test_conv2d_transpose_op.py 26.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Z
deconv  
zchen0211 已提交
17 18
import unittest
import numpy as np
19

20
import paddle.fluid.core as core
21
import paddle.fluid as fluid
22
from op_test import OpTest
Z
deconv  
zchen0211 已提交
23 24


C
chengduoZH 已提交
25
def conv2dtranspose_forward_naive(input_, filter_, attrs):
26 27 28 29 30 31 32 33
    padding_algorithm = attrs['padding_algorithm']
    if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]:
        raise ValueError("Unknown Attr(padding_algorithm): '%s'. "
                         "It can only be 'SAME' or 'VALID'." %
                         str(padding_algorithm))

    if attrs['data_format'] == 'NHWC':
        input_ = np.transpose(input_, [0, 3, 1, 2])
Z
deconv  
zchen0211 已提交
34
    in_n, in_c, in_h, in_w = input_.shape
Y
Yibing Liu 已提交
35 36
    f_c, f_out_c, f_h, f_w = filter_.shape
    groups = attrs['groups']
Z
deconv  
zchen0211 已提交
37
    assert in_c == f_c
Y
Yibing Liu 已提交
38
    out_c = f_out_c * groups
M
minqiyang 已提交
39
    sub_in_c = in_c // groups
Z
deconv  
zchen0211 已提交
40

C
chengduoZH 已提交
41 42
    stride, pad, dilations = attrs['strides'], attrs['paddings'], attrs[
        'dilations']
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

    # update pad and dilation
    def _get_padding_with_SAME(input_shape, kernel_size, kernel_stride):
        padding = []
        for input_size, filter_size, stride_size in zip(
                input_shape, kernel_size, kernel_stride):
            out_size = int((input_size + stride_size - 1) / stride_size)
            pad_sum = np.max((
                (out_size - 1) * stride_size + filter_size - input_size, 0))
            pad_0 = int(pad_sum / 2)
            pad_1 = int(pad_sum - pad_0)
            padding.append(pad_0)
            padding.append(pad_1)
        return padding

    ksize = filter_.shape[2:4]
    if padding_algorithm == "VALID":
        pad = [0, 0, 0, 0]
    elif padding_algorithm == "SAME":
62 63
        dilations = [1, 1]
        input_data_shape = input_.shape[2:4]
64 65 66 67 68 69 70 71
        pad = _get_padding_with_SAME(input_data_shape, ksize, stride)

    pad_h_0, pad_h_1 = pad[0], pad[0]
    pad_w_0, pad_w_1 = pad[1], pad[1]
    if len(pad) == 4:
        pad_h_0, pad_h_1 = pad[0], pad[1]
        pad_w_0, pad_w_1 = pad[2], pad[3]

C
chengduoZH 已提交
72 73 74 75
    d_bolck_h = dilations[0] * (f_h - 1) + 1
    d_bolck_w = dilations[1] * (f_w - 1) + 1
    out_h = (in_h - 1) * stride[0] + d_bolck_h
    out_w = (in_w - 1) * stride[1] + d_bolck_w
76 77
    if 'output_size' in attrs:
        output_size = attrs['output_size']
78 79
        out_h = output_size[0] + pad_h_0 + pad_h_1
        out_w = output_size[1] + pad_w_0 + pad_w_1
Z
deconv  
zchen0211 已提交
80 81 82 83 84 85

    out = np.zeros((in_n, out_c, out_h, out_w))

    for n in range(in_n):
        for i in range(in_h):
            for j in range(in_w):
Y
Yibing Liu 已提交
86 87 88 89 90 91 92 93 94 95 96 97
                for g in range(groups):
                    input_masked = input_[n, g * sub_in_c:(g + 1) * sub_in_c, i,
                                          j]  # (c)
                    input_masked = np.reshape(input_masked, (sub_in_c, 1, 1))
                    input_masked = np.tile(input_masked, (1, f_h, f_w))

                    for k in range(f_out_c):
                        tmp_out = np.sum(
                            input_masked *
                            filter_[g * sub_in_c:(g + 1) * sub_in_c, k, :, :],
                            axis=0)
                        i1, i2 = i * stride[0], i * stride[0] + d_bolck_h
98
                        j1, j2 = j * stride[1], j * stride[1] + d_bolck_w
Y
Yibing Liu 已提交
99 100
                        out[n, g * f_out_c + k, i1:i2:dilations[0], j1:j2:
                            dilations[1]] += tmp_out
Z
deconv  
zchen0211 已提交
101

