fleet.py 51.7 KB
Newer Older
W
wuhuachaocoding 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
16
import paddle
17
import os
W
wuhuachaocoding 已提交
18
from paddle.fluid.framework import _global_flags
19
from paddle.fluid import compiler
20
from .base.role_maker import PaddleCloudRoleMaker, RoleMakerBase
W
wuhuachaocoding 已提交
21 22 23 24
from .base.strategy_compiler import StrategyCompiler
from .base.distributed_strategy import DistributedStrategy
from .base.meta_optimizer_factory import MetaOptimizerFactory
from .base.runtime_factory import RuntimeFactory
25
from paddle.fluid.wrapped_decorator import wrap_decorator
26
from paddle.fluid.dygraph import parallel_helper
27
from paddle.fluid.ir import apply_build_strategy
W
wuhuachaocoding 已提交
28 29
from .base import topology as tp
from .meta_parallel import model_parallel_random_seed
R
Roc 已提交
30
from .utils.log_util import logger, set_log_level
31

32 33
__all__ = []

34

35 36 37 38 39 40 41 42 43 44 45 46 47 48
def apply_ir_passes(main_program, startup_program, config):
    build_strategy = config._user_defined_strategy.build_strategy._copy()
    if not _global_flags()['FLAGS_apply_pass_to_program']:
        return build_strategy

    pipeline_opt = getattr(main_program, "_pipeline_opt", {})
    if pipeline_opt:
        main_program = pipeline_opt["section_program"]
        startup_program = startup_program._pipeline_opt["startup_program"]

    pass_attrs = {"use_cuda": config._is_collective}
    fuse_all_reduce = config._user_defined_strategy.fuse_all_reduce_ops
    if fuse_all_reduce and build_strategy.fuse_all_optimizer_ops:
        # FIXME(zjl): currently, fuse_all_optimizer_ops
49 50 51 52
        # have conflict with fuse_all_reduce_ops because
        # RawProgramOptimizer also inserts coalesce_tensor
        # into program. These two procedures may conflict
        # in which vars are to be fused.
R
Roc 已提交
53
        logger.warning(
54 55 56 57 58 59 60 61
            'Currently, the fuse_all_optimizer_ops pass has conflict with fuse_all_reduce_ops pass. Disable the fuse_all_optimizer_ops pass temporarily.'
        )
        build_strategy.fuse_all_optimizer_ops = False

    return apply_build_strategy(main_program, startup_program, build_strategy,
                                pass_attrs)


62
def _inited_runtime_handler_(func):
63

64 65 66 67 68 69 70 71 72 73 74
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._runtime_handle is None:
            raise ValueError("Fleet can not find suitable runtime handler")

        return func(*args, **kwargs)

    return __impl__


75
def _is_non_distributed_check_(func):
76

77 78 79 80 81
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._role_maker is not None and cls._role_maker._is_non_distributed(
        ) is True:
R
Roc 已提交
82
            logger.warning(
83 84 85 86 87 88 89 90 91
                "%s() function doesn't work when use non_distributed fleet." %
                (func.__name__))
            return

        return func(*args, **kwargs)

    return __impl__


92
inited_runtime_handler = wrap_decorator(_inited_runtime_handler_)
93
is_non_distributed_check = wrap_decorator(_is_non_distributed_check_)
94 95


96 97 98
class Fleet(object):
    """
    Unified API for distributed training of PaddlePaddle
99
    Please reference the https://github.com/PaddlePaddle/PaddleFleetX for details
100 101 102 103 104


    Returns:
        Fleet: A Fleet instance

105
    Example for collective training:
1
123malin 已提交
106

107 108
        .. code-block:: python

1
123malin 已提交
109 110
            import paddle
            paddle.enable_static()
111
            import paddle.distributed.fleet as fleet
112 113 114

            fleet.init(is_collective=True)

115 116 117
            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
118 119 120 121 122 123 124 125

            # do distributed training


    Example for parameter server training:

        .. code-block:: python

1
123malin 已提交
126 127
            import paddle
            paddle.enable_static()
128 129
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
130
            fleet.init(strategy=strategy)
131

132
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
133
            optimizer = fleet.distributed_optimizer(optimizer)
134

135 136
            if fleet.is_first_worker():
                print("this is first worker")
137

138 139
            print("current node index: {}".format(fleet.worker_index()))
            print("total number of worker num: {}".format(fleet.worker_num()))
140

141 142 143
            if fleet.is_worker():
                print("this is worker")
            print("worker endpoints: {}".format(fleet.worker_endpoints(to_string=True)))
144

145 146
            print("server num: {}".format(fleet.server_num()))
            print("server endpoints: {}".format(fleet.server_endpoints(to_string=True)))
147

148 149 150
            if fleet.is_server():
                print("this is server")
            fleet.stop_worker()
151 152


153 154 155
    """

    def __init__(self):
156
        self._role_maker = None
157
        self.strategy_compiler = None
158
        self._is_collective = False
159
        self._runtime_handle = None
D
Dong Daxiang 已提交
160 161
        self._util = None
        self._context = {}
W
wuhuachaocoding 已提交
162
        self.user_defined_optimizer = paddle.optimizer.Optimizer(0.0)
163

R
Roc 已提交
164 165 166 167 168
    def init(self,
             role_maker=None,
             is_collective=False,
             strategy=None,
             log_level="INFO"):
169 170 171
        """
        Initialize role_maker in Fleet.

172 173 174 175 176
        This function is responsible for the distributed architecture
        what you want to run your code behind.

