test_conv2d_transpose_op.py 37.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
Z
deconv  
zchen0211 已提交
18 19
import unittest
import numpy as np
20

K
Kaipeng Deng 已提交
21
import paddle
22
import paddle.nn as nn
23

K
Kaipeng Deng 已提交
24
paddle.enable_static()
25
import paddle.fluid.core as core
26
import paddle.fluid as fluid
27 28 29
from paddle.fluid import Program, program_guard
from test_attribute_var import UnittestBase
from op_test import OpTest
Z
deconv  
zchen0211 已提交
30 31


C
chengduoZH 已提交
32
def conv2dtranspose_forward_naive(input_, filter_, attrs):
33 34 35 36 37 38 39 40
    padding_algorithm = attrs['padding_algorithm']
    if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]:
        raise ValueError("Unknown Attr(padding_algorithm): '%s'. "
                         "It can only be 'SAME' or 'VALID'." %
                         str(padding_algorithm))

    if attrs['data_format'] == 'NHWC':
        input_ = np.transpose(input_, [0, 3, 1, 2])
Z
deconv  
zchen0211 已提交
41
    in_n, in_c, in_h, in_w = input_.shape
Y
Yibing Liu 已提交
42 43
    f_c, f_out_c, f_h, f_w = filter_.shape
    groups = attrs['groups']
Z
deconv  
zchen0211 已提交
44
    assert in_c == f_c
Y
Yibing Liu 已提交
45
    out_c = f_out_c * groups
M
minqiyang 已提交
46
    sub_in_c = in_c // groups
Z
deconv  
zchen0211 已提交
47

C
chengduoZH 已提交
48 49
    stride, pad, dilations = attrs['strides'], attrs['paddings'], attrs[
        'dilations']
50 51 52 53

    # update pad and dilation
    def _get_padding_with_SAME(input_shape, kernel_size, kernel_stride):
        padding = []
54 55 56
        for input_size, filter_size, stride_size in zip(input_shape,
                                                        kernel_size,
                                                        kernel_stride):
57
            out_size = int((input_size + stride_size - 1) / stride_size)
58 59
            pad_sum = np.max(
                ((out_size - 1) * stride_size + filter_size - input_size, 0))
60 61 62 63 64 65 66 67 68 69
            pad_0 = int(pad_sum / 2)
            pad_1 = int(pad_sum - pad_0)
            padding.append(pad_0)
            padding.append(pad_1)
        return padding

    ksize = filter_.shape[2:4]
    if padding_algorithm == "VALID":
        pad = [0, 0, 0, 0]
    elif padding_algorithm == "SAME":
70 71
        dilations = [1, 1]
        input_data_shape = input_.shape[2:4]
72 73 74 75 76 77 78 79
        pad = _get_padding_with_SAME(input_data_shape, ksize, stride)

    pad_h_0, pad_h_1 = pad[0], pad[0]
    pad_w_0, pad_w_1 = pad[1], pad[1]
    if len(pad) == 4:
        pad_h_0, pad_h_1 = pad[0], pad[1]
        pad_w_0, pad_w_1 = pad[2], pad[3]

C
chengduoZH 已提交
80 81 82 83
    d_bolck_h = dilations[0] * (f_h - 1) + 1
    d_bolck_w = dilations[1] * (f_w - 1) + 1
    out_h = (in_h - 1) * stride[0] + d_bolck_h
    out_w = (in_w - 1) * stride[1] + d_bolck_w
84 85
    if 'output_size' in attrs:
        output_size = attrs['output_size']
86 87
        out_h = output_size[0] + pad_h_0 + pad_h_1
        out_w = output_size[1] + pad_w_0 + pad_w_1
L
LielinJiang 已提交
88 89 90 91 92
    out_pad_h = 0
    out_pad_w = 0
    if 'output_padding' in attrs:
        out_pad_h = attrs['output_padding'][0]
        out_pad_w = attrs['output_padding'][1]
93 94
    out = np.zeros((in_n, out_c, out_h + out_pad_h, out_w + out_pad_w),
                   dtype=input_.dtype)
Z
deconv  
zchen0211 已提交
95 96 97 98

    for n in range(in_n):
        for i in range(in_h):
            for j in range(in_w):
Y
Yibing Liu 已提交
99 100 101 102 103 104 105 106 107 108 109 110
                for g in range(groups):
                    input_masked = input_[n, g * sub_in_c:(g + 1) * sub_in_c, i,
                                          j]  # (c)
                    input_masked = np.reshape(input_masked, (sub_in_c, 1, 1))
                    input_masked = np.tile(input_masked, (1, f_h, f_w))

                    for k in range(f_out_c):
                        tmp_out = np.sum(
                            input_masked *
                            filter_[g * sub_in_c:(g + 1) * sub_in_c, k, :, :],
                            axis=0)
                        i1, i2 = i * stride[0], i * stride[0] + d_bolck_h
111
                        j1, j2 = j * stride[1], j * stride[1] + d_bolck_w
112 113
                        out[n, g * f_out_c + k, i1:i2:dilations[0],
                            j1:j2:dilations[1]] += tmp_out
Z
deconv  
zchen0211 已提交
114

115 116
    out = out[:, :, pad_h_0:out_h - pad_h_1 + out_pad_h,
              pad_w_0:out_w - pad_w_1 + out_pad_w]
117 118
    if attrs['data_format'] == 'NHWC':
        out = np.transpose(out, [0, 2, 3, 1])
Z
deconv  
zchen0211 已提交
119 120 121
    return out


C
cnn 已提交
122
class TestConv2DTransposeOp(OpTest):
123

Z
deconv  
zchen0211 已提交
124
    def setUp(self):
Z
zchen0211 已提交
125
        # init as conv transpose
126
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
127
        self.need_check_grad = True
J
Jacek Czaja 已提交
128
        self.is_test = False
129
        self.use_cudnn = False
J
Jacek Czaja 已提交
130
        self.use_mkldnn = False
131
        self.output_size = None
L
LielinJiang 已提交
132
        self.output_padding = []
133 134 135
        self.data_format = "NCHW"
        self.pad = [0, 0]
        self.padding_algorithm = "EXPLICIT"
Z
deconv  
zchen0211 已提交
136 137 138
        self.init_op_type()
        self.init_test_case()

139 140
        input_ = np.random.random(self.input_size).astype(self.dtype)
        filter_ = np.random.random(self.filter_size).astype(self.dtype)
Z
deconv  
zchen0211 已提交
141 142 143 144 145

        self.inputs = {'Input': input_, 'Filter': filter_}
        self.attrs = {
            'strides': self.stride,
            'paddings': self.pad,
146
            'padding_algorithm': self.padding_algorithm,
Y
Yibing Liu 已提交
147
            'groups': self.groups,
148 149
            'dilations': self.dilations,
            'use_cudnn': self.use_cudnn,
J
Jacek Czaja 已提交
150 151 152
            'is_test': self.is_test,
            'use_mkldnn': self.use_mkldnn,
            'data_format': self.data_format
Z
deconv  
zchen0211 已提交
153
        }
154 155
        if self.output_size is not None:
            self.attrs['output_size'] = self.output_size
C
chengduoZH 已提交
156

L
LielinJiang 已提交
157 158 159
        if len(self.output_padding) > 0:
            self.attrs['output_padding'] = self.output_padding

C
chengduoZH 已提交
160
        output = conv2dtranspose_forward_naive(input_, filter_,
161
                                               self.attrs).astype(self.dtype)
C
chengduoZH 已提交
162

Z
deconv  
zchen0211 已提交
163 164 165
        self.outputs = {'Output': output}

    def test_check_output(self):
166
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
167 168
        if self.use_cudnn:
            place = core.CUDAPlace(0)
169 170
            self.check_output_with_place(
                place, atol=1e-5, check_dygraph=(self.use_mkldnn == False))
171
        else:
172
            self.check_output(check_dygraph=(self.use_mkldnn == False))
Z
deconv  
zchen0211 已提交
173

Z
zchen0211 已提交
174
    def test_check_grad_no_input(self):
175 176 177
        if self.need_check_grad:
            if self.use_cudnn:
                place = core.CUDAPlace(0)
178 179 180 181
                self.check_grad_with_place(place, ['Filter'],
                                           'Output',
                                           max_relative_error=0.02,
                                           no_grad_set=set(['Input']))
182
            else:
183 184 185
                self.check_grad(['Filter'],
                                'Output',
                                no_grad_set=set(['Input']))
Z
zchen0211 已提交
186 187

    def test_check_grad_no_filter(self):
188 189 190
        if self.need_check_grad:
            if self.use_cudnn:
                place = core.CUDAPlace(0)
191 192 193
                self.check_grad_with_place(place, ['Input'],
                                           'Output',
                                           no_grad_set=set(['Filter']))
194
            else:
195 196 197
                self.check_grad(['Input'],
                                'Output',
                                no_grad_set=set(['Filter']))
Z
deconv  
zchen0211 已提交
198

Z
zchen0211 已提交
199
    def test_check_grad(self):
200 201 202
        if self.need_check_grad:
            if self.use_cudnn:
                place = core.CUDAPlace(0)
203 204 205 206
                self.check_grad_with_place(place,
                                           set(['Input', 'Filter']),
                                           'Output',
                                           max_relative_error=0.02)
207
            else:
208 209 210
                self.check_grad(set(['Input', 'Filter']),
                                'Output',
                                max_relative_error=0.02)
C
chengduoZH 已提交
211 212 213 214 215

    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.dilations = [1, 1]
Y
Yibing Liu 已提交
216
        self.groups = 1
C
chengduoZH 已提交
217 218 219 220 221 222
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
        self.op_type = "conv2d_transpose"
Z
deconv  
zchen0211 已提交
223

Z
zchen0211 已提交
224

C
cnn 已提交
225
class TestWithSymmetricPad(TestConv2DTransposeOp):
226

C
chengduoZH 已提交
227 228 229 230
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
Y
Yibing Liu 已提交
231
        self.groups = 1
C
chengduoZH 已提交
232 233 234 235 236
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]


C
cnn 已提交
237
class TestWithAsymmetricPad(TestConv2DTransposeOp):
238

239 240 241 242 243 244 245 246 247 248
    def init_test_case(self):
        self.pad = [1, 0, 1, 2]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]


C
cnn 已提交
249
class TestWithSAMEPad(TestConv2DTransposeOp):
250

251
    def init_test_case(self):
252 253
        self.stride = [2, 1]
        self.dilations = [1, 2]
254
        self.groups = 1
255
        self.input_size = [2, 3, 6, 5]  # NCHW
256
        f_c = self.input_size[1]
257
        self.filter_size = [f_c, 6, 4, 3]
258 259 260
        self.padding_algorithm = 'SAME'


C
cnn 已提交
261
class TestWithVALIDPad(TestConv2DTransposeOp):
262

263 264 265 266 267 268 269 270 271 272
    def init_test_case(self):
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]
        self.padding_algorithm = 'VALID'


C
cnn 已提交
273
class TestWithGroups(TestConv2DTransposeOp):
274

Y
Yibing Liu 已提交
275 276 277 278 279 280 281 282 283 284
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 2
        self.input_size = [2, 4, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 3, 3, 3]


C
cnn 已提交
285
class TestWithStride(TestConv2DTransposeOp):
286

C
chengduoZH 已提交
287 288 289 290
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.dilations = [1, 1]
Y
Yibing Liu 已提交
291
        self.groups = 1
C
chengduoZH 已提交
292 293 294 295 296
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]


C
cnn 已提交
297
class TestWithDilation(TestConv2DTransposeOp):
298

C
chengduoZH 已提交
299 300 301
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
Y
Yibing Liu 已提交
302
        self.groups = 1
C
chengduoZH 已提交
303 304 305 306 307 308
        self.dilations = [2, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]


C
cnn 已提交
309
class TestWithEvenUpsample(TestConv2DTransposeOp):
310

311 312 313 314 315 316 317 318 319 320 321
    def init_test_case(self):
        self.pad = [2, 2]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.output_size = [14, 14]
        self.input_size = [2, 3, 7, 7]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 5, 5]


C
cnn 已提交
322
class TestWithEvenUpsampleOutputPadding(TestConv2DTransposeOp):
323

L
LielinJiang 已提交
324 325 326 327 328 329 330 331 332 333 334
    def init_test_case(self):
        self.pad = [2, 2]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.output_padding = [1, 1]
        self.input_size = [2, 3, 7, 7]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 5, 5]


C
cnn 已提交
335
class Test_NHWC(TestConv2DTransposeOp):
336

337 338 339 340 341 342 343 344 345 346 347
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


C
cnn 已提交
348
class TestWithSymmetricPad_NHWC(TestConv2DTransposeOp):
349

350 351 352 353 354 355 356 357 358 359 360
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


C
cnn 已提交
361
class TestWithAsymmetricPad_NHWC(TestConv2DTransposeOp):
362

363 364 365 366 367 368 369 370 371 372 373
    def init_test_case(self):
        self.pad = [1, 0, 1, 2]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


C
cnn 已提交
374
class TestWithGroups_NHWC(TestConv2DTransposeOp):
375

376 377 378 379 380 381 382 383 384 385 386
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 2
        self.input_size = [2, 5, 5, 4]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 3, 3, 3]
        self.data_format = 'NHWC'


C
cnn 已提交
387
class TestWithStride_NHWC(TestConv2DTransposeOp):
388

389 390 391 392 393 394 395 396 397 398 399
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 3]  # NCHW
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


C
cnn 已提交
400
class TestWithDilation_NHWC(TestConv2DTransposeOp):
401

402 403 404 405 406 407 408 409 410 411 412
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.groups = 1
        self.dilations = [2, 2]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


C
cnn 已提交
413
class TestWithEvenUpsample_NHWC(TestConv2DTransposeOp):
414

415 416 417 418 419 420 421 422 423 424 425 426
    def init_test_case(self):
        self.pad = [2, 2]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.output_size = [14, 14]
        self.input_size = [2, 7, 7, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 5, 5]
        self.data_format = 'NHWC'


C
cnn 已提交
427
class TestWithEvenUpsample_NHWC_output_padding(TestConv2DTransposeOp):
428

L
LielinJiang 已提交
429 430 431 432 433 434 435 436 437 438 439 440
    def init_test_case(self):
        self.pad = [2, 2]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.output_padding = [1, 1]
        self.input_size = [2, 7, 7, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 5, 5]
        self.data_format = 'NHWC'


C
chengduoZH 已提交
441
# ------------ test_cudnn ------------
442 443
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
C
cnn 已提交
444
class TestCUDNN(TestConv2DTransposeOp):
445

Z
deconv  
zchen0211 已提交
446
    def init_op_type(self):
447 448
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
Z
zchen0211 已提交
449

Z
deconv  
zchen0211 已提交
450

451 452
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
453
class TestCUDNNWithSymmetricPad(TestWithSymmetricPad):
454

C
chengduoZH 已提交
455 456 457
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
Y
Yibing Liu 已提交
458
        self.groups = 1
C
chengduoZH 已提交
459 460 461 462 463 464
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
465 466
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
C
chengduoZH 已提交
467 468


469 470 471
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithAsymmetricPad(TestWithAsymmetricPad):
472

473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
    def init_test_case(self):
        self.pad = [1, 0, 1, 2]
        self.stride = [1, 1]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithSAMEPad(TestWithSAMEPad):
490

491 492
    def init_test_case(self):
        self.pad = [1, 0, 1, 2]
493
        self.stride = [1, 2]
494 495 496 497 498 499 500 501 502 503 504 505 506 507
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithVALIDPad(TestWithVALIDPad):
508

509 510 511 512 513 514 515 516 517 518 519 520 521 522
    def init_test_case(self):
        self.pad = [1, 0, 1, 2]
        self.stride = [1, 1]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


523 524
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
525
class TestCUDNNWithStride(TestWithStride):
526

C
chengduoZH 已提交
527 528 529
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
Y
Yibing Liu 已提交
530
        self.groups = 1
C
chengduoZH 已提交
531 532 533 534 535 536
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
537 538
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
C
chengduoZH 已提交
539 540


541 542
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
543
class TestCUDNNWithGroups(TestWithGroups):
544

545 546 547 548 549 550 551 552 553 554 555 556 557 558
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 2
        self.input_size = [2, 4, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 3, 3, 3]

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


559 560 561 562
# ------------ test_cudnn ------------
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithEvenUpsample(TestWithEvenUpsample):
563

564 565 566 567 568
    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


569 570
# Please Don't remove the following code.
# Currently, CI use cudnn V5.0 which not support dilation conv.
571
# class TestCUDNNWithDilation(TestWithDilation):
C
chengduoZH 已提交
572 573 574 575 576 577 578 579 580
#     def init_test_case(self):
#         self.pad = [1, 1]
#         self.stride = [2, 2]
#         self.dilations = [2, 2]
#         self.input_size = [2, 3, 5, 5]  # NCHW
#         f_c = self.input_size[1]
#         self.filter_size = [f_c, 6, 3, 3]
#
#     def init_op_type(self):
581
#         self.op_type = "conv2d_transpose"
C
chengduoZH 已提交
582