102 103 104
    out = out[:, :, pad_h_0:out_h - pad_h_1, pad_w_0:out_w - pad_w_1]
    if attrs['data_format'] == 'NHWC':
        out = np.transpose(out, [0, 2, 3, 1])
Z
deconv  
zchen0211 已提交
105 106 107
    return out


Z
zchen0211 已提交
108
class TestConv2dTransposeOp(OpTest):
Z
deconv  
zchen0211 已提交
109
    def setUp(self):
Z
zchen0211 已提交
110
        # init as conv transpose
J
Jacek Czaja 已提交
111
        self.is_test = False
112
        self.use_cudnn = False
J
Jacek Czaja 已提交
113
        self.use_mkldnn = False
114
        self.output_size = None
115 116 117
        self.data_format = "NCHW"
        self.pad = [0, 0]
        self.padding_algorithm = "EXPLICIT"
Z
deconv  
zchen0211 已提交
118 119 120 121 122 123 124 125 126 127
        self.init_op_type()
        self.init_test_case()

        input_ = np.random.random(self.input_size).astype("float32")
        filter_ = np.random.random(self.filter_size).astype("float32")

        self.inputs = {'Input': input_, 'Filter': filter_}
        self.attrs = {
            'strides': self.stride,
            'paddings': self.pad,
128
            'padding_algorithm': self.padding_algorithm,
Y
Yibing Liu 已提交
129
            'groups': self.groups,
130 131
            'dilations': self.dilations,
            'use_cudnn': self.use_cudnn,
J
Jacek Czaja 已提交
132 133 134
            'is_test': self.is_test,
            'use_mkldnn': self.use_mkldnn,
            'data_format': self.data_format
Z
deconv  
zchen0211 已提交
135
        }
136 137
        if self.output_size is not None:
            self.attrs['output_size'] = self.output_size
C
chengduoZH 已提交
138 139 140 141

        output = conv2dtranspose_forward_naive(input_, filter_,
                                               self.attrs).astype('float32')

Z
deconv  
zchen0211 已提交
142 143 144
        self.outputs = {'Output': output}

    def test_check_output(self):
145 146 147 148 149
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)
        else:
            self.check_output()
Z
deconv  
zchen0211 已提交
150

Z
zchen0211 已提交
151
    def test_check_grad_no_input(self):
152 153 154 155 156 157 158 159 160 161 162 163 164
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, ['Filter'],
                'Output',
                max_relative_error=0.02,
                no_grad_set=set(['Input']))
        else:
            self.check_grad(
                ['Filter'],
                'Output',
                max_relative_error=0.02,
                no_grad_set=set(['Input']))
Z
zchen0211 已提交
165 166

    def test_check_grad_no_filter(self):
167 168 169 170 171 172 173 174 175 176 177 178 179
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, ['Input'],
                'Output',
                max_relative_error=0.02,
                no_grad_set=set(['Filter']))
        else:
            self.check_grad(
                ['Input'],
                'Output',
                max_relative_error=0.02,
                no_grad_set=set(['Filter']))
Z
deconv  
zchen0211 已提交
180

Z
zchen0211 已提交
181
    def test_check_grad(self):
182 183 184 185 186 187 188 189 190 191
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place,
                set(['Input', 'Filter']),
                'Output',
                max_relative_error=0.02)
        else:
            self.check_grad(
                set(['Input', 'Filter']), 'Output', max_relative_error=0.02)
C
chengduoZH 已提交
192 193 194 195 196

    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.dilations = [1, 1]
Y
Yibing Liu 已提交
197
        self.groups = 1
C
chengduoZH 已提交
198 199 200 201 202 203
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
        self.op_type = "conv2d_transpose"
Z
deconv  
zchen0211 已提交
204