        Args:
            role_maker (RoleMakerBase, optional): A ``RoleMakerBase`` containing the configuration
177
                of environment variables related to distributed training.If you did not initialize
178 179
                the rolemaker by yourself, it will be automatically initialized to PaddleRoleMaker.
                The default value is None.
180
            is_collective (Boolean, optional): A ``Boolean`` variable determines whether the program
181
                runs on Collective mode or ParameterServer mode. True means the program runs on
182
                Collective mode, and False means running on ParameterServer mode. The default value
183
                is False.
184
            strategy (DistributedStrategy): Extra properties for distributed training.
185
                For details, please refer to paddle.distributed.fleet.DistributedStrategy. Default: None.
R
Roc 已提交
186 187
            log_level (Integer, String, optional): A ``Integer`` or ``String`` Variable determining how hight
                the logging level is. Default is "INFO".
188 189


190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
        Returns:
            None

        Examples1:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

        Examples2:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init(is_collective=True)

        Examples3:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
1
123malin 已提交
212
                role = fleet.PaddleCloudRoleMaker()
213
                fleet.init(role)
214

215 216 217 218 219 220
        Examples4:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
221
                fleet.init(strategy=strategy)
222

R
Roc 已提交
223 224 225 226 227 228 229 230
        Examples5:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                fleet.init(log_level = "DEBUG")

231
        """
R
Roc 已提交
232 233 234

        set_log_level(log_level)

S
ShenLiang 已提交
235 236 237
        if strategy is None:
            strategy = DistributedStrategy()
        self._user_defined_strategy = copy.deepcopy(strategy)
238 239

        if role_maker is None:
240 241 242 243 244 245
            if isinstance(is_collective, bool):
                self._is_collective = is_collective
                self._role_maker = PaddleCloudRoleMaker(
                    is_collective=self._is_collective)
            else:
                raise ValueError(
246 247
                    "`is_collective` should be instance of `bool`, but got {}".
                    format(type(is_collective)))
248
        else:
249 250
            if isinstance(role_maker, RoleMakerBase):
                self._role_maker = role_maker
251
                self._is_collective = role_maker._is_collective
252 253
            else:
                raise ValueError(
254 255
                    "`role_maker` should be subclass of `RoleMakerBase`, but got {}"
                    .format(type(role_maker)))
256
        self._role_maker._generate_role()
257

258 259 260
        import paddle.distributed.fleet as fleet
        fleet.util._set_role_maker(self._role_maker)

261
        self.strategy_compiler = StrategyCompiler()
262 263 264 265 266 267 268 269 270

        if self._role_maker._is_non_distributed() and self._is_collective:
            if paddle.fluid.core.is_compiled_with_cuda():
                gpus_num = paddle.fluid.core.get_cuda_device_count()
                if gpus_num != 1:
                    raise ValueError(
                        "CUDA_VISIBLE_DEVICES shoule be set only 1 card if you use `python` to launch fleet program."
                    )

J
Jiabin Yang 已提交
271
        if paddle.fluid.framework._non_static_mode():
272
            if self.worker_num() == 1:
273 274 275
                # if worker_num is 1, should construct default topology & hcg
                self._topology = tp.CommunicateTopology()
                self._hcg = tp.HybridCommunicateGroup(self._topology)
276
                return
277
            if parallel_helper._is_parallel_ctx_initialized():
R
Roc 已提交
278
                logger.warning(
279 280
                    "The dygraph parallel environment has been initialized.")
            else:
281 282
                # FLAGS_nccl_nrings is used for dynamic graph multi-stream communication
                if "FLAGS_nccl_nrings" in os.environ:
R
Roc 已提交
283
                    logger.warning(
284 285 286 287 288 289
                        "You have set the environment variable FLAGS_nccl_nrings "
                        "outside the program, so the nccl_comm_num in "
                        "DistributedStrategy will not take effect here.")
                else:
                    os.environ["FLAGS_nccl_nrings"] = str(
                        self._user_defined_strategy.nccl_comm_num)
290
                paddle.distributed.init_parallel_env()
291

K
kuizhiqing 已提交
292 293 294 295 296 297
            # hybrid parallel not support for npu/xpu
            if self._user_defined_strategy.heter_ccl_mode == False:
                # init hybrid parallel environment in dygraph
                if tp._HYBRID_PARALLEL_GROUP is None:
                    self._init_hybrid_parallel_env()
                else:
R
Roc 已提交
298
                    logger.warning(
K
kuizhiqing 已提交
299 300
                        "The dygraph hybrid parallel environment has been initialized."
                    )
W
WangXi 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
        elif self._is_collective:
            use_sharding = self._user_defined_strategy.sharding

            # global group
            global_rank = self.worker_index()
            global_world_size = self.worker_num()
            # NOTE(wangxi): see sharding_optimizer
            global_ring_id = 3 if use_sharding else 0
            global_ranks = list(range(global_world_size))

            if tp._HYBRID_PARALLEL_GROUP is None: tp._CommunicateGroup()
            cg = tp._HYBRID_PARALLEL_GROUP
            self._hcg = cg
            cg.set_comm_group('global', global_rank, global_world_size,
                              global_ring_id, global_ranks)

Y
Yuang Liu 已提交
317 318 319
            use_tensor_parallel = self._user_defined_strategy.tensor_parallel
            use_mp = use_sharding or use_tensor_parallel

W
WangXi 已提交
320
            # hybrid group
Y
Yuang Liu 已提交
321 322 323 324 325 326 327 328 329 330
            if use_mp is False: return

            mp_degree_sharding = 1
            mp_degree_tensor_parallel = 1
            if use_sharding:
                sharding_configs = self._user_defined_strategy.sharding_configs
                mp_degree_sharding = int(sharding_configs['mp_degree'])

            if use_tensor_parallel:
                tensor_parallel_configs = self._user_defined_strategy.tensor_parallel_configs
331 332
                mp_degree_tensor_parallel = int(
                    tensor_parallel_configs['tensor_parallel_degree'])
Y
Yuang Liu 已提交
333 334 335

            if use_sharding and use_tensor_parallel:
                assert mp_degree_sharding == mp_degree_tensor_parallel
W
WangXi 已提交
336

