helper.h 6.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

#include <NvInfer.h>
#include <cuda.h>
#include <glog/logging.h>
20

N
nhzlx 已提交
21 22 23
#include <string>
#include <utility>
#include <vector>
24

L
lxsbupt 已提交
25
#include "paddle/fluid/framework/framework.pb.h"
Y
Yan Chunwei 已提交
26 27
#include "paddle/fluid/platform/dynload/tensorrt.h"
#include "paddle/fluid/platform/enforce.h"
28
#include "paddle/phi/common/data_type.h"
Y
Yan Chunwei 已提交
29 30 31 32 33

namespace paddle {
namespace inference {
namespace tensorrt {

34 35 36 37
#define IS_TRT_VERSION_GE(version)                       \
  ((NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + \
    NV_TENSORRT_PATCH * 10 + NV_TENSORRT_BUILD) >= version)

38 39 40 41
#define IS_TRT_VERSION_LT(version)                       \
  ((NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + \
    NV_TENSORRT_PATCH * 10 + NV_TENSORRT_BUILD) < version)

42 43 44 45
#define TRT_VERSION                                    \
  NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + \
      NV_TENSORRT_PATCH * 10 + NV_TENSORRT_BUILD

46 47 48 49 50 51
#if IS_TRT_VERSION_GE(8000)
#define TRT_NOEXCEPT noexcept
#else
#define TRT_NOEXCEPT
#endif

Y
Yan Chunwei 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64
namespace dy = paddle::platform::dynload;

// TensorRT data type to size
const int kDataTypeSize[] = {
    4,  // kFLOAT
    2,  // kHALF
    1,  // kINT8
    4   // kINT32
};

// The following two API are implemented in TensorRT's header file, cannot load
// from the dynamic library. So create our own implementation and directly
// trigger the method from the dynamic library.
65
static nvinfer1::IBuilder* createInferBuilder(nvinfer1::ILogger* logger) {
Y
Yan Chunwei 已提交
66
  return static_cast<nvinfer1::IBuilder*>(
67
      dy::createInferBuilder_INTERNAL(logger, NV_TENSORRT_VERSION));
Y
Yan Chunwei 已提交
68
}
69
static nvinfer1::IRuntime* createInferRuntime(nvinfer1::ILogger* logger) {
Y
Yan Chunwei 已提交
70
  return static_cast<nvinfer1::IRuntime*>(
71
      dy::createInferRuntime_INTERNAL(logger, NV_TENSORRT_VERSION));
Y
Yan Chunwei 已提交
72
}
73 74
#if IS_TRT_VERSION_GE(6000)
static nvinfer1::IPluginRegistry* GetPluginRegistry() {
P
Pei Yang 已提交
75 76
  return static_cast<nvinfer1::IPluginRegistry*>(dy::getPluginRegistry());
}
77 78 79
static int GetInferLibVersion() {
  return static_cast<int>(dy::getInferLibVersion());
}
80 81
#else
static int GetInferLibVersion() { return 0; }
82
#endif
Y
Yan Chunwei 已提交
83

84 85 86 87 88 89 90 91 92 93
static std::tuple<int, int, int> GetTrtRuntimeVersion() {
  int ver = GetInferLibVersion();
  int major = ver / 1000;
  ver -= major * 1000;
  int minor = ver / 100;
  int patch = ver - minor * 100;
  return std::tuple<int, int, int>{major, minor, patch};
}

static std::tuple<int, int, int> GetTrtCompileVersion() {
94 95
  return std::tuple<int, int, int>{
      NV_TENSORRT_MAJOR, NV_TENSORRT_MINOR, NV_TENSORRT_PATCH};
96 97
}

98 99 100 101 102 103 104 105 106 107 108
template <typename T>
struct Destroyer {
  void operator()(T* x) {
    if (x) {
      x->destroy();
    }
  }
};
template <typename T>
using infer_ptr = std::unique_ptr<T, Destroyer<T>>;