Z
zchen0211 已提交
205

206
class TestWithSymmetricPad(TestConv2dTransposeOp):
C
chengduoZH 已提交
207 208 209 210
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
Y
Yibing Liu 已提交
211
        self.groups = 1
C
chengduoZH 已提交
212 213 214 215 216
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]


217 218 219 220 221 222 223 224 225 226 227 228 229
class TestWithAsymmetricPad(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 0, 1, 2]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]


class TestWithSAMEPad(TestConv2dTransposeOp):
    def init_test_case(self):
230 231
        self.stride = [2, 1]
        self.dilations = [1, 2]
232
        self.groups = 1
233
        self.input_size = [2, 3, 6, 5]  # NCHW
234
        f_c = self.input_size[1]
235
        self.filter_size = [f_c, 6, 4, 3]
236 237 238 239 240 241 242 243 244 245 246 247 248 249
        self.padding_algorithm = 'SAME'


class TestWithVALIDPad(TestConv2dTransposeOp):
    def init_test_case(self):
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]
        self.padding_algorithm = 'VALID'


Y
Yibing Liu 已提交
250 251 252 253 254 255 256 257 258 259 260
class TestWithGroups(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 2
        self.input_size = [2, 4, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 3, 3, 3]


C
chengduoZH 已提交
261 262 263 264 265
class TestWithStride(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.dilations = [1, 1]
Y
Yibing Liu 已提交
266
        self.groups = 1
C
chengduoZH 已提交
267 268 269 270 271
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]


C
chengduoZH 已提交
272 273 274 275
class TestWithDilation(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
Y
Yibing Liu 已提交
276
        self.groups = 1
C
chengduoZH 已提交
277 278 279 280 281 282
        self.dilations = [2, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]


283 284 285 286 287 288 289 290 291 292 293 294
class TestWithEvenUpsample(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [2, 2]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.output_size = [14, 14]
        self.input_size = [2, 3, 7, 7]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 5, 5]


295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
class Test_NHWC(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


class TestWithSymmetricPad_NHWC(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


class TestWithAsymmetricPad_NHWC(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 0, 1, 2]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


class TestWithGroups_NHWC(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 2
        self.input_size = [2, 5, 5, 4]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 3, 3, 3]
        self.data_format = 'NHWC'


class TestWithStride_NHWC(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 3]  # NCHW
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


class TestWithDilation_NHWC(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.groups = 1
        self.dilations = [2, 2]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


class TestWithEvenUpsample_NHWC(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [2, 2]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.output_size = [14, 14]
        self.input_size = [2, 7, 7, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 5, 5]
        self.data_format = 'NHWC'


C
chengduoZH 已提交
380
# ------------ test_cudnn ------------
381 382
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
383
class TestCUDNN(TestConv2dTransposeOp):
Z
deconv  
zchen0211 已提交
384
    def init_op_type(self):
385 386
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
Z
zchen0211 已提交
387

Z
deconv  
zchen0211 已提交
388

389 390
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
391
class TestCUDNNWithSymmetricPad(TestWithSymmetricPad):
C
chengduoZH 已提交
392 393 394
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
Y
Yibing Liu 已提交
395
        self.groups = 1
C
chengduoZH 已提交
396 397 398 399 400 401
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
402 403
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
C
chengduoZH 已提交
404 405


406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithAsymmetricPad(TestWithAsymmetricPad):
    def init_test_case(self):
        self.pad = [1, 0, 1, 2]
        self.stride = [1, 1]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithSAMEPad(TestWithSAMEPad):
    def init_test_case(self):
        self.pad = [1, 0, 1, 2]
428
        self.stride = [1, 2]
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithVALIDPad(TestWithVALIDPad):
    def init_test_case(self):
        self.pad = [1, 0, 1, 2]
        self.stride = [1, 1]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


457 458
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
459
class TestCUDNNWithStride(TestWithStride):
C
chengduoZH 已提交
460 461 462
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
Y
Yibing Liu 已提交
463
        self.groups = 1
C
chengduoZH 已提交
464 465 466 467 468 469
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
470 471
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
C
chengduoZH 已提交
472 473


474 475
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
class TestCUDNNWithGroups(TestWithGroups):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 2
        self.input_size = [2, 4, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 3, 3, 3]