Y
Yuang Liu 已提交
337
            mp_degree = mp_degree_sharding if use_sharding else mp_degree_tensor_parallel
W
WangXi 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350

            if mp_degree > 1:
                assert global_world_size % mp_degree == 0
                # NOTE(wangxi): mp_ring_id sync with sharding_optimizer.py _build_groups
                mp_ring_id = 0
                mp_rank = global_rank % mp_degree
                mp_group_id = global_rank // mp_degree
                mp_group_ranks = [
                    idx for idx in global_ranks
                    if idx // mp_degree == mp_group_id
                ]
                cg.set_comm_group('model', mp_rank, mp_degree, mp_ring_id,
                                  mp_group_ranks)
W
wuhuachaocoding 已提交
351
        return self
352 353 354 355 356 357 358 359

    def _init_hybrid_parallel_env(self):
        """initialize the hybrid environment
        """
        self.hybrid_configs = self._user_defined_strategy.hybrid_configs
        self.dp_degree = self.hybrid_configs["dp_degree"]
        self.mp_degree = self.hybrid_configs["mp_degree"]
        self.pp_degree = self.hybrid_configs["pp_degree"]
J
JZ-LIANG 已提交
360
        self.sharding_degree = self.hybrid_configs["sharding_degree"]
361 362 363

        assert self.mp_degree >= 0, "mp_degree should be greater or equal to 0"
        assert self.pp_degree >= 0, "pp_degree should be greater or equal to 0"
J
JZ-LIANG 已提交
364
        assert self.sharding_degree >= 0, "sharding_degree should be greater or equal to 0"
365 366 367 368 369 370 371 372 373 374 375

        self.mp_degree = max(self.mp_degree, 1)
        self.pp_degree = max(self.pp_degree, 1)

        if self.dp_degree < 0:
            nranks = paddle.distributed.get_world_size()
            self.dp_degree = nranks // (self.mp_degree * self.pp_degree)

        self.dp_degree = max(self.dp_degree, 1)

        self._topology = tp.CommunicateTopology(
J
JZ-LIANG 已提交
376 377 378 379 380
            hybrid_group_names=["data", "pipe", "sharding", "model"],
            dims=[
                self.dp_degree, self.pp_degree, self.sharding_degree,
                self.mp_degree
            ])
381 382 383

        self._hcg = tp.HybridCommunicateGroup(self._topology)

384 385 386 387 388 389 390 391
        if self.mp_degree > 1:
            tensor_parallel_configs = self._user_defined_strategy.tensor_parallel_configs
            tensor_init_seed = tensor_parallel_configs["tensor_init_seed"]
            if tensor_init_seed == -1:
                model_parallel_random_seed()
            else:
                model_parallel_random_seed(tensor_init_seed)

392 393 394 395 396 397 398 399
    def get_hybrid_communicate_group(self):
        assert self._hcg is not None
        return self._hcg

    def get_hybrid_parallel_topology(self):
        assert self._topology is not None
        return self._topology

400 401 402 403 404 405 406
    def is_first_worker(self):
        """
        Check whether the node is the first instance of worker.

        Returns:
            bool: True if this is the first node of worker,
                  False if not.
407

408 409 410 411 412 413 414 415
        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_first_worker()

416
        """
417
        return self._role_maker._is_first_worker()
418 419 420 421 422 423 424

    def worker_index(self):
        """
        Get current worker index.

        Returns:
            int: node id
425 426 427 428

        Examples:

            .. code-block:: python
1
123malin 已提交
429

430 431 432 433
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_index()

434
        """
435
        return self._role_maker._worker_index()
436 437 438 439 440 441 442

    def worker_num(self):
        """
        Get current total worker number.

        Returns:
            int: worker numbers
1
123malin 已提交
443

444
        Examples:
1
123malin 已提交
445

446 447 448 449 450 451
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_num()

452
        """
453
        return self._role_maker._worker_num()
454

455 456 457 458 459 460 461 462 463 464 465 466
    def node_num(self):
        return self._role_maker._get_node_num()

    def local_rank(self):
        return self._role_maker._get_local_rank()

    def local_device_ids(self):
        return self._role_maker._get_local_device_ids()

    def world_device_ids(self):
        return self._role_maker._get_world_device_ids()

467 468 469 470 471 472 473
    def is_worker(self):
        """
        Check whether the node is an instance of worker.

        Returns:
            bool: True if this is a node of worker,
                  False if not.
474 475

        Examples:
1
123malin 已提交
476

477 478 479 480 481 482
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_worker()

483
        """
484
        return self._role_maker._is_worker()
485

486 487 488
    def is_coordinator(self):
        return self._role_maker._is_coordinator()

489 490
    def worker_endpoints(self, to_string=False):
        """
491
        Get current worker endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].
492 493 494

        Returns:
            list/string: server endpoints
495 496

        Examples:
1
123malin 已提交
497

498 499 500 501 502 503
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_endpoints()

504 505
        """
        if to_string:
506
            return ",".join(self._role_maker._get_trainer_endpoints())
507
        else:
508
            return self._role_maker._get_trainer_endpoints()
509 510 511 512 513 514 515

    def server_num(self):
        """
        Get current total worker number.

        Returns:
            int: server number
516 517

        Examples:
1
123malin 已提交
518

519
            .. code-block:: python
1
123malin 已提交
520 521 522 523

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_num()
524
        """
525
        return len(self._role_maker._get_pserver_endpoints())
526 527 528 529 530 531 532

    def server_index(self):
        """
        Get current server index.

        Returns:
            int: node id
533 534

        Examples:
1
123malin 已提交
535

536 537 538 539 540 541
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_index()

542
        """
543
        return self._role_maker._server_index()
544 545 546 547 548 549 550

    def server_endpoints(self, to_string=False):
        """
        Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].

