test_conv2d_transpose_op.py 8.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Z
deconv  
zchen0211 已提交
17 18
import unittest
import numpy as np
19

20
import paddle.fluid.core as core
21
from op_test import OpTest
Z
deconv  
zchen0211 已提交
22 23


C
chengduoZH 已提交
24
def conv2dtranspose_forward_naive(input_, filter_, attrs):
Z
deconv  
zchen0211 已提交
25
    in_n, in_c, in_h, in_w = input_.shape
Y
Yibing Liu 已提交
26 27
    f_c, f_out_c, f_h, f_w = filter_.shape
    groups = attrs['groups']
Z
deconv  
zchen0211 已提交
28
    assert in_c == f_c
Y
Yibing Liu 已提交
29
    out_c = f_out_c * groups
M
minqiyang 已提交
30
    sub_in_c = in_c // groups
Z
deconv  
zchen0211 已提交
31

C
chengduoZH 已提交
32 33 34 35 36 37
    stride, pad, dilations = attrs['strides'], attrs['paddings'], attrs[
        'dilations']
    d_bolck_h = dilations[0] * (f_h - 1) + 1
    d_bolck_w = dilations[1] * (f_w - 1) + 1
    out_h = (in_h - 1) * stride[0] + d_bolck_h
    out_w = (in_w - 1) * stride[1] + d_bolck_w
Z
deconv  
zchen0211 已提交
38 39 40 41 42 43

    out = np.zeros((in_n, out_c, out_h, out_w))

    for n in range(in_n):
        for i in range(in_h):
            for j in range(in_w):
Y
Yibing Liu 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
                for g in range(groups):
                    input_masked = input_[n, g * sub_in_c:(g + 1) * sub_in_c, i,
                                          j]  # (c)
                    input_masked = np.reshape(input_masked, (sub_in_c, 1, 1))
                    input_masked = np.tile(input_masked, (1, f_h, f_w))

                    for k in range(f_out_c):
                        tmp_out = np.sum(
                            input_masked *
                            filter_[g * sub_in_c:(g + 1) * sub_in_c, k, :, :],
                            axis=0)
                        i1, i2 = i * stride[0], i * stride[0] + d_bolck_h
                        j1, j2 = j * stride[0], j * stride[0] + d_bolck_h
                        out[n, g * f_out_c + k, i1:i2:dilations[0], j1:j2:
                            dilations[1]] += tmp_out
Z
deconv  
zchen0211 已提交
59

C
chengduoZH 已提交
60
    out = out[:, :, pad[0]:out_h - pad[0], pad[1]:out_w - pad[1]]
Z
deconv  
zchen0211 已提交
61 62 63
    return out


Z
zchen0211 已提交
64
class TestConv2dTransposeOp(OpTest):
Z
deconv  
zchen0211 已提交
65
    def setUp(self):
Z
zchen0211 已提交
66
        # init as conv transpose
67
        self.use_cudnn = False
Z
deconv  
zchen0211 已提交
68 69 70 71 72 73 74 75 76 77
        self.init_op_type()
        self.init_test_case()

        input_ = np.random.random(self.input_size).astype("float32")
        filter_ = np.random.random(self.filter_size).astype("float32")

        self.inputs = {'Input': input_, 'Filter': filter_}
        self.attrs = {
            'strides': self.stride,
            'paddings': self.pad,
Y
Yibing Liu 已提交
78
            'groups': self.groups,
79 80 81
            'dilations': self.dilations,
            'use_cudnn': self.use_cudnn,
            'data_format': 'AnyLayout'  # TODO(dzhwinter) : should be fix latter
Z
deconv  
zchen0211 已提交
82
        }
C
chengduoZH 已提交
83 84 85 86

        output = conv2dtranspose_forward_naive(input_, filter_,
                                               self.attrs).astype('float32')

Z
deconv  
zchen0211 已提交
87 88 89
        self.outputs = {'Output': output}

    def test_check_output(self):
90 91 92 93 94
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)
        else:
            self.check_output()
Z
deconv  
zchen0211 已提交
95