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


491 492 493 494 495 496 497 498 499
# ------------ test_cudnn ------------
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithEvenUpsample(TestWithEvenUpsample):
    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


500 501
# Please Don't remove the following code.
# Currently, CI use cudnn V5.0 which not support dilation conv.
502
# class TestCUDNNWithDilation(TestWithDilation):
C
chengduoZH 已提交
503 504 505 506 507 508 509 510 511
#     def init_test_case(self):
#         self.pad = [1, 1]
#         self.stride = [2, 2]
#         self.dilations = [2, 2]
#         self.input_size = [2, 3, 5, 5]  # NCHW
#         f_c = self.input_size[1]
#         self.filter_size = [f_c, 6, 3, 3]
#
#     def init_op_type(self):
512
#         self.op_type = "conv2d_transpose"
C
chengduoZH 已提交
513

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842

@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNN_NHWC(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithSymmetricPad_NHWC(TestWithSymmetricPad):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithAsymmetricPad_NHWC(TestWithSymmetricPad):
    def init_test_case(self):
        self.pad = [1, 0, 2, 3]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithStride_NHWC(TestWithStride):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithGroups_NHWC(TestWithGroups):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 2
        self.input_size = [2, 5, 5, 4]  # NCHW
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 3, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithEvenUpsample_NHWC(TestWithEvenUpsample):
    def init_test_case(self):
        self.pad = [2, 2]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.output_size = [14, 14]
        self.input_size = [2, 7, 7, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 5, 5]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


class TestDepthwiseConvTranspose(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.dilations = [1, 1]
        self.input_size = [2, 8, 16, 16]  # NCHW
        self.groups = 8
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [self.input_size[1], f_c, 4, 4]
        self.op_type = "depthwise_conv2d_transpose"


class TestDepthwiseConvTransposeAsymmetricPad(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 0, 1, 2]
        self.stride = [2, 2]
        self.dilations = [1, 1]
        self.input_size = [2, 8, 16, 16]  # NCHW
        self.groups = 8
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [self.input_size[1], f_c, 3, 3]
        self.op_type = "depthwise_conv2d_transpose"
        self.data_format = 'NCHW'


class TestDepthwiseConvTransposeSAMEPad(TestConv2dTransposeOp):
    def init_test_case(self):
        self.stride = [2, 2]
        self.dilations = [1, 1]
        self.input_size = [2, 8, 16, 16]  # NHWC
        self.groups = 8
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [self.input_size[1], f_c, 3, 3]
        self.op_type = "depthwise_conv2d_transpose"
        self.padding_algorithm = 'SAME'


class TestDepthwiseConvTransposeVALIDPad(TestConv2dTransposeOp):
    def init_test_case(self):
        self.stride = [2, 2]
        self.dilations = [1, 1]
        self.input_size = [2, 8, 16, 16]  # NHWC
        self.groups = 8
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [self.input_size[1], f_c, 3, 3]
        self.op_type = "depthwise_conv2d_transpose"
        self.padding_algorithm = 'VALID'


class TestDepthwiseConvTranspose_NHWC_4x4kernel(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.dilations = [1, 1]
        self.input_size = [2, 16, 16, 8]  # NHWC
        self.groups = 8
        assert np.mod(self.input_size[3], self.groups) == 0
        f_c = self.input_size[3] // self.groups
        self.filter_size = [self.input_size[3], f_c, 4, 4]
        self.op_type = "depthwise_conv2d_transpose"
        self.data_format = 'NHWC'


class TestDepthwiseConvTranspose_NHWC_3x3kernel(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.dilations = [1, 1]
        self.input_size = [2, 16, 16, 8]  # NHWC
        self.groups = 8
        assert np.mod(self.input_size[3], self.groups) == 0
        f_c = self.input_size[3] // self.groups
        self.filter_size = [self.input_size[3], f_c, 3, 3]
        self.op_type = "depthwise_conv2d_transpose"
        self.data_format = 'NHWC'


class TestDepthwiseConvTransposeAsymmetricPad_NHWC(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 0, 1, 2]
        self.stride = [2, 2]
        self.dilations = [1, 1]
        self.input_size = [2, 16, 16, 8]  # NHWC
        self.groups = 8
        assert np.mod(self.input_size[3], self.groups) == 0
        f_c = self.input_size[3] // self.groups
        self.filter_size = [self.input_size[3], f_c, 3, 3]
        self.op_type = "depthwise_conv2d_transpose"
        self.data_format = 'NHWC'


class TestConv2dTransposeAPI(OpTest):
    def test_case1(self):
        data1 = fluid.layers.data(
            name='data1', shape=[3, 5, 5], dtype='float32')
        data2 = fluid.layers.data(
            name='data2', shape=[5, 5, 3], dtype='float32')
        out1 = fluid.layers.conv2d_transpose(
            input=data1,
            groups=1,
            num_filters=6,
            filter_size=3,
            data_format='NCHW')
        out2 = fluid.layers.conv2d_transpose(
            input=data2,
            groups=1,
            num_filters=6,
            filter_size=3,
            data_format='NHWC')
        out3 = fluid.layers.conv2d_transpose(
            input=data1,
            groups=1,
            num_filters=6,
            filter_size=3,
            padding=[[0, 0], [1, 1], [1, 1], [0, 0]],
            data_format='NHWC')
        out4 = fluid.layers.conv2d_transpose(
            input=data1,
            groups=3,
            num_filters=6,
            filter_size=3,
            padding=[[0, 0], [0, 0], [2, 1], [0, 0]],
            data_format='NCHW')
        out5 = fluid.layers.conv2d_transpose(
            input=data2,
            groups=1,
            num_filters=6,
            filter_size=3,
            padding='SAME',
            data_format='NCHW')
        out6 = fluid.layers.conv2d_transpose(
            input=data1,
            groups=1,
            num_filters=6,
            filter_size=3,
            padding='VALID',
            data_format='NHWC')
        out7 = fluid.layers.conv2d_transpose(
            input=data1,
            groups=1,
            num_filters=6,
            output_size=[7, 7],
            padding=[0, 0],
            data_format='NHWC')

        data1_np = np.random.random((2, 3, 5, 5)).astype("float32")
        data2_np = np.random.random((2, 5, 5, 3)).astype("float32")

        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        results = exe.run(
            fluid.default_main_program(),
            feed={"data1": data1_np,
                  "data2": data2_np},
            fetch_list=[out1, out2, out3, out4, out5, out6, out7],
            return_numpy=True)
        self.assertIsNotNone(results[0])
        self.assertIsNotNone(results[1])
        self.assertIsNotNone(results[2])
        self.assertIsNotNone(results[3])
        self.assertIsNotNone(results[4])
        self.assertIsNotNone(results[5])
        self.assertIsNotNone(results[6])


class TestConv2dTransposeOpException(OpTest):
    def test_exception(self):
        data = fluid.layers.data(name='data', shape=[3, 5, 5], dtype="float32")

        def attr_data_format():
            out = fluid.layers.conv2d_transpose(
                input=data,
                groups=1,
                num_filters=6,
                filter_size=3,
                data_format="NCDHW")

        self.assertRaises(ValueError, attr_data_format)

        def attr_padding_str():
            out = fluid.layers.conv2d_transpose(
                input=data,
                groups=1,
                num_filters=6,
                filter_size=3,
                padding='Vald')

        self.assertRaises(ValueError, attr_padding_str)

        def attr_padding_list():
            out = fluid.layers.conv2d_transpose(
                input=data,
                groups=1,
                num_filters=6,
                filter_size=3,
                padding=[[1, 1], [1, 1], [0, 0], [0, 0]])

        self.assertRaises(ValueError, attr_padding_list)

        def attr_padding_with_data_format():
            out = fluid.layers.conv2d_transpose(
                input=data,
                groups=1,
                num_filters=6,
                filter_size=3,
                padding=[[1, 1], [0, 0], [0, 0], [1, 1]],
                data_format='NHWC')

        self.assertRaises(ValueError, attr_padding_with_data_format)


Z
deconv  
zchen0211 已提交
843 844
if __name__ == '__main__':
    unittest.main()