        Returns:
            list/string: server endpoints
551 552

        Examples:
1
123malin 已提交
553

554 555 556 557 558 559
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_endpoints()

560
        """
561

562
        if to_string:
563
            return ",".join(self._role_maker._get_pserver_endpoints())
564
        else:
565
            return self._role_maker._get_pserver_endpoints()
566 567 568 569 570 571 572 573

    def is_server(self):
        """
        Check whether the node is an instance of server.

        Returns:
            bool: True if this is a node of server,
                  False if not.
574 575 576 577

        Examples:

            .. code-block:: python
1
123malin 已提交
578

579 580 581 582
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_server()

583
        """
584 585
        return self._role_maker._is_server()

586 587
    def barrier_worker(self):
        """
588 589 590 591
        barrier all workers

        Returns:
            None
592
        """
593
        self._role_maker._barrier("worker")
594

595
    @is_non_distributed_check
596
    @inited_runtime_handler
597
    def init_worker(self, scopes=None):
598
        """
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
        initialize `Communicator` for parameter server training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_worker()

617
        """
618
        self._runtime_handle._init_worker(scopes)
619

620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
    @is_non_distributed_check
    @inited_runtime_handler
    def init_coordinator(self, scopes=None):
        """
        initialize coordinator node
        """
        self._runtime_handle._init_coordinator(scopes)

    def make_fl_strategy(self):
        self._runtime_handle._make_fl_strategy()

    @is_non_distributed_check
    @inited_runtime_handler
    def get_fl_client(self):
        """
        get worker(training node) ptr
        """
        return self._runtime_handle._worker

639
    @is_non_distributed_check
640
    @inited_runtime_handler
641
    def init_server(self, *args, **kwargs):
642
        """
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
        init_server executor to initialize startup program,
        if the `args` is not empty, it will run load_persistables for increment training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

662
        """
663
        self._runtime_handle._init_server(*args, **kwargs)
664

Z
zmxdream 已提交
665 666
    @is_non_distributed_check
    @inited_runtime_handler
T
Thunderbrook 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
    def load_model(self, path, mode):
        """
        load fleet model from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

685
                fleet.load_model("path", mode=0)
T
Thunderbrook 已提交
686 687

        """
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
        self._runtime_handle._load_persistables(path, mode)

    @is_non_distributed_check
    @inited_runtime_handler
    def load_one_table(self, table_id, path, mode):
        """
        load fleet one table from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.load_one_table(0, "path", mode=0)

        """
        self._runtime_handle._load_one_table(table_id, path, mode)

    @is_non_distributed_check
    @inited_runtime_handler
    def load_inference_model(self, path, mode):
        """
        load fleet inference model from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.load_inference_model("path", mode=1)

        """
        self._runtime_handle._load_inference_model(path, mode)
T
Thunderbrook 已提交
739

740
    @is_non_distributed_check
741
    @inited_runtime_handler
742 743
    def run_server(self):
        """
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
        run server will run pserver main program with executor.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                if fleet.is_server():
                    fleet.init_server()

762 763 764
        """
        self._runtime_handle._run_server()

765
    @is_non_distributed_check
766
    @inited_runtime_handler
767 768
    def stop_worker(self):
        """
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
        stop `Communicator` and give training complete notice to parameter server.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

786 787 788
        """
        self._runtime_handle._stop_worker()

Z
zmxdream 已提交
789 790
    @is_non_distributed_check
    @inited_runtime_handler
T
tangwei12 已提交
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
    def save(self, dirname, feed=[], fetch=[], **configs):
        inference = True

        if not feed and not fetch:
            inference = False

        place = paddle.CPUPlace()
        executor = paddle.static.Executor(place)

        if inference:
            feeded_var_names = []
            fetch_var_names = []

            for var in feed:
                if isinstance(var, str):
                    feeded_var_names.append(var)
                elif isinstance(var, paddle.static.Variable):
                    feeded_var_names.append(var.name)
                else:
                    raise ValueError("feed must be [str|Variable]")

            for var in fetch:
                if isinstance(var, str):
                    fetch_var_names.append(var)
                elif isinstance(var, paddle.static.Variable):
                    fetch_var_names.append(var.name)
                else:
                    raise ValueError("feed must be [str|Variable]")

            fetch_vars = [
                paddle.static.default_main_program().global_block().var(name)
                for name in fetch_var_names
            ]

825 826 827 828
            self._runtime_handle._save_inference_model(executor, dirname,
                                                       feeded_var_names,
                                                       fetch_vars, None, True,
                                                       0)
T
tangwei12 已提交
829 830 831 832
        else:
            increment_mode = 0
            if "mode" in configs:
                increment_mode = int(configs["mode"])
833 834 835 836
            self._runtime_handle._save_persistables(executor,
                                                    dirname,
                                                    main_program=None,
                                                    mode=increment_mode)
T
tangwei12 已提交
837

Z
zmxdream 已提交
838 839
    @is_non_distributed_check
    @inited_runtime_handler
840 841 842 843 844 845
    def save_inference_model(self,
                             executor,
                             dirname,
                             feeded_var_names,
                             target_vars,
                             main_program=None,
846 847
                             export_for_deployment=True,
                             mode=0):
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
        """
        save inference model for inference.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

        """

868 869 870 871
        self._runtime_handle._save_inference_model(executor, dirname,
                                                   feeded_var_names,
                                                   target_vars, main_program,
                                                   export_for_deployment, mode)
872

Z
zmxdream 已提交
873 874
    @is_non_distributed_check
    @inited_runtime_handler
875
    def save_persistables(self, executor, dirname, main_program=None, mode=0):
876 877
        """

1
123malin 已提交
878
        saves all persistable tensors from :code:`main_program` to
879 880
        the folder :code:`dirname`. You can refer to

1
123malin 已提交
881 882
        The :code:`dirname` is used to specify the folder where persistable tensors
        are going to be saved. If you would like to save tensors in separate
883 884 885
        files, set :code:`filename` None.

        Args:
1
123malin 已提交
886
            executor(Executor): The executor to run for saving persistable tensors.
887 888 889 890 891
                                You can refer to :ref:`api_guide_executor_en` for
                                more details.

            dirname(str, optional): The saving directory path.
                                When you need to save the parameter to the memory, set it to None.
1
123malin 已提交
892
            main_program(Program, optional): The program whose persistbale tensors will
893 894 895 896 897 898 899 900 901 902
                                             be saved. Default: None.


        Returns:
            None

        Examples:

            .. code-block:: text

1
123malin 已提交
903 904
                import paddle
                paddle.enable_static()
905 906 907 908 909 910 911
                import paddle.distributed.fleet as fleet

                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

1
123malin 已提交
912 913
                exe = paddle.static.Executor(paddle.CPUPlace())
                fleet.save_persistables(exe, "dirname", paddle.static.default_main_program())
914 915

        """
916 917
        self._runtime_handle._save_persistables(executor, dirname, main_program,
                                                mode)
918

Z
zhaocaibei123 已提交
919 920 921 922 923
    @is_non_distributed_check
    @inited_runtime_handler
    def save_cache_model(self, dirname, **configs):
        return self._runtime_handle._save_cache_model(dirname, **configs)

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
    @is_non_distributed_check
    @inited_runtime_handler
    def check_save_pre_patch_done(self):
        return self._runtime_handle._check_save_pre_patch_done()

    @is_non_distributed_check
    @inited_runtime_handler
    def save_one_table(self, table_id, path, mode):
        """
        save fleet one table from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.save_one_table(0, "path", mode=0)

        """
        self._runtime_handle._save_one_table(table_id, path, mode)

    @is_non_distributed_check
    @inited_runtime_handler
    def save_dense_params(self,
                          executor,
                          dirname,
                          scope,
                          program,
                          var_names=None):
        """
        save fleet one table from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                import paddle
                place = paddle.fluid.CPUPlace()
                exe = paddle.fluid.Executor(place)

                # build net
                # fleet.distributed_optimizer(...)

                fleet.save_dense_params(exe, "path", scope=paddle.static.global_scope(), program=paddle.static.default_main_program())

        """
        self._runtime_handle._save_dense_params(executor, dirname, scope,
                                                program, var_names)

988
    def shrink(self, threshold=None):
989 990
        self._runtime_handle._shrink(threshold)

991
    def distributed_optimizer(self, optimizer, strategy=None):
992
        """
993 994 995 996 997 998 999
        Optimizer for distributed training.

        For the distributed training, this method would rebuild a new instance of DistributedOptimizer.
        Which has basic Optimizer function and special features for distributed training.

        Args:
            optimizer(Optimizer): The executor to run for init server.
1000
            strategy(DistributedStrategy): Extra properties for distributed optimizer.
1001
                It is recommended to use DistributedStrategy in fleet.init(). The strategy
1002 1003
                here is for compatibility. If the strategy in fleet.distributed_optimizer()
                is not None, then it will overwrite the DistributedStrategy in fleet.init(),
1004
                which will take effect in distributed training.
1005

1006
        Returns:
1007
            Fleet: instance of fleet.
1008 1009

        Examples:
1010

1011
            .. code-block:: python
1012

1
123malin 已提交
1013
                import paddle
1014
                import paddle.distributed.fleet as fleet
1
123malin 已提交
1015
                fleet.init(is_collective=True)
1016 1017 1018 1019
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)

1020 1021
        """
        self.user_defined_optimizer = optimizer
1022

1023
        if strategy is not None:
T
tangwei12 已提交
1024
            if self._is_collective:
R
Roc 已提交
1025
                logger.warning(
T
tangwei12 已提交
1026 1027 1028 1029 1030
                    "It is recommended to use DistributedStrategy "
                    "in fleet.init(). The strategy here is only for compatibility. "
                    "If the strategy in fleet.distributed_optimizer() is "
                    "not None, then it will overwrite the DistributedStrategy in fleet.init(), "
                    "which will take effect in distributed training.")
1031
            self._user_defined_strategy = copy.deepcopy(strategy)
D
Dong Daxiang 已提交
1032 1033

        self._context = {}
S
ShenLiang 已提交
1034

1035 1036
        return self

1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
    def _get_amp_optimizer(self):
        # imitate target optimizer retrieval
        amp_optimizer = None
        for optimizer in self.strategy_compiler._get_applied_meta_optimizer():
            if hasattr(optimizer, 'amp_init'):
                amp_optimizer = optimizer
                break

        if amp_optimizer is None:
            if hasattr(self.user_defined_optimizer, 'amp_init'):
                amp_optimizer = self.user_defined_optimizer

        assert amp_optimizer is not None, \
            "amp_init can only be used when the amp(auto mixed precision) strategy is turned on."
        return amp_optimizer

    def get_loss_scaling(self):
1054 1055
        """Return the real-time loss scaling factor.
        """
1056 1057 1058
        amp_optimizer = self._get_amp_optimizer()
        return amp_optimizer.get_loss_scaling()

H
huangxu96 已提交
1059 1060 1061 1062 1063 1064 1065
    def amp_init(self,
                 place,
                 scope=None,
                 test_program=None,
                 use_fp16_test=False):
        """
        Init the amp training, such as cast fp32 parameters to fp16 type.
1066

H
huangxu96 已提交
1067
        Args:
1068
            place(CUDAPlace): place is used to initialize
H
huangxu96 已提交
1069 1070 1071 1072
                fp16 parameters with fp32 values.
            scope(Scope): The scope is used to find fp32 parameters.
            test_program(Program): The program is used for testing.
            use_fp16_test(bool): Whether to use fp16 testing.
1073

H
huangxu96 已提交
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
        Examples:
            .. code-block:: python

                import numpy as np
                import paddle
                import paddle.nn.functional as F
                paddle.enable_static()

                def run_example_code():
                    place = paddle.CUDAPlace(0)
                    exe = paddle.static.Executor(place)
                    data = paddle.static.data(name='X', shape=[None, 1, 28, 28], dtype='float32')
                    conv2d = paddle.static.nn.conv2d(input=data, num_filters=6, filter_size=3)
                    # 1) Use fp16_guard to control the range of fp16 kernels used.
                    with paddle.static.amp.fp16_guard():
                        bn = paddle.static.nn.batch_norm(input=conv2d, act="relu")
                        pool = F.max_pool2d(bn, kernel_size=2, stride=2)
                        hidden = paddle.static.nn.fc(pool, size=10)
                        loss = paddle.mean(hidden)
                    # 2) Create the optimizer and set `multi_precision` to True.
                    # Setting `multi_precision` to True can avoid the poor accuracy
1095
                    # or the slow convergence in a way.
H
huangxu96 已提交
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
                    optimizer = paddle.optimizer.Momentum(learning_rate=0.01, multi_precision=True)
                    # 3) These ops in `custom_black_list` will keep in the float32 computation type.
                    amp_list = paddle.static.amp.CustomOpLists(
                        custom_black_list=['pool2d'])
                    # 4) The entry of Paddle AMP.
                    # Enable pure fp16 training by setting `use_pure_fp16` to True.
                    optimizer = paddle.static.amp.decorate(
                        optimizer,
                        amp_list,
                        init_loss_scaling=128.0,
                        use_dynamic_loss_scaling=True,
                        use_pure_fp16=True)
                    # If you don't use the default_startup_program(), you sholud pass
                    # your defined `startup_program` into `minimize`.
                    optimizer.minimize(loss)
                    exe.run(paddle.static.default_startup_program())
                    # 5) Use `amp_init` after FP32 parameters initialization(such as `exe.run(startup_program)`).
                    # If you want to perform the testing process, you should pass `test_program` into `amp_init`.
                    optimizer.amp_init(place, scope=paddle.static.global_scope())
1115

H
huangxu96 已提交
1116
                if paddle.is_compiled_with_cuda() and len(paddle.static.cuda_places()) > 0:
1117
                    run_example_code()
H
huangxu96 已提交
1118
        """
1119
        amp_optimizer = self._get_amp_optimizer()
1120
        return amp_optimizer.amp_init(place, scope, test_program, use_fp16_test)
H
huangxu96 已提交
1121

D
Dong Daxiang 已提交
1122 1123 1124 1125 1126 1127 1128 1129 1130
    def _final_strategy(self):
        if "valid_strategy" not in self._context:
            print(
                "WARNING: You may need to call minimize function before this function is called"
            )
            return {}
        else:
            return self._context["valid_strategy"]

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
    def _get_applied_meta_list(self):
        if "applied_meta_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_meta_list called"
            )
            return []
        else:
            return self._context["applied_meta_list"]

    def _get_applied_graph_list(self):
        if "applied_graph_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_graph_list called"
            )
            return []
        else:
            return self._context["applied_graph_list"]

1149 1150 1151 1152 1153 1154 1155 1156 1157
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        """
        Add distributed operations to minimize ``loss`` by updating ``parameter_list``.

        Args:
1
123malin 已提交
1158
            loss (Tensor): A ``Tensor`` containing the value to minimize.
1159 1160 1161
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
1
123malin 已提交
1162
            parameter_list (Iterable, optional): Iterable of ``Tensor`` or ``Tensor.name`` to update
1163 1164
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1
123malin 已提交
1165
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
1166 1167 1168 1169
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
1
123malin 已提交
1170
            by minimize and a list of (param, grad) tensor pairs, param is
1171
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1172 1173
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
1174 1175 1176
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
1
123malin 已提交
1177

1178
            .. code-block:: python
1179

1180
                import paddle
1
123malin 已提交
1181
                paddle.enable_static()
1182
                import paddle.distributed.fleet as fleet
1
123malin 已提交
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
                import paddle.nn.functional as F

                hid_dim = 10
                label_dim = 2
                input_x = paddle.static.data(name='x', shape=[None, 13], dtype='float32')
                input_y = paddle.static.data(name='y', shape=[None, 1], dtype='int64')
                fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim, activation='tanh')
                fc_2 = paddle.static.nn.fc(x=fc_1, size=hid_dim, activation='tanh')
                prediction = paddle.static.nn.fc(x=[fc_2], size=label_dim, activation='softmax')
                cost = F.cross_entropy(input=prediction, label=input_y)
                avg_cost = paddle.mean(x=cost)
1194

1
123malin 已提交
1195
                fleet.init(is_collective=True)
1196 1197 1198 1199
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
                optimizer.minimize(avg_cost)
1200

1201
                # for more examples, please reference https://github.com/PaddlePaddle/PaddleFleetX
1202 1203

        """
1204 1205 1206 1207
        if not isinstance(loss, list):
            return self._minimize_impl(loss, startup_program, parameter_list,
                                       no_grad_set)
        else:
J
Jiabin Yang 已提交
1208
            if paddle.fluid.framework._non_static_mode(
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
            ) or self._role_maker._is_non_distributed() or self._is_collective:
                raise ValueError("loss can be list only in PS mode")
            return self._minimize_losses_impl(loss, startup_program,
                                              parameter_list, no_grad_set)

    def _minimize_impl(self,
                       loss,
                       startup_program=None,
                       parameter_list=None,
                       no_grad_set=None):
D
Dong Daxiang 已提交
1219 1220 1221
        context = {}
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
J
Jiabin Yang 已提交
1222
        if paddle.fluid.framework._non_static_mode():
1223 1224
            # imitate target optimizer retrieval
            target_opt = self.user_defined_optimizer
D
Dong Daxiang 已提交
1225
            self._context = context
1226 1227
            return target_opt.minimize(loss)