Y
Yan Chunwei 已提交
109 110 111
// A logger for create TensorRT infer builder.
class NaiveLogger : public nvinfer1::ILogger {
 public:
112 113
  void log(nvinfer1::ILogger::Severity severity,
           const char* msg) TRT_NOEXCEPT override {
Y
Yan Chunwei 已提交
114
    switch (severity) {
P
Pei Yang 已提交
115
      case Severity::kVERBOSE:
116
        VLOG(3) << msg;
Y
Yan Chunwei 已提交
117
        break;
P
Pei Yang 已提交
118 119 120
      case Severity::kINFO:
        VLOG(2) << msg;
        break;
Y
Yan Chunwei 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
      case Severity::kWARNING:
        LOG(WARNING) << msg;
        break;
      case Severity::kINTERNAL_ERROR:
      case Severity::kERROR:
        LOG(ERROR) << msg;
        break;
      default:
        break;
    }
  }

  static nvinfer1::ILogger& Global() {
    static nvinfer1::ILogger* x = new NaiveLogger;
    return *x;
  }

138
  ~NaiveLogger() override {}
Y
Yan Chunwei 已提交
139 140
};

N
nhzlx 已提交
141 142 143 144 145
class NaiveProfiler : public nvinfer1::IProfiler {
 public:
  typedef std::pair<std::string, float> Record;
  std::vector<Record> mProfile;

146
  virtual void reportLayerTime(const char* layerName, float ms) TRT_NOEXCEPT {
N
nhzlx 已提交
147
    auto record =
148 149 150
        std::find_if(mProfile.begin(), mProfile.end(), [&](const Record& r) {
          return r.first == layerName;
        });
N
nhzlx 已提交
151 152 153 154 155 156 157 158 159
    if (record == mProfile.end())
      mProfile.push_back(std::make_pair(layerName, ms));
    else
      record->second += ms;
  }

  void printLayerTimes() {
    float totalTime = 0;
    for (size_t i = 0; i < mProfile.size(); i++) {
160 161
      printf(
          "%-40.40s %4.3fms\n", mProfile[i].first.c_str(), mProfile[i].second);
N
nhzlx 已提交
162 163 164 165 166 167
      totalTime += mProfile[i].second;
    }
    printf("Time over all layers: %4.3f\n", totalTime);
  }
};

168 169 170 171 172 173 174 175
inline size_t ProductDim(const nvinfer1::Dims& dims) {
  size_t v = 1;
  for (int i = 0; i < dims.nbDims; i++) {
    v *= dims.d[i];
  }
  return v;
}

176 177 178 179 180 181 182 183 184 185 186 187 188
inline void PrintITensorShape(nvinfer1::ITensor* X) {
  auto dims = X->getDimensions();
  auto name = X->getName();
  std::cout << "ITensor " << name << " shape: [";
  for (int i = 0; i < dims.nbDims; i++) {
    if (i == dims.nbDims - 1)
      std::cout << dims.d[i];
    else
      std::cout << dims.d[i] << ", ";
  }
  std::cout << "]\n";
}

189 190 191 192 193 194 195 196 197 198
template <typename T>
inline std::string Vec2Str(const std::vector<T>& vec) {
  std::ostringstream os;
  os << "(";
  for (size_t i = 0; i < vec.size() - 1; ++i) {
    os << vec[i] << ",";
  }
  os << vec[vec.size() - 1] << ")";
  return os.str();
}
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227

static inline nvinfer1::DataType PhiType2NvType(phi::DataType type) {
  nvinfer1::DataType nv_type = nvinfer1::DataType::kFLOAT;
  switch (type) {
    case phi::DataType::FLOAT32:
      nv_type = nvinfer1::DataType::kFLOAT;
      break;
    case phi::DataType::FLOAT16:
      nv_type = nvinfer1::DataType::kHALF;
      break;
    case phi::DataType::INT32:
    case phi::DataType::INT64:
      nv_type = nvinfer1::DataType::kINT32;
      break;
    case phi::DataType::INT8:
      nv_type = nvinfer1::DataType::kINT8;
      break;
#if IS_TRT_VERSION_GE(7000)
    case phi::DataType::BOOL:
      nv_type = nvinfer1::DataType::kBOOL;
      break;
#endif
    default:
      paddle::platform::errors::InvalidArgument(
          "phi::DataType not supported data type %s.", type);
      break;
  }
  return nv_type;
}
228

Y
Yan Chunwei 已提交
229 230 231
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle