graph():
            groupNorm = nn.GroupNorm('GroupNorm', groups=2)
            dy_ret = groupNorm(base.to_variable(input))

        self.assertTrue(np.allclose(static_ret, dy_ret._numpy()))
        self.assertTrue(np.allclose(static_ret, static_ret2))

    def test_spectral_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            ret = layers.spectral_norm(weight=Weight, dim=1, power_iters=2)
            static_ret = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place),
                },
                fetch_list=[ret],
                with_lod=True)[0]

        with self.static_graph():
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            spectralNorm = nn.SpectralNorm('SpectralNorm', dim=1, power_iters=2)
            ret = spectralNorm(Weight)
            static_ret2 = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place)
                },
                fetch_list=[ret],
                with_lod=True)[0]

        with self.dynamic_graph():
            spectralNorm = nn.SpectralNorm('SpectralNorm', dim=1, power_iters=2)
            dy_ret = spectralNorm(base.to_variable(input))

        self.assertTrue(np.allclose(static_ret, dy_ret._numpy()))
        self.assertTrue(np.allclose(static_ret, static_ret2))

    def test_tree_conv(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        adj_array = [1, 2, 1, 3, 1, 4, 1, 5, 2, 6, 2, 7, 2, 8, 4, 9, 4, 10]
        adj = np.array(adj_array).reshape((1, 9, 2)).astype('int32')
        adj = np.tile(adj, (1, 1, 1))
        vectors = np.random.random((1, 10, 5)).astype('float32')
        with self.static_graph():
            NodesVector = fluid.layers.data(
                name='NodesVector',
                shape=(1, 10, 5),
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            EdgeSet = fluid.layers.data(
                name='EdgeSet',
                shape=(1, 9, 2),
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            ret = layers.tree_conv(
                nodes_vector=NodesVector,
                edge_set=EdgeSet,
                output_size=6,
                num_filters=1,
                max_depth=2)
            static_ret = self.get_static_graph_result(
                feed={
                    'NodesVector': fluid.create_lod_tensor(
                        data=vectors, recursive_seq_lens=[[1]], place=place),
                    'EdgeSet': fluid.create_lod_tensor(
                        data=adj, recursive_seq_lens=[[1]], place=place)
                },
                fetch_list=[ret],
                with_lod=False)[0]

        with self.static_graph():
            NodesVector = fluid.layers.data(
                name='NodesVector',
                shape=(1, 10, 5),
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            EdgeSet = fluid.layers.data(
                name='EdgeSet',
                shape=(1, 9, 2),
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            treeConv = nn.TreeConv(
                'TreeConv', output_size=6, num_filters=1, max_depth=2)
            ret = treeConv(NodesVector, EdgeSet)
            static_ret2 = self.get_static_graph_result(
                feed={
                    'NodesVector': fluid.create_lod_tensor(
                        data=vectors, recursive_seq_lens=[[1]], place=place),
                    'EdgeSet': fluid.create_lod_tensor(
                        data=adj, recursive_seq_lens=[[1]], place=place)
                },
                fetch_list=[ret],
                with_lod=False)[0]

        with self.dynamic_graph():
            treeConv = nn.TreeConv(
                'SpectralNorm', output_size=6, num_filters=1, max_depth=2)
            dy_ret = treeConv(base.to_variable(vectors), base.to_variable(adj))

        self.assertTrue(np.allclose(static_ret, static_ret2))
        self.assertTrue(np.allclose(static_ret, dy_ret._numpy()))

    def test_conv3d_transpose(self):
        input_array = np.arange(0, 48).reshape(
            [2, 3, 2, 2, 2]).astype('float32')

        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
            out = layers.conv3d_transpose(
                input=img, num_filters=12, output_size=[14, 14, 14])
            static_rlt = self.get_static_graph_result(
                feed={'pixel': input_array}, fetch_list=[out])[0]
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
            conv3d_transpose = nn.Conv3DTranspose(
                'Conv3DTranspose', num_filters=12, output_size=[14, 14, 14])
            out = conv3d_transpose(img)
            static_rlt2 = self.get_static_graph_result(
                feed={'pixel': input_array}, fetch_list=[out])[0]
        with self.dynamic_graph():
            conv3d_transpose = nn.Conv3DTranspose(
                'Conv3DTranspose', num_filters=12, output_size=[14, 14, 14])
            dy_rlt = conv3d_transpose(base.to_variable(input_array))
        self.assertTrue(np.allclose(static_rlt2, static_rlt))
        self.assertTrue(np.allclose(dy_rlt._numpy(), static_rlt))

Y
Yu Yang 已提交
834 835 836

class TestBook(unittest.TestCase):
    def test_fit_a_line(self):
837
        program = Program()
Y
Yu Yang 已提交
838 839 840 841 842
        with program_guard(program, startup_program=Program()):
            x = layers.data(name='x', shape=[13], dtype='float32')
            y_predict = layers.fc(input=x, size=1, act=None)
            y = layers.data(name='y', shape=[1], dtype='float32')
            cost = layers.square_error_cost(input=y_predict, label=y)
Y
Yu Yang 已提交
843
            avg_cost = layers.mean(cost)
Y
Yu Yang 已提交
844
            self.assertIsNotNone(avg_cost)
Y
Yu Yang 已提交
845

Y
Yu Yang 已提交
846
        print(str(program))
Y
Yu Yang 已提交
847 848

    def test_recognize_digits_mlp(self):
849
        program = Program()
Y
Yu Yang 已提交
850 851 852 853 854 855
        with program_guard(program, startup_program=Program()):
            # Change g_program, so the rest layers use `g_program`
            images = layers.data(name='pixel', shape=[784], dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int32')
            hidden1 = layers.fc(input=images, size=128, act='relu')
            hidden2 = layers.fc(input=hidden1, size=64, act='relu')
856 857 858 859
            predict = layers.fc(input=[hidden2, hidden1],
                                size=10,
                                act='softmax',
                                param_attr=["sftmax.w1", "sftmax.w2"])
Y
Yu Yang 已提交
860
            cost = layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
861
            avg_cost = layers.mean(cost)
Y
Yu Yang 已提交
862 863 864
            self.assertIsNotNone(avg_cost)

        print(str(program))
865 866

    def test_simple_conv2d(self):
F
fengjiayi 已提交
867
        program = Program()
Y
Yu Yang 已提交
868
        with program_guard(program, startup_program=Program()):
869 870
            images = layers.data(
                name='pixel', shape=[3, 48, 48], dtype='float32')
Y
Yu Yang 已提交
871 872 873
            layers.conv2d(input=images, num_filters=3, filter_size=[4, 4])

        print(str(program))
Y
Yu Yang 已提交
874

875 876
    def test_conv2d_transpose(self):
        program = Program()
Y
Yu Yang 已提交
877 878 879 880
        with program_guard(program):
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            layers.conv2d_transpose(input=img, num_filters=10, output_size=28)
        print(str(program))
881

F
fengjiayi 已提交
882
    def test_recognize_digits_conv(self):
F
fengjiayi 已提交
883
        program = Program()
Y
Yu Yang 已提交
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
        with program_guard(program, startup_program=Program()):
            images = layers.data(
                name='pixel', shape=[1, 28, 28], dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int32')
            conv_pool_1 = nets.simple_img_conv_pool(
                input=images,
                filter_size=5,
                num_filters=2,
                pool_size=2,
                pool_stride=2,
                act="relu")
            conv_pool_2 = nets.simple_img_conv_pool(
                input=conv_pool_1,
                filter_size=5,
                num_filters=4,
                pool_size=2,
                pool_stride=2,
                act="relu")

            predict = layers.fc(input=conv_pool_2, size=10, act="softmax")
            cost = layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
905
            avg_cost = layers.mean(cost)
Y
Yu Yang 已提交
906 907

        print(str(program))
908

Q
QI JUN 已提交
909 910
    def test_word_embedding(self):
        program = Program()
Y
Yu Yang 已提交
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
        with program_guard(program, startup_program=Program()):
            dict_size = 10000
            embed_size = 32
            first_word = layers.data(name='firstw', shape=[1], dtype='int64')
            second_word = layers.data(name='secondw', shape=[1], dtype='int64')
            third_word = layers.data(name='thirdw', shape=[1], dtype='int64')
            forth_word = layers.data(name='forthw', shape=[1], dtype='int64')
            next_word = layers.data(name='nextw', shape=[1], dtype='int64')

            embed_first = layers.embedding(
                input=first_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')
            embed_second = layers.embedding(
                input=second_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')

            embed_third = layers.embedding(
                input=third_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')
            embed_forth = layers.embedding(
                input=forth_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')

            concat_embed = layers.concat(
                input=[embed_first, embed_second, embed_third, embed_forth],
                axis=1)

            hidden1 = layers.fc(input=concat_embed, size=256, act='sigmoid')
            predict_word = layers.fc(input=hidden1,
                                     size=dict_size,
                                     act='softmax')
            cost = layers.cross_entropy(input=predict_word, label=next_word)
Y
Yu Yang 已提交
951
            avg_cost = layers.mean(cost)
Y
Yu Yang 已提交
952 953 954
            self.assertIsNotNone(avg_cost)

        print(str(program))
Q
Qiao Longfei 已提交
955 956 957

    def test_linear_chain_crf(self):
        program = Program()
Y
Yu Yang 已提交
958
        with program_guard(program, startup_program=Program()):
Q
Qiao Longfei 已提交
959
            label_dict_len = 10
Y
Yu Yang 已提交
960 961 962
            images = layers.data(name='pixel', shape=[784], dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int32')
            hidden = layers.fc(input=images, size=128)
Q
Qiao Longfei 已提交
963 964 965 966
            crf = layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Q
Qiao Longfei 已提交
967 968 969 970
            layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
M
minqiyang 已提交
971
                num_chunk_types=(label_dict_len - 1) // 2)
Q
qiaolongfei 已提交
972 973
            self.assertFalse(crf is None)
            self.assertFalse(crf_decode is None)
Y
Yu Yang 已提交
974 975

        print(str(program))
Q
QI JUN 已提交
976

977 978 979 980 981
    def test_sigmoid_cross_entropy(self):
        program = Program()
        with program_guard(program):
            dat = layers.data(name='data', shape=[10], dtype='float32')
            lbl = layers.data(name='label', shape=[10], dtype='float32')
982
            ignore_index = -1
983 984
            self.assertIsNotNone(
                layers.sigmoid_cross_entropy_with_logits(
J
jerrywgz 已提交
985
                    x=dat, label=lbl, ignore_index=ignore_index))
986 987
        print(str(program))

W
weixing02 已提交
988 989 990
    def test_hsigmoid(self):
        program = Program()
        with program_guard(program):
W
weixing02 已提交
991 992
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[2], dtype='int64')
W
weixing02 已提交
993 994 995 996 997
            self.assertIsNotNone(
                layers.hsigmoid(
                    input=x, label=y, num_classes=2))
        print(str(program))

J
JiabinYang 已提交
998
        # test hsigmod with custom tree structure
J
JiabinYang 已提交
999 1000 1001 1002
        program2 = Program()
        with program_guard(program2):
            x2 = layers.data(name='x2', shape=[4, 8], dtype='float32')
            y2 = layers.data(name='y2', shape=[4], dtype='int64')
1003 1004 1005 1006
            path_table = layers.data(
                name='path_table', shape=[4, 6], dtype='int64')
            path_code = layers.data(
                name='path_code', shape=[4, 6], dtype='int64')
J
JiabinYang 已提交
1007 1008 1009 1010
            self.assertIsNotNone(
                layers.hsigmoid(
                    input=x2,
                    label=y2,
1011
                    num_classes=6,
1012 1013 1014
                    path_table=path_table,
                    path_code=path_code,
                    is_custom=True))
J
JiabinYang 已提交
1015 1016
            print(str(program2))

Y
yangyaming 已提交
1017
    def test_sequence_expand(self):
Y
yangyaming 已提交
1018 1019 1020 1021
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[10], dtype='float32')
            y = layers.data(
Y
yangyaming 已提交
1022 1023
                name='y', shape=[10, 20], dtype='float32', lod_level=2)
            self.assertIsNotNone(layers.sequence_expand(x=x, y=y, ref_level=1))
Y
yangyaming 已提交
1024 1025
        print(str(program))

Y
Yibing Liu 已提交
1026 1027 1028 1029 1030 1031 1032 1033
    def test_sequence_unpad(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[10, 5], dtype='float32')
            length = layers.data(name='length', shape=[1], dtype='int64')
            self.assertIsNotNone(layers.sequence_unpad(x=x, length=length))
        print(str(program))

J
JiabinYang 已提交
1034 1035 1036 1037
    def test_pool2d(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[3, 224, 224], dtype='float32')
J
JiabinYang 已提交
1038 1039 1040 1041 1042 1043
            self.assertIsNotNone(
                layers.pool2d(
                    x,
                    pool_size=[5, 3],
                    pool_stride=[1, 2],
                    pool_padding=(2, 1)))
J
JiabinYang 已提交
1044

1045 1046 1047 1048 1049 1050 1051
    def test_adaptive_pool2d(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[3, 224, 224], dtype='float32')
            self.assertIsNotNone(
                layers.adaptive_pool2d(
                    x, [3, 3], pool_type='avg'))
D
dengkaipeng 已提交
1052 1053 1054
            pool, mask = layers.adaptive_pool2d(x, [3, 3], require_index=True)
            self.assertIsNotNone(pool)
            self.assertIsNotNone(mask)
1055 1056 1057 1058
            self.assertIsNotNone(layers.adaptive_pool2d(x, 3, pool_type='avg'))
            pool, mask = layers.adaptive_pool2d(x, 3, require_index=True)
            self.assertIsNotNone(pool)
            self.assertIsNotNone(mask)
1059 1060 1061 1062 1063 1064 1065 1066

    def test_adaptive_pool3d(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[3, 244, 224, 224], dtype='float32')
            self.assertIsNotNone(
                layers.adaptive_pool3d(
                    x, [3, 3, 3], pool_type='avg'))
D
dengkaipeng 已提交
1067 1068 1069 1070
            pool, mask = layers.adaptive_pool3d(
                x, [3, 3, 3], require_index=True)
            self.assertIsNotNone(pool)
            self.assertIsNotNone(mask)
1071 1072 1073 1074
            self.assertIsNotNone(layers.adaptive_pool3d(x, 3, pool_type='avg'))
            pool, mask = layers.adaptive_pool3d(x, 3, require_index=True)
            self.assertIsNotNone(pool)
            self.assertIsNotNone(mask)
1075

Y
yangyaming 已提交
1076 1077 1078 1079 1080 1081 1082
    def test_lstm_unit(self):
        program = Program()
        with program_guard(program):
            x_t_data = layers.data(
                name='x_t_data', shape=[10, 10], dtype='float32')
            x_t = layers.fc(input=x_t_data, size=10)
            prev_hidden_data = layers.data(
Y
yangyaming 已提交
1083 1084
                name='prev_hidden_data', shape=[10, 30], dtype='float32')
            prev_hidden = layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
1085 1086 1087 1088 1089 1090 1091 1092
            prev_cell_data = layers.data(
                name='prev_cell', shape=[10, 30], dtype='float32')
            prev_cell = layers.fc(input=prev_cell_data, size=30)
            self.assertIsNotNone(
                layers.lstm_unit(
                    x_t=x_t, hidden_t_prev=prev_hidden, cell_t_prev=prev_cell))
        print(str(program))

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
    def test_dynamic_lstmp(self):
        program = Program()
        with program_guard(program):
            hidden_dim, proj_dim = 16, 8
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1)
            fc_out = layers.fc(input=seq_data, size=4 * hidden_dim)
            self.assertIsNotNone(
                layers.dynamic_lstmp(
                    input=fc_out, size=4 * hidden_dim, proj_size=proj_dim))
        print(str(program))

Y
yangyaming 已提交
1105 1106 1107 1108 1109 1110
    def test_sequence_softmax(self):
        program = Program()
        with program_guard(program):
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1)
            seq = layers.fc(input=seq_data, size=20)
1111
            self.assertIsNotNone(layers.sequence_softmax(seq))
Y
yangyaming 已提交
1112 1113
        print(str(program))

D
dangqingqing 已提交
1114 1115 1116 1117 1118
    def test_softmax(self):
        program = Program()
        with program_guard(program):
            data = layers.data(name='data', shape=[10], dtype='float32')
            hid = layers.fc(input=data, size=20)
1119
            self.assertIsNotNone(layers.softmax(hid))
D
dangqingqing 已提交
1120 1121
        print(str(program))

J
JiabinYang 已提交
1122
    def test_space_to_depth(self):
J
JiabinYang 已提交
1123 1124 1125
        program = Program()
        with program_guard(program):
            data = layers.data(
J
JiabinYang 已提交
1126
                name='data',
J
JiabinYang 已提交
1127 1128 1129
                shape=[32, 9, 6, 6],
                append_batch_size=False,
                dtype='float32')
J
JiabinYang 已提交
1130
            self.assertIsNotNone(layers.space_to_depth(data, 3))
J
JiabinYang 已提交
1131 1132
        print(str(program))

Y
Yibing Liu 已提交
1133 1134 1135
    def test_sequence_unsqueeze(self):
        program = Program()
        with program_guard(program):
1136
            x = layers.data(name='x', shape=[8, 2], dtype='float32')
1137
            out = layers.unsqueeze(input=x, axes=[1])
Y
Yibing Liu 已提交
1138 1139
            self.assertIsNotNone(out)
        print(str(program))
1140

Y
Yibing Liu 已提交
1141 1142 1143 1144
    def test_squeeze(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[1, 1, 4], dtype='float32')
1145
            out = layers.squeeze(input=x, axes=[2])
Y
Yibing Liu 已提交
1146 1147 1148
            self.assertIsNotNone(out)
        print(str(program))

D
dragonwarrior 已提交
1149 1150 1151 1152 1153 1154 1155
    def test_lrn(self):
        program = Program()
        with program_guard(program):
            data = layers.data(name='data', shape=[6, 2, 2], dtype='float32')
            self.assertIsNotNone(layers.lrn(data))
        print(str(program))

Q
qijun 已提交
1156 1157 1158
    def test_get_places(self):
        program = Program()
        with program_guard(program):
1159
            x = get_places(device_count=4)
Y
Yang Yu 已提交
1160
            self.assertIsNotNone(x)
Q
qijun 已提交
1161 1162
        print(str(program))

1163 1164 1165 1166 1167 1168 1169 1170
    def test_sequence_reshape(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[8], dtype='float32', lod_level=1)
            out = layers.sequence_reshape(input=x, new_dim=16)
            self.assertIsNotNone(out)
        print(str(program))

W
wanghaoshuang 已提交
1171 1172 1173 1174
    def test_im2sequence(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[3, 128, 128], dtype='float32')
1175
            y = layers.data(name='y', shape=[], dtype='float32')
W
wanghaoshuang 已提交
1176
            output = layers.im2sequence(
1177 1178 1179 1180 1181
                input=x,
                input_image_size=y,
                stride=[1, 1],
                filter_size=[2, 2],
                out_stride=[1, 1])
W
wanghaoshuang 已提交
1182 1183 1184
            self.assertIsNotNone(output)
        print(str(program))

1185
    def test_sampled_softmax_with_cross_entropy(self):
X
xuezhong 已提交
1186 1187 1188
        program = Program()
        with program_guard(program):
            logits = layers.data(name='Logits', shape=[256], dtype='float64')
X
xuezhong 已提交
1189
            label = layers.data(name='Label', shape=[1], dtype='int64')
X
xuezhong 已提交
1190
            num_samples = 25
X
xuezhong 已提交
1191 1192
            output = layers.sampled_softmax_with_cross_entropy(logits, label,
                                                               num_samples)
X
xuezhong 已提交
1193 1194 1195
            self.assertIsNotNone(output)
        print(str(program))

Y
Yang Yu 已提交
1196 1197 1198 1199
    @decorators.prog_scope()
    def test_nce(self):
        window_size = 5
        words = []
1200
        for i in range(window_size):
Y
Yang Yu 已提交
1201 1202 1203 1204 1205
            words.append(
                layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

        dict_size = 10000
M
minqiyang 已提交
1206
        label_word = int(window_size // 2) + 1
Y
Yang Yu 已提交
1207 1208

        embs = []
1209
        for i in range(window_size):
Y
Yang Yu 已提交
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
            if i == label_word:
                continue

            emb = layers.embedding(
                input=words[i],
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=True)

            embs.append(emb)

        embs = layers.concat(input=embs, axis=1)
        loss = layers.nce(input=embs,
                          label=words[label_word],
                          num_total_classes=dict_size,
                          param_attr='nce.w',
                          bias_attr='nce.b')
Y
Yu Yang 已提交
1227
        avg_loss = layers.mean(loss)
Y
Yang Yu 已提交
1228 1229 1230
        self.assertIsNotNone(avg_loss)
        print(str(default_main_program()))

Y
yangyaming 已提交
1231 1232 1233 1234 1235 1236 1237 1238
    def test_row_conv(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[16], dtype='float32', lod_level=1)
            out = layers.row_conv(input=x, future_context_size=2)
            self.assertIsNotNone(out)
        print(str(program))

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
    def test_multiplex(self):
        program = Program()
        with program_guard(program):
            x1 = layers.data(name='x1', shape=[4], dtype='float32')
            x2 = layers.data(name='x2', shape=[4], dtype='float32')
            index = layers.data(name='index', shape=[1], dtype='int32')
            out = layers.multiplex(inputs=[x1, x2], index=index)
            self.assertIsNotNone(out)
        print(str(program))

1249 1250 1251 1252 1253
    def test_softmax_with_cross_entropy(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[16], dtype='float32')
            y = layers.data(name='label', shape=[1], dtype='int64')
1254 1255 1256 1257
            loss, softmax = layers.softmax_with_cross_entropy(
                x, y, return_softmax=True)
            self.assertIsNotNone(loss)
            self.assertIsNotNone(softmax)
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
            loss = layers.softmax_with_cross_entropy(x, y)
            self.assertIsNotNone(loss)
        print(str(program))

    def test_smooth_l1(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[4], dtype='float32')
            y = layers.data(name='label', shape=[4], dtype='float32')
            loss = layers.smooth_l1(x, y)
            self.assertIsNotNone(loss)
        print(str(program))

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
    def test_scatter(self):
        program = Program()
        with program_guard(program):
            x = layers.data(
                name='x',
                shape=[3, 3],
                append_batch_size=False,
                dtype='float32')
            idx = layers.data(
                name='idx', shape=[2], append_batch_size=False, dtype='int32')
            updates = layers.data(
                name='updates',
                shape=[2, 3],
                append_batch_size=False,
                dtype='float32')
            out = layers.scatter(input=x, index=idx, updates=updates)
            self.assertIsNotNone(out)
        print(str(program))

Q
Qingsheng Li 已提交
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
    def test_sequence_scatter(self):
        program = Program()
        with program_guard(program):
            x = layers.data(
                name='x',
                shape=[3, 6],
                append_batch_size=False,
                dtype='float32')
            idx = layers.data(
                name='idx',
                shape=[12, 1],
                append_batch_size=False,
                dtype='int32',
                lod_level=1)
            updates = layers.data(
                name='updates',
                shape=[12, 1],
                append_batch_size=False,
                dtype='float32',
                lod_level=1)
            out = layers.sequence_scatter(input=x, index=idx, updates=updates)
            self.assertIsNotNone(out)
        print(str(program))

Y
Yibing Liu 已提交
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
    def test_sequence_slice(self):
        program = Program()
        with program_guard(program):
            import numpy as np
            seqs = layers.data(
                name='x', shape=[10, 5], dtype='float32', lod_level=1)
            offset = layers.assign(input=np.array([[0, 1]]).astype('int32'))
            length = layers.assign(input=np.array([[2, 1]]).astype('int32'))
            out = layers.sequence_slice(
                input=seqs, offset=offset, length=length)
            self.assertIsNotNone(out)
        print(str(program))

Y
yangyaming 已提交
1327 1328 1329 1330 1331 1332 1333 1334 1335
    def test_lod_reset(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[10], dtype='float32')
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2)
            print(layers.lod_reset(x=x, y=y))
        print(str(program))

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
    def test_label_smooth(self):
        program = Program()
        with program_guard(program):
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
            self.assertIsNotNone(smooth_label)
        print(str(program))

Q
qingqing01 已提交
1346 1347 1348 1349 1350 1351 1352 1353 1354
    def test_topk(self):
        program = Program()
        with program_guard(program):
            data = layers.data(name="label", shape=[200], dtype="float32")
            values, indices = layers.topk(data, k=5)
            self.assertIsNotNone(values)
            self.assertIsNotNone(indices)
        print(str(program))

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
    def test_roi_pool(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
            rois = layers.data(
                name="rois", shape=[4], dtype="float32", lod_level=1)
            output = layers.roi_pool(x, rois, 7, 7, 0.6)
            self.assertIsNotNone(output)
        print(str(program))

1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
    def test_psroi_pool(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
            rois = layers.data(
                name="rois", shape=[4], dtype="float32", lod_level=1)
            output = layers.psroi_pool(x, rois, 5, 0.25, 7, 7)
            self.assertIsNotNone(output)
        print(str(program))

J
jerrywgz 已提交
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
    def test_roi_align(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
            rois = layers.data(
                name="rois", shape=[4], dtype="float32", lod_level=1)
            output = layers.roi_align(x, rois, 14, 14, 0.5, 2)
            self.assertIsNotNone(output)
        print(str(program))

B
baiyf 已提交
1385
    def test_resize_bilinear(self):
1386 1387 1388
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[3, 9, 6], dtype="float32")
B
baiyf 已提交
1389
            output = layers.resize_bilinear(x, out_shape=[12, 12])
1390
            self.assertIsNotNone(output)
B
baiyf 已提交
1391
            output = layers.resize_bilinear(x, scale=3)
1392 1393 1394
            self.assertIsNotNone(output)
        print(str(program))

1395
    def test_resize_nearest(self):
1396 1397 1398 1399 1400 1401 1402 1403 1404
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[3, 9, 6], dtype="float32")
            output = layers.resize_nearest(x, out_shape=[12, 12])
            self.assertIsNotNone(output)
            output = layers.resize_nearest(x, scale=3)
            self.assertIsNotNone(output)
        print(str(program))

1405 1406 1407 1408 1409 1410 1411 1412
    def test_polygon_box_transform(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[8, 4, 4], dtype="float32")
            output = layers.polygon_box_transform(input=x)
            self.assertIsNotNone(output)
        print(str(program))

1413 1414 1415 1416 1417 1418
    def test_l2_normalize(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[8, 7, 10], dtype="float32")
            output = layers.l2_normalize(x, axis=1)

Q
qingqing01 已提交
1419 1420 1421 1422 1423 1424 1425 1426
    def test_maxout(self):
        program = Program()
        with program_guard(program):
            data = layers.data(name='x', shape=[8, 6, 6], dtype="float32")
            output = layers.maxout(x=data, groups=2)
            self.assertIsNotNone(output)
        print(str(program))

W
whs 已提交
1427
    def test_crop(self):
1428 1429 1430 1431 1432 1433 1434 1435
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[3, 5], dtype="float32")
            y = layers.data(name='y', shape=[2, 3], dtype="float32")
            output = layers.crop(x, shape=y)
            self.assertIsNotNone(output)
        print(str(program))

W
whs 已提交
1436 1437 1438 1439 1440 1441 1442 1443 1444
    def test_mean_iou(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[16], dtype='float32')
            y = layers.data(name='label', shape=[1], dtype='int64')
            iou = layers.mean_iou(x, y, 2)
            self.assertIsNotNone(iou)
        print(str(program))

1445 1446 1447 1448 1449 1450 1451 1452 1453
    def test_argsort(self):
        program = Program()
        with program_guard(program):
            data = layers.data(name='x', shape=[2, 3, 3], dtype="float32")
            out, ids = layers.argsort(input=data, axis=1)
            self.assertIsNotNone(out)
            self.assertIsNotNone(ids)
        print(str(program))

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
    def test_rank_loss(self):
        program = Program()
        with program_guard(program):
            label = layers.data(
                name='label',
                append_batch_size=False,
                shape=[16, 1],
                dtype="float32")
            left = layers.data(
                name='left',
                append_batch_size=False,
                shape=[16, 1],
                dtype="float32")
            right = layers.data(
                name='right',
                append_batch_size=False,
                shape=[16, 1],
                dtype="float32")
            out = layers.rank_loss(label, left, right, name="rank_loss")
            self.assertIsNotNone(out)
        print(str(program))

1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
    def test_flatten(self):
        program = Program()
        with program_guard(program):
            x = layers.data(
                name='x',
                append_batch_size=False,
                shape=[4, 4, 3],
                dtype="float32")
            out = layers.flatten(x, axis=1, name="flatten")
            self.assertIsNotNone(out)

B
Bai Yifan 已提交
1487 1488 1489 1490 1491
    def test_shape(self):
        program = Program()
        with program_guard(program):
            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
G
fix  
gongweibao 已提交
1492
            out = layers.shape(input)
B
Bai Yifan 已提交
1493 1494 1495
            self.assertIsNotNone(out)
        print(str(program))

W
whs 已提交
1496 1497 1498 1499 1500
    def test_pad2d(self):
        program = Program()
        with program_guard(program):
            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
1501
            paddings = layers.fill_constant(shape=[4], dtype='int32', value=1)
W
whs 已提交
1502 1503 1504 1505 1506 1507
            out = layers.pad2d(
                input,
                paddings=[1, 2, 3, 4],
                mode='reflect',
                data_format='NCHW',
                name="shape")
1508 1509 1510 1511 1512 1513
            out_1 = layers.pad2d(
                input,
                paddings=paddings,
                mode='reflect',
                data_format='NCHW',
                name="shape")
W
whs 已提交
1514
            self.assertIsNotNone(out)
1515
            self.assertIsNotNone(out_1)
W
whs 已提交
1516 1517
        print(str(program))

J
jerrywgz 已提交
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
    def test_prelu(self):
        program = Program()
        with program_guard(program):
            input = layers.data(
                name="input", shape=[5, 200, 100, 100], dtype="float32")
            mode = 'channel'
            out = layers.prelu(
                input,
                mode,
                param_attr=ParamAttr(initializer=Constant(1.0)),
                name='prelu')
            self.assertIsNotNone(out)
        print(str(program))

T
tensor-tang 已提交
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
    def test_brelu(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.brelu(input, t_min=1.0, t_max=20.0, name='brelu')
            self.assertIsNotNone(out)
        print(str(program))

    def test_leaky_relu(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.leaky_relu(input, alpha=0.1, name='leaky_relu')
            self.assertIsNotNone(out)
        print(str(program))

    def test_soft_relu(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.soft_relu(input, threshold=30.0, name='soft_relu')
            self.assertIsNotNone(out)
        print(str(program))

    def test_sigmoid(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.sigmoid(input, name='sigmoid')
            self.assertIsNotNone(out)
        print(str(program))

    def test_logsigmoid(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.logsigmoid(input, name='logsigmoid')
            self.assertIsNotNone(out)
        print(str(program))

    def test_exp(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.exp(input, name='exp')
            self.assertIsNotNone(out)
        print(str(program))

    def test_tanh(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.tanh(input, name='tanh')
            self.assertIsNotNone(out)
        print(str(program))

    def test_tanh_shrink(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.tanh_shrink(input, name='tanh_shrink')
            self.assertIsNotNone(out)
        print(str(program))

    def test_sqrt(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.sqrt(input, name='sqrt')
            self.assertIsNotNone(out)
        print(str(program))

    def test_abs(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.abs(input, name='abs')
            self.assertIsNotNone(out)
        print(str(program))

    def test_ceil(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.ceil(input, name='ceil')
            self.assertIsNotNone(out)
        print(str(program))

    def test_floor(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.floor(input, name='floor')
            self.assertIsNotNone(out)
        print(str(program))

    def test_cos(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.cos(input, name='cos')
            self.assertIsNotNone(out)
        print(str(program))

    def test_sin(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.sin(input, name='sin')
            self.assertIsNotNone(out)
        print(str(program))

    def test_round(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.round(input, name='round')
            self.assertIsNotNone(out)
        print(str(program))

    def test_reciprocal(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.reciprocal(input, name='reciprocal')
            self.assertIsNotNone(out)
        print(str(program))

    def test_square(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.square(input, name='square')
            self.assertIsNotNone(out)
        print(str(program))

    def test_softplus(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.softplus(input, name='softplus')
            self.assertIsNotNone(out)
        print(str(program))

    def test_softsign(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.softsign(input, name='softsign')
            self.assertIsNotNone(out)
        print(str(program))

W
whs 已提交
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
    def test_roi_perspective_transform(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
            rois = layers.data(
                name="rois", shape=[8], dtype="float32", lod_level=1)
            output = layers.roi_perspective_transform(x, rois, 7, 7, 0.6)
            self.assertIsNotNone(output)
        print(str(program))

C
chenweihang 已提交
1694 1695 1696
    def test_sequence_enumerate(self):
        program = Program()
        with program_guard(program):
C
chenweihang 已提交
1697
            x = layers.data(name="input", shape=[1], dtype='int32', lod_level=1)
C
chenweihang 已提交
1698 1699 1700
            out = layers.sequence_enumerate(input=x, win_size=2, pad_value=0)
        print(str(program))

1701 1702 1703 1704 1705 1706 1707 1708 1709
    def test_cross_entropy(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name="x", shape=[30, 10], dtype="float32")
            label = layers.data(name="label", shape=[30, 1], dtype="int32")
            mode = 'channel'
            out = layers.cross_entropy(x, label, False, 4)
            self.assertIsNotNone(out)

1710 1711 1712 1713 1714 1715 1716 1717 1718
    def test_bpr_loss(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name="x", shape=[30, 10], dtype="float32")
            label = layers.data(name="label", shape=[30, 1], dtype="int32")
            out = layers.bpr_loss(x, label)
            self.assertIsNotNone(out)
        print(str(program))

W
whs 已提交
1719 1720 1721 1722 1723 1724 1725
    def test_expand(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name="input", shape=[10], dtype='int32')
            out = layers.expand(x, [1, 2])
        print(str(program))

G
fix  
gongweibao 已提交
1726
    def test_uniform_random_batch_size_like(self):
G
fix  
gongweibao 已提交
1727 1728 1729 1730 1731
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
            self.assertIsNotNone(out)
G
fix  
gongweibao 已提交
1732
        print(str(program))
G
fix  
gongweibao 已提交
1733 1734 1735 1736 1737 1738

    def test_gaussian_random(self):
        program = Program()
        with program_guard(program):
            out = layers.gaussian_random(shape=[20, 30])
            self.assertIsNotNone(out)
G
fix  
gongweibao 已提交
1739
        print(str(program))
G
fix  
gongweibao 已提交
1740 1741 1742 1743

    def test_sampling_id(self):
        program = Program()
        with program_guard(program):
G
fix  
gongweibao 已提交
1744 1745 1746 1747 1748
            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)
G
fix  
gongweibao 已提交
1749 1750 1751