Z
zchen0211 已提交
96
    def test_check_grad_no_input(self):
97 98 99 100 101 102 103 104 105 106 107 108 109
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, ['Filter'],
                'Output',
                max_relative_error=0.02,
                no_grad_set=set(['Input']))
        else:
            self.check_grad(
                ['Filter'],
                'Output',
                max_relative_error=0.02,
                no_grad_set=set(['Input']))
Z
zchen0211 已提交
110 111

    def test_check_grad_no_filter(self):
112 113 114 115 116 117 118 119 120 121 122 123 124
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, ['Input'],
                'Output',
                max_relative_error=0.02,
                no_grad_set=set(['Filter']))
        else:
            self.check_grad(
                ['Input'],
                'Output',
                max_relative_error=0.02,
                no_grad_set=set(['Filter']))
Z
deconv  
zchen0211 已提交
125

Z
zchen0211 已提交
126
    def test_check_grad(self):
127 128 129 130 131 132 133 134 135 136
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place,
                set(['Input', 'Filter']),
                'Output',
                max_relative_error=0.02)
        else:
            self.check_grad(
                set(['Input', 'Filter']), 'Output', max_relative_error=0.02)
C
chengduoZH 已提交
137 138 139 140 141

    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.dilations = [1, 1]
Y
Yibing Liu 已提交
142
        self.groups = 1
C
chengduoZH 已提交
143 144 145 146 147 148
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
        self.op_type = "conv2d_transpose"
Z
deconv  
zchen0211 已提交
149

Z
zchen0211 已提交
150

C
chengduoZH 已提交
151 152 153 154 155
class TestWithPad(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
Y
Yibing Liu 已提交
156
        self.groups = 1
C
chengduoZH 已提交
157 158 159 160 161
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]


Y
Yibing Liu 已提交
162 163 164 165 166 167 168 169 170 171 172
class TestWithGroups(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 2
        self.input_size = [2, 4, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 3, 3, 3]


C
chengduoZH 已提交
173 174 175 176 177
class TestWithStride(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.dilations = [1, 1]
Y
Yibing Liu 已提交
178
        self.groups = 1
C
chengduoZH 已提交
179 180 181 182 183
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]


C
chengduoZH 已提交
184 185 186 187
class TestWithDilation(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
Y
Yibing Liu 已提交
188
        self.groups = 1
C
chengduoZH 已提交
189 190 191 192 193 194
        self.dilations = [2, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]


C
chengduoZH 已提交
195
# ------------ test_cudnn ------------
196 197
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
198
class TestCUDNN(TestConv2dTransposeOp):
Z
deconv  
zchen0211 已提交
199
    def init_op_type(self):
200 201
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
Z
zchen0211 已提交
202

Z
deconv  
zchen0211 已提交
203

204 205
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
206
class TestCUDNNWithPad(TestWithPad):
C
chengduoZH 已提交
207 208 209
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
Y
Yibing Liu 已提交
210
        self.groups = 1
C
chengduoZH 已提交
211 212 213 214 215 216
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
217 218
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
C
chengduoZH 已提交
219 220


221 222
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
223
class TestCUDNNWithStride(TestWithStride):
C
chengduoZH 已提交
224 225 226
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
Y
Yibing Liu 已提交
227
        self.groups = 1
C
chengduoZH 已提交
228 229 230 231 232 233
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
234 235
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
C
chengduoZH 已提交
236 237


238 239
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
class TestCUDNNWithGroups(TestWithGroups):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 2
        self.input_size = [2, 4, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 3, 3, 3]

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


255 256 257 258 259 260 261 262
class TestDepthwiseConvTranspose(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.dilations = [1, 1]
        self.input_size = [2, 8, 16, 16]  # NCHW
        self.groups = 8
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
263
        f_c = self.input_size[1] // self.groups
264 265 266 267
        self.filter_size = [self.input_size[1], f_c, 4, 4]
        self.op_type = "depthwise_conv2d_transpose"


268 269
# Please Don't remove the following code.
# Currently, CI use cudnn V5.0 which not support dilation conv.
270
# class TestCUDNNWithDilation(TestWithDilation):
C
chengduoZH 已提交
271 272 273 274 275 276 277 278 279
#     def init_test_case(self):
#         self.pad = [1, 1]
#         self.stride = [2, 2]
#         self.dilations = [2, 2]
#         self.input_size = [2, 3, 5, 5]  # NCHW
#         f_c = self.input_size[1]
#         self.filter_size = [f_c, 6, 3, 3]
#
#     def init_op_type(self):
280
#         self.op_type = "conv2d_transpose"
C
chengduoZH 已提交
281

Z
deconv  
zchen0211 已提交
282 283
if __name__ == '__main__':
    unittest.main()