fleet.py 51.9 KB
Newer Older
W
wuhuachaocoding 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
16
import paddle
17
import os
18
from types import MethodType
19
import numpy as np
W
wuhuachaocoding 已提交
20
from paddle.fluid.framework import _global_flags
21
from paddle.fluid import compiler
W
wuhuachaocoding 已提交
22 23 24 25 26
from .base.role_maker import UserDefinedRoleMaker, PaddleCloudRoleMaker, RoleMakerBase
from .base.strategy_compiler import StrategyCompiler
from .base.distributed_strategy import DistributedStrategy
from .base.meta_optimizer_factory import MetaOptimizerFactory
from .base.runtime_factory import RuntimeFactory
27
from paddle.fluid.wrapped_decorator import wrap_decorator
28
from paddle.fluid.dygraph import parallel_helper
29
from paddle.fluid.ir import apply_build_strategy
W
wuhuachaocoding 已提交
30 31
from .base import topology as tp
from .meta_parallel import model_parallel_random_seed
32
from paddle import _C_ops, _legacy_C_ops
33
from paddle.fluid import core
R
Roc 已提交
34 35
from .utils.log_util import logger, set_log_level
import logging
36

37 38
__all__ = []

39

40 41 42 43 44 45 46 47 48 49 50 51 52 53
def apply_ir_passes(main_program, startup_program, config):
    build_strategy = config._user_defined_strategy.build_strategy._copy()
    if not _global_flags()['FLAGS_apply_pass_to_program']:
        return build_strategy

    pipeline_opt = getattr(main_program, "_pipeline_opt", {})
    if pipeline_opt:
        main_program = pipeline_opt["section_program"]
        startup_program = startup_program._pipeline_opt["startup_program"]

    pass_attrs = {"use_cuda": config._is_collective}
    fuse_all_reduce = config._user_defined_strategy.fuse_all_reduce_ops
    if fuse_all_reduce and build_strategy.fuse_all_optimizer_ops:
        # FIXME(zjl): currently, fuse_all_optimizer_ops
54 55 56 57
        # have conflict with fuse_all_reduce_ops because
        # RawProgramOptimizer also inserts coalesce_tensor
        # into program. These two procedures may conflict
        # in which vars are to be fused.
R
Roc 已提交
58
        logger.warning(
59 60 61 62 63 64 65 66
            'Currently, the fuse_all_optimizer_ops pass has conflict with fuse_all_reduce_ops pass. Disable the fuse_all_optimizer_ops pass temporarily.'
        )
        build_strategy.fuse_all_optimizer_ops = False

    return apply_build_strategy(main_program, startup_program, build_strategy,
                                pass_attrs)


67
def _inited_runtime_handler_(func):
68

69 70 71 72 73 74 75 76 77 78 79
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._runtime_handle is None:
            raise ValueError("Fleet can not find suitable runtime handler")

        return func(*args, **kwargs)

    return __impl__


80
def _is_non_distributed_check_(func):
81

82 83 84 85 86
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._role_maker is not None and cls._role_maker._is_non_distributed(
        ) is True:
R
Roc 已提交
87
            logger.warning(
88 89 90 91 92 93 94 95 96
                "%s() function doesn't work when use non_distributed fleet." %
                (func.__name__))
            return

        return func(*args, **kwargs)

    return __impl__


97
inited_runtime_handler = wrap_decorator(_inited_runtime_handler_)
98
is_non_distributed_check = wrap_decorator(_is_non_distributed_check_)
99 100


101 102 103
class Fleet(object):
    """
    Unified API for distributed training of PaddlePaddle
104
    Please reference the https://github.com/PaddlePaddle/PaddleFleetX for details
105 106 107 108 109


    Returns:
        Fleet: A Fleet instance

110
    Example for collective training:
1
123malin 已提交
111

112 113
        .. code-block:: python

1
123malin 已提交
114 115
            import paddle
            paddle.enable_static()
116
            import paddle.distributed.fleet as fleet
117 118 119

            fleet.init(is_collective=True)

120 121 122
            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
123 124 125 126 127 128 129 130

            # do distributed training


    Example for parameter server training:

        .. code-block:: python

1
123malin 已提交
131 132
            import paddle
            paddle.enable_static()
133 134
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
135
            fleet.init(strategy=strategy)
136

137
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
138
            optimizer = fleet.distributed_optimizer(optimizer)
139

140 141
            if fleet.is_first_worker():
                print("this is first worker")
142

143 144
            print("current node index: {}".format(fleet.worker_index()))
            print("total number of worker num: {}".format(fleet.worker_num()))
145

146 147 148
            if fleet.is_worker():
                print("this is worker")
            print("worker endpoints: {}".format(fleet.worker_endpoints(to_string=True)))
149

150 151
            print("server num: {}".format(fleet.server_num()))
            print("server endpoints: {}".format(fleet.server_endpoints(to_string=True)))
152

153 154 155
            if fleet.is_server():
                print("this is server")
            fleet.stop_worker()
156 157


158 159 160
    """

    def __init__(self):
161
        self._role_maker = None
162
        self.strategy_compiler = None
163
        self._is_collective = False
164
        self._runtime_handle = None
D
Dong Daxiang 已提交
165 166
        self._util = None
        self._context = {}
W
wuhuachaocoding 已提交
167
        self.user_defined_optimizer = paddle.optimizer.Optimizer(0.0)
168

R
Roc 已提交
169 170 171 172 173
    def init(self,
             role_maker=None,
             is_collective=False,
             strategy=None,
             log_level="INFO"):
174 175 176
        """
        Initialize role_maker in Fleet.

177 178 179 180 181
        This function is responsible for the distributed architecture
        what you want to run your code behind.

        Args:
            role_maker (RoleMakerBase, optional): A ``RoleMakerBase`` containing the configuration
182
                of environment variables related to distributed training.If you did not initialize
183 184
                the rolemaker by yourself, it will be automatically initialized to PaddleRoleMaker.
                The default value is None.
185
            is_collective (Boolean, optional): A ``Boolean`` variable determines whether the program
186
                runs on Collective mode or ParameterServer mode. True means the program runs on
187
                Collective mode, and False means running on ParameterServer mode. The default value
188
                is False.
189
            strategy (DistributedStrategy): Extra properties for distributed training.
190
                For details, please refer to paddle.distributed.fleet.DistributedStrategy. Default: None.
R
Roc 已提交
191 192
            log_level (Integer, String, optional): A ``Integer`` or ``String`` Variable determining how hight
                the logging level is. Default is "INFO".
193 194


195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
        Returns:
            None

        Examples1:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

        Examples2:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init(is_collective=True)

        Examples3:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
1
123malin 已提交
217
                role = fleet.PaddleCloudRoleMaker()
218
                fleet.init(role)
219

220 221 222 223 224 225
        Examples4:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
226
                fleet.init(strategy=strategy)
227

R
Roc 已提交
228 229 230 231 232 233 234 235
        Examples5:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                fleet.init(log_level = "DEBUG")

236
        """
R
Roc 已提交
237 238 239

        set_log_level(log_level)

S
ShenLiang 已提交
240 241 242
        if strategy is None:
            strategy = DistributedStrategy()
        self._user_defined_strategy = copy.deepcopy(strategy)
243 244

        if role_maker is None:
245 246 247 248 249 250
            if isinstance(is_collective, bool):
                self._is_collective = is_collective
                self._role_maker = PaddleCloudRoleMaker(
                    is_collective=self._is_collective)
            else:
                raise ValueError(
251 252
                    "`is_collective` should be instance of `bool`, but got {}".
                    format(type(is_collective)))
253
        else:
254 255
            if isinstance(role_maker, RoleMakerBase):
                self._role_maker = role_maker
256
                self._is_collective = role_maker._is_collective
257 258
            else:
                raise ValueError(
259 260
                    "`role_maker` should be subclass of `RoleMakerBase`, but got {}"
                    .format(type(role_maker)))
261
        self._role_maker._generate_role()
262

263 264 265
        import paddle.distributed.fleet as fleet
        fleet.util._set_role_maker(self._role_maker)

266
        self.strategy_compiler = StrategyCompiler()
267 268 269 270 271 272 273 274 275

        if self._role_maker._is_non_distributed() and self._is_collective:
            if paddle.fluid.core.is_compiled_with_cuda():
                gpus_num = paddle.fluid.core.get_cuda_device_count()
                if gpus_num != 1:
                    raise ValueError(
                        "CUDA_VISIBLE_DEVICES shoule be set only 1 card if you use `python` to launch fleet program."
                    )

J
Jiabin Yang 已提交
276
        if paddle.fluid.framework._non_static_mode():
277
            if self.worker_num() == 1:
278 279 280
                # if worker_num is 1, should construct default topology & hcg
                self._topology = tp.CommunicateTopology()
                self._hcg = tp.HybridCommunicateGroup(self._topology)
281
                return
282
            if parallel_helper._is_parallel_ctx_initialized():
R
Roc 已提交
283
                logger.warning(
284 285
                    "The dygraph parallel environment has been initialized.")
            else:
286 287
                # FLAGS_nccl_nrings is used for dynamic graph multi-stream communication
                if "FLAGS_nccl_nrings" in os.environ:
R
Roc 已提交
288
                    logger.warning(
289 290 291 292 293 294
                        "You have set the environment variable FLAGS_nccl_nrings "
                        "outside the program, so the nccl_comm_num in "
                        "DistributedStrategy will not take effect here.")
                else:
                    os.environ["FLAGS_nccl_nrings"] = str(
                        self._user_defined_strategy.nccl_comm_num)
295
                paddle.distributed.init_parallel_env()
296

K
kuizhiqing 已提交
297 298 299 300 301 302
            # hybrid parallel not support for npu/xpu
            if self._user_defined_strategy.heter_ccl_mode == False:
                # init hybrid parallel environment in dygraph
                if tp._HYBRID_PARALLEL_GROUP is None:
                    self._init_hybrid_parallel_env()
                else:
R
Roc 已提交
303
                    logger.warning(
K
kuizhiqing 已提交
304 305
                        "The dygraph hybrid parallel environment has been initialized."
                    )
W
WangXi 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
        elif self._is_collective:
            use_sharding = self._user_defined_strategy.sharding

            # global group
            global_rank = self.worker_index()
            global_world_size = self.worker_num()
            # NOTE(wangxi): see sharding_optimizer
            global_ring_id = 3 if use_sharding else 0
            global_ranks = list(range(global_world_size))

            if tp._HYBRID_PARALLEL_GROUP is None: tp._CommunicateGroup()
            cg = tp._HYBRID_PARALLEL_GROUP
            self._hcg = cg
            cg.set_comm_group('global', global_rank, global_world_size,
                              global_ring_id, global_ranks)

Y
Yuang Liu 已提交
322 323 324
            use_tensor_parallel = self._user_defined_strategy.tensor_parallel
            use_mp = use_sharding or use_tensor_parallel

W
WangXi 已提交
325
            # hybrid group
Y
Yuang Liu 已提交
326 327 328 329 330 331 332 333 334 335
            if use_mp is False: return

            mp_degree_sharding = 1
            mp_degree_tensor_parallel = 1
            if use_sharding:
                sharding_configs = self._user_defined_strategy.sharding_configs
                mp_degree_sharding = int(sharding_configs['mp_degree'])

            if use_tensor_parallel:
                tensor_parallel_configs = self._user_defined_strategy.tensor_parallel_configs
336 337
                mp_degree_tensor_parallel = int(
                    tensor_parallel_configs['tensor_parallel_degree'])
Y
Yuang Liu 已提交
338 339 340

            if use_sharding and use_tensor_parallel:
                assert mp_degree_sharding == mp_degree_tensor_parallel
W
WangXi 已提交
341

Y
Yuang Liu 已提交
342
            mp_degree = mp_degree_sharding if use_sharding else mp_degree_tensor_parallel
W
WangXi 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355

            if mp_degree > 1:
                assert global_world_size % mp_degree == 0
                # NOTE(wangxi): mp_ring_id sync with sharding_optimizer.py _build_groups
                mp_ring_id = 0
                mp_rank = global_rank % mp_degree
                mp_group_id = global_rank // mp_degree
                mp_group_ranks = [
                    idx for idx in global_ranks
                    if idx // mp_degree == mp_group_id
                ]
                cg.set_comm_group('model', mp_rank, mp_degree, mp_ring_id,
                                  mp_group_ranks)
W
wuhuachaocoding 已提交
356
        return self
357 358 359 360 361 362 363 364

    def _init_hybrid_parallel_env(self):
        """initialize the hybrid environment
        """
        self.hybrid_configs = self._user_defined_strategy.hybrid_configs
        self.dp_degree = self.hybrid_configs["dp_degree"]
        self.mp_degree = self.hybrid_configs["mp_degree"]
        self.pp_degree = self.hybrid_configs["pp_degree"]
J
JZ-LIANG 已提交
365
        self.sharding_degree = self.hybrid_configs["sharding_degree"]
366 367 368

        assert self.mp_degree >= 0, "mp_degree should be greater or equal to 0"
        assert self.pp_degree >= 0, "pp_degree should be greater or equal to 0"
J
JZ-LIANG 已提交
369
        assert self.sharding_degree >= 0, "sharding_degree should be greater or equal to 0"
370 371 372 373 374 375 376 377 378 379 380

        self.mp_degree = max(self.mp_degree, 1)
        self.pp_degree = max(self.pp_degree, 1)

        if self.dp_degree < 0:
            nranks = paddle.distributed.get_world_size()
            self.dp_degree = nranks // (self.mp_degree * self.pp_degree)

        self.dp_degree = max(self.dp_degree, 1)

        self._topology = tp.CommunicateTopology(
J
JZ-LIANG 已提交
381 382 383 384 385
            hybrid_group_names=["data", "pipe", "sharding", "model"],
            dims=[
                self.dp_degree, self.pp_degree, self.sharding_degree,
                self.mp_degree
            ])
386 387 388

        self._hcg = tp.HybridCommunicateGroup(self._topology)

389 390 391 392 393 394 395 396
        if self.mp_degree > 1:
            tensor_parallel_configs = self._user_defined_strategy.tensor_parallel_configs
            tensor_init_seed = tensor_parallel_configs["tensor_init_seed"]
            if tensor_init_seed == -1:
                model_parallel_random_seed()
            else:
                model_parallel_random_seed(tensor_init_seed)

397 398 399 400 401 402 403 404
    def get_hybrid_communicate_group(self):
        assert self._hcg is not None
        return self._hcg

    def get_hybrid_parallel_topology(self):
        assert self._topology is not None
        return self._topology

405 406 407 408 409 410 411
    def is_first_worker(self):
        """
        Check whether the node is the first instance of worker.

        Returns:
            bool: True if this is the first node of worker,
                  False if not.
412

413 414 415 416 417 418 419 420
        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_first_worker()

421
        """
422
        return self._role_maker._is_first_worker()
423 424 425 426 427 428 429

    def worker_index(self):
        """
        Get current worker index.

        Returns:
            int: node id
430 431 432 433

        Examples:

            .. code-block:: python
1
123malin 已提交
434

435 436 437 438
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_index()

439
        """
440
        return self._role_maker._worker_index()
441 442 443 444 445 446 447

    def worker_num(self):
        """
        Get current total worker number.

        Returns:
            int: worker numbers
1
123malin 已提交
448

449
        Examples:
1
123malin 已提交
450

451 452 453 454 455 456
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_num()

457
        """
458
        return self._role_maker._worker_num()
459

460 461 462 463 464 465 466 467 468 469 470 471
    def node_num(self):
        return self._role_maker._get_node_num()

    def local_rank(self):
        return self._role_maker._get_local_rank()

    def local_device_ids(self):
        return self._role_maker._get_local_device_ids()

    def world_device_ids(self):
        return self._role_maker._get_world_device_ids()

472 473 474 475 476 477 478
    def is_worker(self):
        """
        Check whether the node is an instance of worker.

        Returns:
            bool: True if this is a node of worker,
                  False if not.
479 480

        Examples:
1
123malin 已提交
481

482 483 484 485 486 487
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_worker()

488
        """
489
        return self._role_maker._is_worker()
490

491 492 493
    def is_coordinator(self):
        return self._role_maker._is_coordinator()

494 495
    def worker_endpoints(self, to_string=False):
        """
496
        Get current worker endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].
497 498 499

        Returns:
            list/string: server endpoints
500 501

        Examples:
1
123malin 已提交
502

503 504 505 506 507 508
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_endpoints()

509 510
        """
        if to_string:
511
            return ",".join(self._role_maker._get_trainer_endpoints())
512
        else:
513
            return self._role_maker._get_trainer_endpoints()
514 515 516 517 518 519 520

    def server_num(self):
        """
        Get current total worker number.

        Returns:
            int: server number
521 522

        Examples:
1
123malin 已提交
523

524
            .. code-block:: python
1
123malin 已提交
525 526 527 528

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_num()
529
        """
530
        return len(self._role_maker._get_pserver_endpoints())
531 532 533 534 535 536 537

    def server_index(self):
        """
        Get current server index.

        Returns:
            int: node id
538 539

        Examples:
1
123malin 已提交
540

541 542 543 544 545 546
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_index()

547
        """
548
        return self._role_maker._server_index()
549 550 551 552 553 554 555

    def server_endpoints(self, to_string=False):
        """
        Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].

        Returns:
            list/string: server endpoints
556 557

        Examples:
1
123malin 已提交
558

559 560 561 562 563 564
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_endpoints()

565
        """
566

567
        if to_string:
568
            return ",".join(self._role_maker._get_pserver_endpoints())
569
        else:
570
            return self._role_maker._get_pserver_endpoints()
571 572 573 574 575 576 577 578

    def is_server(self):
        """
        Check whether the node is an instance of server.

        Returns:
            bool: True if this is a node of server,
                  False if not.
579 580 581 582

        Examples:

            .. code-block:: python
1
123malin 已提交
583

584 585 586 587
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_server()

588
        """
589 590
        return self._role_maker._is_server()

591 592
    def barrier_worker(self):
        """
593 594 595 596
        barrier all workers

        Returns:
            None
597
        """
598
        self._role_maker._barrier("worker")
599

600
    @is_non_distributed_check
601
    @inited_runtime_handler
602
    def init_worker(self, scopes=None):
603
        """
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
        initialize `Communicator` for parameter server training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_worker()

622
        """
623
        self._runtime_handle._init_worker(scopes)
624

625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
    @is_non_distributed_check
    @inited_runtime_handler
    def init_coordinator(self, scopes=None):
        """
        initialize coordinator node
        """
        self._runtime_handle._init_coordinator(scopes)

    def make_fl_strategy(self):
        self._runtime_handle._make_fl_strategy()

    @is_non_distributed_check
    @inited_runtime_handler
    def get_fl_client(self):
        """
        get worker(training node) ptr
        """
        return self._runtime_handle._worker

644
    @is_non_distributed_check
645
    @inited_runtime_handler
646
    def init_server(self, *args, **kwargs):
647
        """
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
        init_server executor to initialize startup program,
        if the `args` is not empty, it will run load_persistables for increment training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

667
        """
668
        self._runtime_handle._init_server(*args, **kwargs)
669

Z
zmxdream 已提交
670 671
    @is_non_distributed_check
    @inited_runtime_handler
T
Thunderbrook 已提交
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
    def load_model(self, path, mode):
        """
        load fleet model from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

690
                fleet.load_model("path", mode=0)
T
Thunderbrook 已提交
691 692

        """
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
        self._runtime_handle._load_persistables(path, mode)

    @is_non_distributed_check
    @inited_runtime_handler
    def load_one_table(self, table_id, path, mode):
        """
        load fleet one table from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.load_one_table(0, "path", mode=0)

        """
        self._runtime_handle._load_one_table(table_id, path, mode)

    @is_non_distributed_check
    @inited_runtime_handler
    def load_inference_model(self, path, mode):
        """
        load fleet inference model from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.load_inference_model("path", mode=1)

        """
        self._runtime_handle._load_inference_model(path, mode)
T
Thunderbrook 已提交
744

745
    @is_non_distributed_check
746
    @inited_runtime_handler
747 748
    def run_server(self):
        """
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
        run server will run pserver main program with executor.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                if fleet.is_server():
                    fleet.init_server()

767 768 769
        """
        self._runtime_handle._run_server()

770
    @is_non_distributed_check
771
    @inited_runtime_handler
772 773
    def stop_worker(self):
        """
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
        stop `Communicator` and give training complete notice to parameter server.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

791 792 793
        """
        self._runtime_handle._stop_worker()

Z
zmxdream 已提交
794 795
    @is_non_distributed_check
    @inited_runtime_handler
T
tangwei12 已提交
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
    def save(self, dirname, feed=[], fetch=[], **configs):
        inference = True

        if not feed and not fetch:
            inference = False

        place = paddle.CPUPlace()
        executor = paddle.static.Executor(place)

        if inference:
            feeded_var_names = []
            fetch_var_names = []

            for var in feed:
                if isinstance(var, str):
                    feeded_var_names.append(var)
                elif isinstance(var, paddle.static.Variable):
                    feeded_var_names.append(var.name)
                else:
                    raise ValueError("feed must be [str|Variable]")

            for var in fetch:
                if isinstance(var, str):
                    fetch_var_names.append(var)
                elif isinstance(var, paddle.static.Variable):
                    fetch_var_names.append(var.name)
                else:
                    raise ValueError("feed must be [str|Variable]")

            fetch_vars = [
                paddle.static.default_main_program().global_block().var(name)
                for name in fetch_var_names
            ]

830 831 832 833
            self._runtime_handle._save_inference_model(executor, dirname,
                                                       feeded_var_names,
                                                       fetch_vars, None, True,
                                                       0)
T
tangwei12 已提交
834 835 836 837
        else:
            increment_mode = 0
            if "mode" in configs:
                increment_mode = int(configs["mode"])
838 839 840 841
            self._runtime_handle._save_persistables(executor,
                                                    dirname,
                                                    main_program=None,
                                                    mode=increment_mode)
T
tangwei12 已提交
842

Z
zmxdream 已提交
843 844
    @is_non_distributed_check
    @inited_runtime_handler
845 846 847 848 849 850
    def save_inference_model(self,
                             executor,
                             dirname,
                             feeded_var_names,
                             target_vars,
                             main_program=None,
851 852
                             export_for_deployment=True,
                             mode=0):
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
        """
        save inference model for inference.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

        """

873 874 875 876
        self._runtime_handle._save_inference_model(executor, dirname,
                                                   feeded_var_names,
                                                   target_vars, main_program,
                                                   export_for_deployment, mode)
877

Z
zmxdream 已提交
878 879
    @is_non_distributed_check
    @inited_runtime_handler
880
    def save_persistables(self, executor, dirname, main_program=None, mode=0):
881 882
        """

1
123malin 已提交
883
        saves all persistable tensors from :code:`main_program` to
884 885
        the folder :code:`dirname`. You can refer to

1
123malin 已提交
886 887
        The :code:`dirname` is used to specify the folder where persistable tensors
        are going to be saved. If you would like to save tensors in separate
888 889 890
        files, set :code:`filename` None.

        Args:
1
123malin 已提交
891
            executor(Executor): The executor to run for saving persistable tensors.
892 893 894 895 896
                                You can refer to :ref:`api_guide_executor_en` for
                                more details.

            dirname(str, optional): The saving directory path.
                                When you need to save the parameter to the memory, set it to None.
1
123malin 已提交
897
            main_program(Program, optional): The program whose persistbale tensors will
898 899 900 901 902 903 904 905 906 907
                                             be saved. Default: None.


        Returns:
            None

        Examples:

            .. code-block:: text

1
123malin 已提交
908 909
                import paddle
                paddle.enable_static()
910 911 912 913 914 915 916
                import paddle.distributed.fleet as fleet

                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

1
123malin 已提交
917 918
                exe = paddle.static.Executor(paddle.CPUPlace())
                fleet.save_persistables(exe, "dirname", paddle.static.default_main_program())
919 920

        """
921 922
        self._runtime_handle._save_persistables(executor, dirname, main_program,
                                                mode)
923

Z
zhaocaibei123 已提交
924 925 926 927 928
    @is_non_distributed_check
    @inited_runtime_handler
    def save_cache_model(self, dirname, **configs):
        return self._runtime_handle._save_cache_model(dirname, **configs)

929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
    @is_non_distributed_check
    @inited_runtime_handler
    def check_save_pre_patch_done(self):
        return self._runtime_handle._check_save_pre_patch_done()

    @is_non_distributed_check
    @inited_runtime_handler
    def save_one_table(self, table_id, path, mode):
        """
        save fleet one table from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.save_one_table(0, "path", mode=0)

        """
        self._runtime_handle._save_one_table(table_id, path, mode)

    @is_non_distributed_check
    @inited_runtime_handler
    def save_dense_params(self,
                          executor,
                          dirname,
                          scope,
                          program,
                          var_names=None):
        """
        save fleet one table from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                import paddle
                place = paddle.fluid.CPUPlace()
                exe = paddle.fluid.Executor(place)

                # build net
                # fleet.distributed_optimizer(...)

                fleet.save_dense_params(exe, "path", scope=paddle.static.global_scope(), program=paddle.static.default_main_program())

        """
        self._runtime_handle._save_dense_params(executor, dirname, scope,
                                                program, var_names)

993
    def shrink(self, threshold=None):
994 995
        self._runtime_handle._shrink(threshold)

996
    def distributed_optimizer(self, optimizer, strategy=None):
997
        """
998 999 1000 1001 1002 1003 1004
        Optimizer for distributed training.

        For the distributed training, this method would rebuild a new instance of DistributedOptimizer.
        Which has basic Optimizer function and special features for distributed training.

        Args:
            optimizer(Optimizer): The executor to run for init server.
1005
            strategy(DistributedStrategy): Extra properties for distributed optimizer.
1006
                It is recommended to use DistributedStrategy in fleet.init(). The strategy
1007 1008
                here is for compatibility. If the strategy in fleet.distributed_optimizer()
                is not None, then it will overwrite the DistributedStrategy in fleet.init(),
1009
                which will take effect in distributed training.
1010

1011
        Returns:
1012
            Fleet: instance of fleet.
1013 1014

        Examples:
1015

1016
            .. code-block:: python
1017

1
123malin 已提交
1018
                import paddle
1019
                import paddle.distributed.fleet as fleet
1
123malin 已提交
1020
                fleet.init(is_collective=True)
1021 1022 1023 1024
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)

1025 1026
        """
        self.user_defined_optimizer = optimizer
1027

1028
        if strategy is not None:
T
tangwei12 已提交
1029
            if self._is_collective:
R
Roc 已提交
1030
                logger.warning(
T
tangwei12 已提交
1031 1032 1033 1034 1035
                    "It is recommended to use DistributedStrategy "
                    "in fleet.init(). The strategy here is only for compatibility. "
                    "If the strategy in fleet.distributed_optimizer() is "
                    "not None, then it will overwrite the DistributedStrategy in fleet.init(), "
                    "which will take effect in distributed training.")
1036
            self._user_defined_strategy = copy.deepcopy(strategy)
D
Dong Daxiang 已提交
1037 1038

        self._context = {}
S
ShenLiang 已提交
1039

1040 1041
        return self

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
    def _get_amp_optimizer(self):
        # imitate target optimizer retrieval
        amp_optimizer = None
        for optimizer in self.strategy_compiler._get_applied_meta_optimizer():
            if hasattr(optimizer, 'amp_init'):
                amp_optimizer = optimizer
                break

        if amp_optimizer is None:
            if hasattr(self.user_defined_optimizer, 'amp_init'):
                amp_optimizer = self.user_defined_optimizer

        assert amp_optimizer is not None, \
            "amp_init can only be used when the amp(auto mixed precision) strategy is turned on."
        return amp_optimizer

    def get_loss_scaling(self):
1059 1060
        """Return the real-time loss scaling factor.
        """
1061 1062 1063
        amp_optimizer = self._get_amp_optimizer()
        return amp_optimizer.get_loss_scaling()

H
huangxu96 已提交
1064 1065 1066 1067 1068 1069 1070
    def amp_init(self,
                 place,
                 scope=None,
                 test_program=None,
                 use_fp16_test=False):
        """
        Init the amp training, such as cast fp32 parameters to fp16 type.
1071

H
huangxu96 已提交
1072
        Args:
1073
            place(CUDAPlace): place is used to initialize
H
huangxu96 已提交
1074 1075 1076 1077
                fp16 parameters with fp32 values.
            scope(Scope): The scope is used to find fp32 parameters.
            test_program(Program): The program is used for testing.
            use_fp16_test(bool): Whether to use fp16 testing.
1078

H
huangxu96 已提交
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
        Examples:
            .. code-block:: python

                import numpy as np
                import paddle
                import paddle.nn.functional as F
                paddle.enable_static()

                def run_example_code():
                    place = paddle.CUDAPlace(0)
                    exe = paddle.static.Executor(place)
                    data = paddle.static.data(name='X', shape=[None, 1, 28, 28], dtype='float32')
                    conv2d = paddle.static.nn.conv2d(input=data, num_filters=6, filter_size=3)
                    # 1) Use fp16_guard to control the range of fp16 kernels used.
                    with paddle.static.amp.fp16_guard():
                        bn = paddle.static.nn.batch_norm(input=conv2d, act="relu")
                        pool = F.max_pool2d(bn, kernel_size=2, stride=2)
                        hidden = paddle.static.nn.fc(pool, size=10)
                        loss = paddle.mean(hidden)
                    # 2) Create the optimizer and set `multi_precision` to True.
                    # Setting `multi_precision` to True can avoid the poor accuracy
1100
                    # or the slow convergence in a way.
H
huangxu96 已提交
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
                    optimizer = paddle.optimizer.Momentum(learning_rate=0.01, multi_precision=True)
                    # 3) These ops in `custom_black_list` will keep in the float32 computation type.
                    amp_list = paddle.static.amp.CustomOpLists(
                        custom_black_list=['pool2d'])
                    # 4) The entry of Paddle AMP.
                    # Enable pure fp16 training by setting `use_pure_fp16` to True.
                    optimizer = paddle.static.amp.decorate(
                        optimizer,
                        amp_list,
                        init_loss_scaling=128.0,
                        use_dynamic_loss_scaling=True,
                        use_pure_fp16=True)
                    # If you don't use the default_startup_program(), you sholud pass
                    # your defined `startup_program` into `minimize`.
                    optimizer.minimize(loss)
                    exe.run(paddle.static.default_startup_program())
                    # 5) Use `amp_init` after FP32 parameters initialization(such as `exe.run(startup_program)`).
                    # If you want to perform the testing process, you should pass `test_program` into `amp_init`.
                    optimizer.amp_init(place, scope=paddle.static.global_scope())
1120

H
huangxu96 已提交
1121
                if paddle.is_compiled_with_cuda() and len(paddle.static.cuda_places()) > 0:
1122
                    run_example_code()
H
huangxu96 已提交
1123
        """
1124
        amp_optimizer = self._get_amp_optimizer()
1125
        return amp_optimizer.amp_init(place, scope, test_program, use_fp16_test)
H
huangxu96 已提交
1126

D
Dong Daxiang 已提交
1127 1128 1129 1130 1131 1132 1133 1134 1135
    def _final_strategy(self):
        if "valid_strategy" not in self._context:
            print(
                "WARNING: You may need to call minimize function before this function is called"
            )
            return {}
        else:
            return self._context["valid_strategy"]

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
    def _get_applied_meta_list(self):
        if "applied_meta_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_meta_list called"
            )
            return []
        else:
            return self._context["applied_meta_list"]

    def _get_applied_graph_list(self):
        if "applied_graph_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_graph_list called"
            )
            return []
        else:
            return self._context["applied_graph_list"]

1154 1155 1156 1157 1158 1159 1160 1161 1162
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        """
        Add distributed operations to minimize ``loss`` by updating ``parameter_list``.

        Args:
1
123malin 已提交
1163
            loss (Tensor): A ``Tensor`` containing the value to minimize.
1164 1165 1166
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
1
123malin 已提交
1167
            parameter_list (Iterable, optional): Iterable of ``Tensor`` or ``Tensor.name`` to update
1168 1169
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1
123malin 已提交
1170
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
1171 1172 1173 1174
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
1
123malin 已提交
1175
            by minimize and a list of (param, grad) tensor pairs, param is
1176
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1177 1178
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
1179 1180 1181
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
1
123malin 已提交
1182

1183
            .. code-block:: python
1184

1185
                import paddle
1
123malin 已提交
1186
                paddle.enable_static()
1187
                import paddle.distributed.fleet as fleet
1
123malin 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
                import paddle.nn.functional as F

                hid_dim = 10
                label_dim = 2
                input_x = paddle.static.data(name='x', shape=[None, 13], dtype='float32')
                input_y = paddle.static.data(name='y', shape=[None, 1], dtype='int64')
                fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim, activation='tanh')
                fc_2 = paddle.static.nn.fc(x=fc_1, size=hid_dim, activation='tanh')
                prediction = paddle.static.nn.fc(x=[fc_2], size=label_dim, activation='softmax')
                cost = F.cross_entropy(input=prediction, label=input_y)
                avg_cost = paddle.mean(x=cost)
1199

1
123malin 已提交
1200
                fleet.init(is_collective=True)
1201 1202 1203 1204
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
                optimizer.minimize(avg_cost)
1205

1206
                # for more examples, please reference https://github.com/PaddlePaddle/PaddleFleetX
1207 1208

        """
1209 1210 1211 1212
        if not isinstance(loss, list):
            return self._minimize_impl(loss, startup_program, parameter_list,
                                       no_grad_set)
        else:
J
Jiabin Yang 已提交
1213
            if paddle.fluid.framework._non_static_mode(
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
            ) or self._role_maker._is_non_distributed() or self._is_collective:
                raise ValueError("loss can be list only in PS mode")
            return self._minimize_losses_impl(loss, startup_program,
                                              parameter_list, no_grad_set)

    def _minimize_impl(self,
                       loss,
                       startup_program=None,
                       parameter_list=None,
                       no_grad_set=None):
D
Dong Daxiang 已提交
1224 1225 1226
        context = {}
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
J
Jiabin Yang 已提交
1227
        if paddle.fluid.framework._non_static_mode():
1228 1229
            # imitate target optimizer retrieval
            target_opt = self.user_defined_optimizer
D
Dong Daxiang 已提交
1230
            self._context = context
1231 1232
            return target_opt.minimize(loss)

1233 1234
        # cache original feed forward program
        self.origin_main_program = loss.block.program
B
Baibaifan 已提交
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
        # add distributed attr
        if not hasattr(self.origin_main_program, "distributed_info_"):
            setattr(self.origin_main_program, "distributed_info_", dict())
            self.origin_main_program.distributed_info_[
                "dp_degree"] = self._user_defined_strategy.sharding_configs[
                    "dp_degree"]
            self.origin_main_program.distributed_info_[
                "mp_degree"] = self._user_defined_strategy.sharding_configs[
                    "mp_degree"]
            self.origin_main_program.distributed_info_[
                "pp_degree"] = self._user_defined_strategy.sharding_configs[
                    "pp_degree"]
            self.origin_main_program.distributed_info_[
                "sharding_degree"] = self._user_defined_strategy.sharding_configs[
                    "sharding_degree"]

1251
        context["origin_main_program"] = self.origin_main_program
1252
        context["origin_main_programs"] = [self.origin_main_program]
1253
        context["loss"] = loss
1254 1255
        if startup_program == None:
            self.origin_startup_program = \
1256 1257
                paddle.static.default_startup_program().clone(for_test=False)
            startup_program = paddle.static.default_startup_program()
1258 1259 1260
        else:
            self.origin_startup_program = \
                startup_program.clone(for_test=False)
1261

1262
        context["origin_startup_program"] = startup_program
1263
        context["origin_startup_programs"] = [startup_program]
1264
        context["role_maker"] = self._role_maker
1265

1266
        # Use the auto-parallel's routines instead
1267
        if self._user_defined_strategy.semi_auto or self._user_defined_strategy.auto_search:
W
wuhuachaocoding 已提交
1268
            from ..auto_parallel.parallelizer import AutoParallelizer
1269 1270 1271
            auto_parallelizer = AutoParallelizer(self)
            optimize_ops, params_grads, dist_startup_prog, dist_main_prog = auto_parallelizer.parallelize(
                loss, startup_program, parameter_list, no_grad_set)
1272

1273 1274
            return optimize_ops, params_grads, dist_startup_prog, dist_main_prog

1275 1276 1277 1278
        # compile time
        distributed_optimizer_list = \
            MetaOptimizerFactory()._get_valid_meta_optimizers(
                self.user_defined_optimizer)
D
Dong Daxiang 已提交
1279

D
Dong Daxiang 已提交
1280 1281 1282
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
        copy_user_defined_strategy = copy.deepcopy(self._user_defined_strategy)
1283 1284 1285 1286 1287 1288

        # trigger the auto-parallel in very strict condition
        # strategy = DistributedStrategy()
        # strategy.auto = True
        # optimizer = paddle.optimizer.SGD(learning_rate=0.1)
        # optimizer = fleet.distributed_optimizer(optimizer, strategy)
D
Dong Daxiang 已提交
1289
        if copy_user_defined_strategy._is_strict_auto():
1290 1291
            # turn on all the strategy for each optimizer
            for opt in distributed_optimizer_list:
D
Dong Daxiang 已提交
1292
                opt._enable_strategy(copy_user_defined_strategy, context)
1293

1294 1295
        valid_optimizer_list = []
        valid_graph_optimizer_list = []
D
Dong Daxiang 已提交
1296
        can_not_apply_optimizer_list = []
1297 1298 1299 1300
        # recall meta optimizers for ranking
        for opt in distributed_optimizer_list:
            opt._set_basic_info(loss, self._role_maker,
                                self.user_defined_optimizer,
D
Dong Daxiang 已提交
1301
                                copy_user_defined_strategy)
1302 1303
            if opt._can_apply() and not opt._is_graph_out():
                valid_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1304
            elif opt._can_apply() and opt._is_graph_out():
1305
                valid_graph_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1306 1307
            else:
                can_not_apply_optimizer_list.append(opt)
1308
        # combine recalled meta optimizers to be a valid meta optimizer
D
Dong Daxiang 已提交
1309
        meta_optimizer, graph_optimizer = \
1310 1311
            self.strategy_compiler.generate_optimizer(
                loss, self._role_maker, self.user_defined_optimizer,
D
Dong Daxiang 已提交
1312
                copy_user_defined_strategy, valid_optimizer_list,
1313
                valid_graph_optimizer_list)
D
Dong Daxiang 已提交
1314

D
Dong Daxiang 已提交
1315
        valid_strategy = self.strategy_compiler._get_valid_strategy(
D
Dong Daxiang 已提交
1316 1317 1318
            copy_user_defined_strategy, can_not_apply_optimizer_list)

        context["valid_strategy"] = copy.deepcopy(valid_strategy)
R
Roc 已提交
1319 1320 1321
        logger.debug("valid_strategy: " + str(context["valid_strategy"]))
        logger.debug("user_defined_strategy: " +
                     str(context["user_defined_strategy"]))
1322

1323 1324 1325 1326 1327 1328
        applied_meta_list = self.strategy_compiler._get_applied_meta_list()
        applied_graph_list = self.strategy_compiler._get_applied_graph_list()

        context['applied_meta_list'] = applied_meta_list
        context['applied_graph_list'] = applied_graph_list

D
Dong Daxiang 已提交
1329
        self._context = context
1330

D
Dong Daxiang 已提交
1331
        self.valid_strategy = valid_strategy
1332
        self.valid_strategy._enable_env()
D
Dong Daxiang 已提交
1333

1334 1335
        optimize_ops = []
        params_grads = []
1336

1337 1338 1339 1340 1341 1342 1343 1344
        if self._role_maker._is_non_distributed() and not self._is_collective:
            if self._runtime_handle is None:
                self._runtime_handle = RuntimeFactory()._create_runtime(context)

            compiled_program = compiler.CompiledProgram(
                self.origin_main_program).with_data_parallel(
                    loss_name=loss.name, share_vars_from=None)
            loss.block.program._graph = compiled_program
1345 1346 1347 1348
            return self.user_defined_optimizer.minimize(loss,
                                                        startup_program,
                                                        parameter_list,
                                                        no_grad_set=no_grad_set)
1349

1350
        if meta_optimizer:
R
Roc 已提交
1351 1352
            logger.debug("before minimize program id: " +
                         str(id(loss.block.program)))
1353
            optimize_ops, params_grads = meta_optimizer.minimize(
M
MRXLT 已提交
1354
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
R
Roc 已提交
1355 1356
            logger.debug("after minimize program id: " +
                         str(id(loss.block.program)))
1357
            default_program = paddle.static.default_main_program()
R
Roc 已提交
1358
            logger.debug("default program id: " + str(id(default_program)))
1359 1360 1361

            if id(default_program) != id(loss.block.program):
                paddle.fluid.framework.switch_main_program(loss.block.program)
R
Roc 已提交
1362 1363
            logger.debug("default program id after switch: " +
                         str(id(default_program)))
1364

1365 1366
        else:
            optimize_ops, params_grads = self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1367
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1368

1369 1370
        context["program_optimize_ops"] = optimize_ops
        context["program_params_grads"] = params_grads
1371

1372
        if graph_optimizer:
R
Roc 已提交
1373 1374
            logger.debug("before graph minimize program id: " +
                         str(id(loss.block.program)))
D
Dong Daxiang 已提交
1375
            optimize_ops, params_grads = graph_optimizer.minimize(
M
MRXLT 已提交
1376
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1377 1378 1379 1380
            # since we do not encourage users to use graph operations
            # if a graph optimizer takes effect, mostly
            # optimizers_ops and params_grads are None
            # i.e. users can not modify current computation graph anymore
1381 1382
            context["graph_optimize_ops"] = optimize_ops
            context["graph_optimize_grads"] = params_grads
1383 1384
        else:
            apply_ir_passes(loss.block.program, startup_program, self)
1385

1386 1387
        if not self._role_maker._is_heter_parameter_server_mode:
            program = paddle.static.default_main_program()
1388 1389 1390 1391 1392
            opt_info = {} if program._fleet_opt is None else program._fleet_opt
            opt_info["mpi_size"] = self.worker_num()
            opt_info["mpi_rank"] = self.worker_index()
            for k, v in self._user_defined_strategy.trainer_desc_configs.items(
            ):
1393
                if v or k not in opt_info:
1394
                    opt_info[k] = v
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
            program._fleet_opt = opt_info

        if self._runtime_handle is None:
            self._runtime_handle = RuntimeFactory()._create_runtime(context)

        import paddle.distributed.fleet as fleet
        fleet.util._set_strategy(context["valid_strategy"])

        return optimize_ops, params_grads

    def _minimize_losses_impl(self,
                              losses,
                              startup_programs=None,
                              parameter_list=None,
                              no_grad_set=None):
        context = {}

        # cache original feed forward program
        self.origin_main_program = losses[0].block.program
        context["origin_main_program"] = self.origin_main_program
        context["origin_main_programs"] = []
        for loss in losses:
            context["origin_main_programs"].append(loss.block.program)
        context["loss"] = losses

        if startup_programs is None:
            if len(losses) == 1:
                startup_programs = [paddle.static.default_startup_program()]
            else:
                raise ValueError(
                    "startup_program can't be None when loss is list.")
        self.origin_startup_program = startup_programs[0].clone(for_test=False)
        context["origin_startup_program"] = startup_programs[0]
        context["origin_startup_programs"] = []
        for program in startup_programs:
            context["origin_startup_programs"].append(program)

        context["role_maker"] = self._role_maker

        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)

        context["valid_strategy"] = copy.deepcopy(self._user_defined_strategy)

        self._context = context

        self.valid_strategy = context["valid_strategy"]
        self.valid_strategy._enable_env()

        optimize_ops = []
        params_grads = []

W
wuhuachaocoding 已提交
1447
        from .meta_optimizers import ParameterServerOptimizer
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
        ps_optimizer = ParameterServerOptimizer(self.user_defined_optimizer)
        ps_optimizer._set_basic_info(losses, self._role_maker,
                                     self.user_defined_optimizer,
                                     self._user_defined_strategy)
        optimize_ops, params_grads = ps_optimizer.minimize_losses_impl(
            losses, startup_programs, parameter_list, no_grad_set=no_grad_set)

        # default_program = paddle.static.default_main_program()

        # if id(default_program) != id(losses[0].block.program):
        #     paddle.fluid.framework.switch_main_program(losses[0].block.program)

        context["program_optimize_ops"] = optimize_ops
        context["program_params_grads"] = params_grads

        for loss in losses:
            program = loss.block.program
            opt_info = {} if program._fleet_opt is None else program._fleet_opt
1466 1467 1468 1469
            opt_info["mpi_size"] = self.worker_num()
            opt_info["mpi_rank"] = self.worker_index()
            for k, v in self._user_defined_strategy.trainer_desc_configs.items(
            ):
1470
                if v or k not in opt_info:
1471
                    opt_info[k] = v
1472
            program._fleet_opt = opt_info
R
Roc 已提交
1473 1474
            logger.debug("fleet base opt info: " + str(id(program)) +
                         str(program._fleet_opt))
1475

1476
        if self._runtime_handle is None:
1477
            self._runtime_handle = RuntimeFactory()._create_runtime(context)
1478

1479 1480
        import paddle.distributed.fleet as fleet
        fleet.util._set_strategy(context["valid_strategy"])
1481 1482

        return optimize_ops, params_grads