            out = layers.sampling_id(x)
            self.assertIsNotNone(out)
G
fix  
gongweibao 已提交
1752
        print(str(program))
G
fix  
gongweibao 已提交
1753 1754 1755 1756 1757 1758 1759 1760 1761

    def test_gaussian_random_batch_size_like(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
            self.assertIsNotNone(out)
G
fix  
gongweibao 已提交
1762
        print(str(program))
G
fix  
gongweibao 已提交
1763 1764 1765 1766 1767 1768 1769 1770

    def test_sum(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.sum(input)
            self.assertIsNotNone(out)
G
fix  
gongweibao 已提交
1771
        print(str(program))
G
fix  
gongweibao 已提交
1772 1773 1774 1775 1776 1777

    def test_slice(self):
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        axes = [0, 1, 2]

G
fix  
gongweibao 已提交
1778 1779 1780
        program = Program()
        with program_guard(program):
            input = layers.data(
G
fix  
gongweibao 已提交
1781 1782 1783
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
merge  
gongweibao 已提交
1784

B
baiyf 已提交
1785 1786 1787 1788 1789
    def test_softshrink(self):
        program = Program()
        with program_guard(program):
            input = layers.data(name="input", shape=[16], dtype="float32")
            out = layers.softshrink(input, name='softshrink')
G
fix  
gongweibao 已提交
1790
            self.assertIsNotNone(out)
G
fix  
gongweibao 已提交
1791
        print(str(program))
G
fix  
gongweibao 已提交
1792

X
Xin Pan 已提交
1793 1794 1795 1796 1797 1798 1799 1800 1801
    def iou_similarity(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name="x", shape=[16], dtype="float32")
            y = layers.data(name="y", shape=[16], dtype="float32")
            out = layers.iou_similarity(x, y, name='iou_similarity')
            self.assertIsNotNone(out)
        print(str(program))

1802
    def test_grid_sampler(self):
D
dengkaipeng 已提交
1803 1804
        program = Program()
        with program_guard(program):
1805 1806
            x = layers.data(name='x', shape=[3, 5, 7], dtype='float32')
            grid = layers.data(name='grid', shape=[5, 7, 2], dtype='float32')
D
dengkaipeng 已提交
1807 1808 1809
            out = layers.grid_sampler(x, grid)
            self.assertIsNotNone(out)
        print(str(program))
1810

W
whs 已提交
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
    def test_affine_grid(self):
        program = Program()
        with program_guard(program):
            data = layers.data(name='data', shape=[2, 3, 3], dtype="float32")
            out, ids = layers.argsort(input=data, axis=1)

            theta = layers.data(name="theta", shape=[2, 3], dtype="float32")
            out_shape = layers.data(
                name="out_shape", shape=[-1], dtype="float32")
            data_0 = layers.affine_grid(theta, out_shape)
            data_1 = layers.affine_grid(theta, [5, 3, 28, 28])

            self.assertIsNotNone(data_0)
            self.assertIsNotNone(data_1)
        print(str(program))
D
dengkaipeng 已提交
1826

1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
    def test_bilinear_tensor_product_layer(self):
        program = Program()
        with program_guard(program):
            data = layers.data(name='data', shape=[4], dtype="float32")

            theta = layers.data(name="theta", shape=[5], dtype="float32")
            out = layers.bilinear_tensor_product(data, theta, 6)

        print(str(program))

1837 1838 1839 1840 1841 1842 1843 1844 1845
    def test_batch_norm(self):
        program = Program()
        with program_guard(program):
            data = layers.data(
                name='data', shape=[32, 128, 128], dtype="float32")
            out = layers.batch_norm(data)

        print(str(program))

W
whs 已提交
1846 1847 1848 1849 1850 1851 1852 1853
    def test_range(self):
        program = Program()
        with program_guard(program):
            layers.range(0, 10, 2, 'int32')
            layers.range(0.1, 10.0, 0.2, 'float32')

        print(str(program))

1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
    def test_spectral_norm(self):
        program = Program()
        with program_guard(program):
            weight = layers.data(
                name='weight',
                shape=[2, 3, 32, 32],
                dtype="float32",
                append_batch_size=False)
            out = layers.spectral_norm(weight, dim=1, power_iters=1)
            self.assertIsNotNone(out)

        print(str(program))

S
shippingwang 已提交
1867 1868 1869
    def test_shuffle_channel(self):
        program = Program()
        with program_guard(program):
S
shippingwang 已提交
1870 1871
            x = layers.data(name="X", shape=[16, 4, 4], dtype="float32")
            out = layers.shuffle_channel(x, group=4)
S
shippingwang 已提交
1872 1873 1874
            self.assertIsNotNone(out)
        print(str(program))

1875 1876 1877 1878 1879 1880 1881 1882 1883
    def test_fsp(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name="X", shape=[16, 4, 4], dtype="float32")
            y = layers.data(name="Y", shape=[8, 4, 4], dtype="float32")
            out = layers.fsp_matrix(x, y)
            self.assertIsNotNone(out)
        print(str(program))

Y
Yu Yang 已提交
1884 1885 1886

if __name__ == '__main__':
    unittest.main()