583 584 585

@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
C
cnn 已提交
586
class TestCUDNN_NHWC(TestConv2DTransposeOp):
587

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithSymmetricPad_NHWC(TestWithSymmetricPad):
606

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithAsymmetricPad_NHWC(TestWithSymmetricPad):
625

626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
    def init_test_case(self):
        self.pad = [1, 0, 2, 3]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithStride_NHWC(TestWithStride):
644

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithGroups_NHWC(TestWithGroups):
663

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 2
        self.input_size = [2, 5, 5, 4]  # NCHW
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 3, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithEvenUpsample_NHWC(TestWithEvenUpsample):
682

683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
    def init_test_case(self):
        self.pad = [2, 2]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.output_size = [14, 14]
        self.input_size = [2, 7, 7, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 5, 5]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


699 700
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
C
cnn 已提交
701
class TestCUDNN_FP16(TestConv2DTransposeOp):
702

703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
    def init_test_case(self):
        self.dtype = np.float16
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
        self.need_check_grad = False
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"

    def test_check_output(self):
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_output_with_place(
                place, atol=0.02, check_dygraph=(self.use_mkldnn == False))
        else:
            self.check_output(check_dygraph=(self.use_mkldnn == False))


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNN_NHWC_FP16(TestCUDNN_FP16):
730

731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
    def init_test_case(self):
        self.dtype = np.float16
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithSymmetricPad_NHWC_FP16(TestCUDNN_FP16):
746

747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
    def init_test_case(self):
        self.dtype = np.float16
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithAsymmetricPad_NHWC_FP16(TestCUDNN_FP16):
762

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
    def init_test_case(self):
        self.dtype = np.float16
        self.pad = [1, 0, 2, 3]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithStride_NHWC_FP16(TestCUDNN_FP16):
778

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
    def init_test_case(self):
        self.dtype = np.float16
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithGroups_NHWC_FP16(TestCUDNN_FP16):
794

795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
    def init_test_case(self):
        self.dtype = np.float16
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 2
        self.input_size = [2, 5, 5, 4]  # NCHW
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 3, 3, 3]
        self.data_format = 'NHWC'


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithEvenUpsample_NHWC_FP16(TestCUDNN_FP16):
810

811 812 813 814 815 816 817 818 819 820 821
    def init_test_case(self):
        self.dtype = np.float16
        self.pad = [2, 2]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.output_size = [14, 14]
        self.input_size = [2, 7, 7, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 5, 5]
        self.data_format = 'NHWC'
822 823


C
cnn 已提交
824
class TestConv2DTransposeAPI(unittest.TestCase):
825

826
    def test_case1(self):
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
        data1 = fluid.layers.data(name='data1',
                                  shape=[3, 5, 5],
                                  dtype='float32')
        data2 = fluid.layers.data(name='data2',
                                  shape=[5, 5, 3],
                                  dtype='float32')
        out1 = fluid.layers.conv2d_transpose(input=data1,
                                             groups=1,
                                             num_filters=6,
                                             filter_size=3,
                                             data_format='NCHW')
        out2 = fluid.layers.conv2d_transpose(input=data2,
                                             groups=1,
                                             num_filters=6,
                                             filter_size=3,
                                             data_format='NHWC')
        out3 = fluid.layers.conv2d_transpose(input=data1,
                                             groups=1,
                                             num_filters=6,
                                             filter_size=3,
                                             padding=[[0, 0], [1, 1], [1, 1],
                                                      [0, 0]],
                                             data_format='NHWC')
        out4 = fluid.layers.conv2d_transpose(input=data1,
                                             groups=3,
                                             num_filters=6,
                                             filter_size=3,
                                             padding=[[0, 0], [0, 0], [2, 1],
                                                      [0, 0]],
                                             data_format='NCHW')
        out5 = fluid.layers.conv2d_transpose(input=data2,
                                             groups=1,
                                             num_filters=6,
                                             filter_size=3,
                                             padding='SAME',
                                             data_format='NCHW')
        out6 = fluid.layers.conv2d_transpose(input=data1,
                                             groups=1,
                                             num_filters=6,
                                             filter_size=3,
                                             padding='VALID',
                                             data_format='NHWC')
        out7 = fluid.layers.conv2d_transpose(input=data1,
                                             groups=1,
                                             num_filters=6,
                                             output_size=[7, 7],
                                             padding=[0, 0],
                                             data_format='NHWC')
875 876 877 878 879 880 881 882 883 884

        data1_np = np.random.random((2, 3, 5, 5)).astype("float32")
        data2_np = np.random.random((2, 5, 5, 3)).astype("float32")

        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
885 886 887 888 889 890 891
        results = exe.run(fluid.default_main_program(),
                          feed={
                              "data1": data1_np,
                              "data2": data2_np
                          },
                          fetch_list=[out1, out2, out3, out4, out5, out6, out7],
                          return_numpy=True)
892 893 894 895 896 897 898 899 900
        self.assertIsNotNone(results[0])
        self.assertIsNotNone(results[1])
        self.assertIsNotNone(results[2])
        self.assertIsNotNone(results[3])
        self.assertIsNotNone(results[4])
        self.assertIsNotNone(results[5])
        self.assertIsNotNone(results[6])


C
cnn 已提交
901
class TestConv2DTransposeOpException(unittest.TestCase):
902

903 904 905 906
    def test_exception(self):
        data = fluid.layers.data(name='data', shape=[3, 5, 5], dtype="float32")

        def attr_data_format():
907 908 909 910 911
            out = fluid.layers.conv2d_transpose(input=data,
                                                groups=1,
                                                num_filters=6,
                                                filter_size=3,
                                                data_format="NCDHW")
912 913 914 915

        self.assertRaises(ValueError, attr_data_format)

        def attr_padding_str():
916 917 918 919 920
            out = fluid.layers.conv2d_transpose(input=data,
                                                groups=1,
                                                num_filters=6,
                                                filter_size=3,
                                                padding='Vald')
921 922 923 924

        self.assertRaises(ValueError, attr_padding_str)

        def attr_padding_list():
925 926 927 928 929 930
            out = fluid.layers.conv2d_transpose(input=data,
                                                groups=1,
                                                num_filters=6,
                                                filter_size=3,
                                                padding=[[1, 1], [1, 1], [0, 0],
                                                         [0, 0]])
931 932 933 934

        self.assertRaises(ValueError, attr_padding_list)

        def attr_padding_with_data_format():
935 936 937 938 939 940 941
            out = fluid.layers.conv2d_transpose(input=data,
                                                groups=1,
                                                num_filters=6,
                                                filter_size=3,
                                                padding=[[1, 1], [0, 0], [0, 0],
                                                         [1, 1]],
                                                data_format='NHWC')
942 943 944

        self.assertRaises(ValueError, attr_padding_with_data_format)

945 946 947
        error_input = fluid.layers.data(name='error_data',
                                        shape=[1],
                                        dtype="float32")
948 949

        def error_input_size():
950 951 952 953
            out = fluid.layers.conv2d_transpose(input=error_input,
                                                groups=1,
                                                num_filters=6,
                                                filter_size=3)
954 955 956 957

        self.assertRaises(ValueError, error_input_size)

        def error_groups():
958 959 960 961 962
            out = fluid.layers.conv2d_transpose(input=data,
                                                groups=0,
                                                num_filters=6,
                                                filter_size=3,
                                                data_format='NHWC')
963 964 965

        self.assertRaises(ValueError, error_groups)

966

967
class TestConv2DTransposeRepr(unittest.TestCase):
968

969 970 971 972 973 974 975 976 977 978 979
    def test_case(self):
        paddle.disable_static()
        x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
        conv = nn.Conv2DTranspose(4, 6, (3, 3), output_padding=1, stride=2)
        print(conv)
        y_var = conv(x_var)
        y_np = y_var.numpy()
        self.assertIsNotNone(y_np)
        paddle.enable_static()


980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
class TestTensorOutputSize1(UnittestBase):

    def init_info(self):
        self.shapes = [[2, 3, 8, 8]]
        self.save_path = os.path.join(self.temp_dir.name, self.path_prefix())

    def path_prefix(self):
        return 'conv2d_transpose_tensor_output_size1'

    def var_prefix(self):
        return "Vars["

    def call_func(self, x):
        w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
        output_size = paddle.assign([17])
        out = paddle.paddle.nn.functional.conv2d_transpose(
            x, w_var, stride=2, output_size=output_size)
        return out

    def test_static(self):
        main_prog = Program()
        starup_prog = Program()
        with program_guard(main_prog, starup_prog):
            fc = paddle.nn.Linear(8, 8)
            x = paddle.randn([2, 3, 8, 8])
            x.stop_gradient = False
            feat = fc(x)
            out = self.call_func(feat)

            sgd = paddle.optimizer.SGD()
            sgd.minimize(paddle.mean(out))
            self.assertTrue(self.var_prefix() in str(main_prog))

            exe = paddle.static.Executor()
            exe.run(starup_prog)
            res = exe.run(fetch_list=[feat, out])
            np.testing.assert_allclose(res[1].shape, (2, 6, 17, 17))

            paddle.static.save_inference_model(self.save_path, [x], [feat, out],
                                               exe)
            # Test for Inference Predictor
            infer_outs = self.infer_prog()
            np.testing.assert_allclose(infer_outs[1].shape, (2, 6, 17, 17))


class TestTensorOutputSize2(TestTensorOutputSize1):

    def path_prefix(self):
        return 'conv2d_transpose_tensor_output_size2'

    def call_func(self, x):
        w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
        output_size = [17, paddle.assign([17])]
        out = paddle.paddle.nn.functional.conv2d_transpose(
            x, w_var, stride=2, output_size=output_size)
        return out


class TestTensorOutputSize3(TestTensorOutputSize1):

    def path_prefix(self):
        return 'conv2d_transpose_tensor_output_size3'

    def call_func(self, x):
        w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
        output_size = paddle.assign([17])
        out = paddle.fluid.layers.conv2d_transpose(x,
                                                   num_filters=6,
                                                   output_size=output_size,
                                                   filter_size=3,
                                                   stride=2)
        return out


class TestTensorOutputSize4(TestTensorOutputSize1):

    def path_prefix(self):
        return 'conv2d_transpose_tensor_output_size4'

    def call_func(self, x):
        output_size = [17, paddle.assign([17])]
        out = paddle.fluid.layers.conv2d_transpose(x,
                                                   num_filters=6,
                                                   output_size=output_size,
                                                   filter_size=3,
                                                   stride=2)
        return out


class TestTensorOutputSize5(TestTensorOutputSize1):

    def path_prefix(self):
        return 'conv2d_transpose_tensor_output_size5'

    def call_func(self, x):
        w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
        output_size = [17, paddle.assign([17])]
        conv2d_trans = paddle.fluid.dygraph.Conv2DTranspose(
            num_channels=3,
            num_filters=6,
            filter_size=3,
            output_size=output_size,
            stride=2)
        out = conv2d_trans(x)
        return out


class TestTensorOutputSize6(TestTensorOutputSize1):

    def path_prefix(self):
        return 'conv2d_transpose_tensor_output_size6'

    def var_prefix(self):
        return "Var["

    def call_func(self, x):
        w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
        output_size = paddle.assign([17, 17])
        conv2d_trans = paddle.fluid.dygraph.Conv2DTranspose(
            num_channels=3,
            num_filters=6,
            filter_size=3,
            output_size=output_size,
            stride=2)
        out = conv2d_trans(x)
        return out


class TestTensorOutputSize7(TestTensorOutputSize1):

    def path_prefix(self):
        return 'conv2d_transpose_tensor_output_size7'

    def var_prefix(self):
        return ""

    def call_func(self, x):
        w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
        output_size = 17
        conv2d_trans = paddle.fluid.dygraph.Conv2DTranspose(
            num_channels=3,
            num_filters=6,
            filter_size=3,
            output_size=output_size,
            stride=2)
        out = conv2d_trans(x)
        return out


class TestTensorOutputSize8(TestTensorOutputSize1):

    def path_prefix(self):
        return 'conv2d_transpose_tensor_output_size8'

    def var_prefix(self):
        return ""

    def call_func(self, x):
        w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
        output_size = [17, 17]
        conv2d_trans = paddle.fluid.dygraph.Conv2DTranspose(
            num_channels=3,
            num_filters=6,
            filter_size=3,
            output_size=output_size,
            stride=2)
        out = conv2d_trans(x)
        return out


Z
deconv  
zchen0211 已提交
1150 1151
if __name__ == '__main__':
    unittest.main()