1228 1229
        # cache original feed forward program
        self.origin_main_program = loss.block.program
B
Baibaifan 已提交
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
        # add distributed attr
        if not hasattr(self.origin_main_program, "distributed_info_"):
            setattr(self.origin_main_program, "distributed_info_", dict())
            self.origin_main_program.distributed_info_[
                "dp_degree"] = self._user_defined_strategy.sharding_configs[
                    "dp_degree"]
            self.origin_main_program.distributed_info_[
                "mp_degree"] = self._user_defined_strategy.sharding_configs[
                    "mp_degree"]
            self.origin_main_program.distributed_info_[
                "pp_degree"] = self._user_defined_strategy.sharding_configs[
                    "pp_degree"]
            self.origin_main_program.distributed_info_[
                "sharding_degree"] = self._user_defined_strategy.sharding_configs[
                    "sharding_degree"]

1246
        context["origin_main_program"] = self.origin_main_program
1247
        context["origin_main_programs"] = [self.origin_main_program]
1248
        context["loss"] = loss
1249 1250
        if startup_program == None:
            self.origin_startup_program = \
1251 1252
                paddle.static.default_startup_program().clone(for_test=False)
            startup_program = paddle.static.default_startup_program()
1253 1254 1255
        else:
            self.origin_startup_program = \
                startup_program.clone(for_test=False)
1256

1257
        context["origin_startup_program"] = startup_program
1258
        context["origin_startup_programs"] = [startup_program]
1259
        context["role_maker"] = self._role_maker
1260

1261
        # Use the auto-parallel's routines instead
1262
        if self._user_defined_strategy.semi_auto or self._user_defined_strategy.auto_search:
W
wuhuachaocoding 已提交
1263
            from ..auto_parallel.parallelizer import AutoParallelizer
1264 1265 1266
            auto_parallelizer = AutoParallelizer(self)
            optimize_ops, params_grads, dist_startup_prog, dist_main_prog = auto_parallelizer.parallelize(
                loss, startup_program, parameter_list, no_grad_set)
1267

1268 1269
            return optimize_ops, params_grads, dist_startup_prog, dist_main_prog

1270 1271 1272 1273
        # compile time
        distributed_optimizer_list = \
            MetaOptimizerFactory()._get_valid_meta_optimizers(
                self.user_defined_optimizer)
D
Dong Daxiang 已提交
1274

D
Dong Daxiang 已提交
1275 1276 1277
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
        copy_user_defined_strategy = copy.deepcopy(self._user_defined_strategy)
1278 1279 1280 1281 1282 1283

        # trigger the auto-parallel in very strict condition
        # strategy = DistributedStrategy()
        # strategy.auto = True
        # optimizer = paddle.optimizer.SGD(learning_rate=0.1)
        # optimizer = fleet.distributed_optimizer(optimizer, strategy)
D
Dong Daxiang 已提交
1284
        if copy_user_defined_strategy._is_strict_auto():
1285 1286
            # turn on all the strategy for each optimizer
            for opt in distributed_optimizer_list:
D
Dong Daxiang 已提交
1287
                opt._enable_strategy(copy_user_defined_strategy, context)
1288

1289 1290
        valid_optimizer_list = []
        valid_graph_optimizer_list = []
D
Dong Daxiang 已提交
1291
        can_not_apply_optimizer_list = []
1292 1293 1294 1295
        # recall meta optimizers for ranking
        for opt in distributed_optimizer_list:
            opt._set_basic_info(loss, self._role_maker,
                                self.user_defined_optimizer,
D
Dong Daxiang 已提交
1296
                                copy_user_defined_strategy)
1297 1298
            if opt._can_apply() and not opt._is_graph_out():
                valid_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1299
            elif opt._can_apply() and opt._is_graph_out():
1300
                valid_graph_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1301 1302
            else:
                can_not_apply_optimizer_list.append(opt)
1303
        # combine recalled meta optimizers to be a valid meta optimizer
D
Dong Daxiang 已提交
1304
        meta_optimizer, graph_optimizer = \
1305 1306
            self.strategy_compiler.generate_optimizer(
                loss, self._role_maker, self.user_defined_optimizer,
D
Dong Daxiang 已提交
1307
                copy_user_defined_strategy, valid_optimizer_list,
1308
                valid_graph_optimizer_list)
D
Dong Daxiang 已提交
1309

D
Dong Daxiang 已提交
1310
        valid_strategy = self.strategy_compiler._get_valid_strategy(
D
Dong Daxiang 已提交
1311 1312 1313
            copy_user_defined_strategy, can_not_apply_optimizer_list)

        context["valid_strategy"] = copy.deepcopy(valid_strategy)
R
Roc 已提交
1314 1315 1316
        logger.debug("valid_strategy: " + str(context["valid_strategy"]))
        logger.debug("user_defined_strategy: " +
                     str(context["user_defined_strategy"]))
1317

1318 1319 1320 1321 1322 1323
        applied_meta_list = self.strategy_compiler._get_applied_meta_list()
        applied_graph_list = self.strategy_compiler._get_applied_graph_list()

        context['applied_meta_list'] = applied_meta_list
        context['applied_graph_list'] = applied_graph_list

D
Dong Daxiang 已提交
1324
        self._context = context
1325

D
Dong Daxiang 已提交
1326
        self.valid_strategy = valid_strategy
1327
        self.valid_strategy._enable_env()
D
Dong Daxiang 已提交
1328

1329 1330
        optimize_ops = []
        params_grads = []
1331

1332 1333 1334 1335 1336 1337 1338 1339
        if self._role_maker._is_non_distributed() and not self._is_collective:
            if self._runtime_handle is None:
                self._runtime_handle = RuntimeFactory()._create_runtime(context)

            compiled_program = compiler.CompiledProgram(
                self.origin_main_program).with_data_parallel(
                    loss_name=loss.name, share_vars_from=None)
            loss.block.program._graph = compiled_program
1340 1341 1342 1343
            return self.user_defined_optimizer.minimize(loss,
                                                        startup_program,
                                                        parameter_list,
                                                        no_grad_set=no_grad_set)
1344

1345
        if meta_optimizer:
R
Roc 已提交
1346 1347
            logger.debug("before minimize program id: " +
                         str(id(loss.block.program)))
1348
            optimize_ops, params_grads = meta_optimizer.minimize(
M
MRXLT 已提交
1349
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
R
Roc 已提交
1350 1351
            logger.debug("after minimize program id: " +
                         str(id(loss.block.program)))
1352
            default_program = paddle.static.default_main_program()
R
Roc 已提交
1353
            logger.debug("default program id: " + str(id(default_program)))
1354 1355 1356

            if id(default_program) != id(loss.block.program):
                paddle.fluid.framework.switch_main_program(loss.block.program)
R
Roc 已提交
1357 1358
            logger.debug("default program id after switch: " +
                         str(id(default_program)))
1359

1360 1361
        else:
            optimize_ops, params_grads = self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1362
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1363

1364 1365
        context["program_optimize_ops"] = optimize_ops
        context["program_params_grads"] = params_grads
1366

1367
        if graph_optimizer:
R
Roc 已提交
1368 1369
            logger.debug("before graph minimize program id: " +
                         str(id(loss.block.program)))
D
Dong Daxiang 已提交
1370
            optimize_ops, params_grads = graph_optimizer.minimize(
M
MRXLT 已提交
1371
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1372 1373 1374 1375
            # since we do not encourage users to use graph operations
            # if a graph optimizer takes effect, mostly
            # optimizers_ops and params_grads are None
            # i.e. users can not modify current computation graph anymore
1376 1377
            context["graph_optimize_ops"] = optimize_ops
            context["graph_optimize_grads"] = params_grads
1378 1379
        else:
            apply_ir_passes(loss.block.program, startup_program, self)
1380

1381 1382
        if not self._role_maker._is_heter_parameter_server_mode:
            program = paddle.static.default_main_program()
1383 1384 1385 1386 1387
            opt_info = {} if program._fleet_opt is None else program._fleet_opt
            opt_info["mpi_size"] = self.worker_num()
            opt_info["mpi_rank"] = self.worker_index()
            for k, v in self._user_defined_strategy.trainer_desc_configs.items(
            ):
1388
                if v or k not in opt_info:
1389
                    opt_info[k] = v
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
            program._fleet_opt = opt_info

        if self._runtime_handle is None:
            self._runtime_handle = RuntimeFactory()._create_runtime(context)

        import paddle.distributed.fleet as fleet
        fleet.util._set_strategy(context["valid_strategy"])

        return optimize_ops, params_grads

    def _minimize_losses_impl(self,
                              losses,
                              startup_programs=None,
                              parameter_list=None,
                              no_grad_set=None):
        context = {}

        # cache original feed forward program
        self.origin_main_program = losses[0].block.program
        context["origin_main_program"] = self.origin_main_program
        context["origin_main_programs"] = []
        for loss in losses:
            context["origin_main_programs"].append(loss.block.program)
        context["loss"] = losses

        if startup_programs is None:
            if len(losses) == 1:
                startup_programs = [paddle.static.default_startup_program()]
            else:
                raise ValueError(
                    "startup_program can't be None when loss is list.")
        self.origin_startup_program = startup_programs[0].clone(for_test=False)
        context["origin_startup_program"] = startup_programs[0]
        context["origin_startup_programs"] = []
        for program in startup_programs:
            context["origin_startup_programs"].append(program)

        context["role_maker"] = self._role_maker

        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)

        context["valid_strategy"] = copy.deepcopy(self._user_defined_strategy)

        self._context = context

        self.valid_strategy = context["valid_strategy"]
        self.valid_strategy._enable_env()

        optimize_ops = []
        params_grads = []

W
wuhuachaocoding 已提交
1442
        from .meta_optimizers import ParameterServerOptimizer
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
        ps_optimizer = ParameterServerOptimizer(self.user_defined_optimizer)
        ps_optimizer._set_basic_info(losses, self._role_maker,
                                     self.user_defined_optimizer,
                                     self._user_defined_strategy)
        optimize_ops, params_grads = ps_optimizer.minimize_losses_impl(
            losses, startup_programs, parameter_list, no_grad_set=no_grad_set)

        # default_program = paddle.static.default_main_program()

        # if id(default_program) != id(losses[0].block.program):
        #     paddle.fluid.framework.switch_main_program(losses[0].block.program)

        context["program_optimize_ops"] = optimize_ops
        context["program_params_grads"] = params_grads

        for loss in losses:
            program = loss.block.program
            opt_info = {} if program._fleet_opt is None else program._fleet_opt
1461 1462 1463 1464
            opt_info["mpi_size"] = self.worker_num()
            opt_info["mpi_rank"] = self.worker_index()
            for k, v in self._user_defined_strategy.trainer_desc_configs.items(
            ):
1465
                if v or k not in opt_info:
1466
                    opt_info[k] = v
1467
            program._fleet_opt = opt_info
R
Roc 已提交
1468 1469
            logger.debug("fleet base opt info: " + str(id(program)) +
                         str(program._fleet_opt))
1470

1471
        if self._runtime_handle is None:
1472
            self._runtime_handle = RuntimeFactory()._create_runtime(context)
1473

1474 1475
        import paddle.distributed.fleet as fleet
        fleet.util._set_strategy(context["valid_strategy"])
1476 1477

        return optimize_ops, params_grads