helper.h 5.2 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

#include <NvInfer.h>
#include <cuda.h>
#include <glog/logging.h>
20

N
nhzlx 已提交
21 22 23
#include <string>
#include <utility>
#include <vector>
24

Y
Yan Chunwei 已提交
25 26 27 28 29 30 31
#include "paddle/fluid/platform/dynload/tensorrt.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace inference {
namespace tensorrt {

32 33 34 35
#define IS_TRT_VERSION_GE(version)                       \
  ((NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + \
    NV_TENSORRT_PATCH * 10 + NV_TENSORRT_BUILD) >= version)

36 37 38 39
#define IS_TRT_VERSION_LT(version)                       \
  ((NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + \
    NV_TENSORRT_PATCH * 10 + NV_TENSORRT_BUILD) < version)

40 41 42 43
#define TRT_VERSION                                    \
  NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + \
      NV_TENSORRT_PATCH * 10 + NV_TENSORRT_BUILD

44 45 46 47 48 49
#if IS_TRT_VERSION_GE(8000)
#define TRT_NOEXCEPT noexcept
#else
#define TRT_NOEXCEPT
#endif

Y
Yan Chunwei 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62
namespace dy = paddle::platform::dynload;

// TensorRT data type to size
const int kDataTypeSize[] = {
    4,  // kFLOAT
    2,  // kHALF
    1,  // kINT8
    4   // kINT32
};

// The following two API are implemented in TensorRT's header file, cannot load
// from the dynamic library. So create our own implementation and directly
// trigger the method from the dynamic library.
63
static nvinfer1::IBuilder* createInferBuilder(nvinfer1::ILogger* logger) {
Y
Yan Chunwei 已提交
64
  return static_cast<nvinfer1::IBuilder*>(
65
      dy::createInferBuilder_INTERNAL(logger, NV_TENSORRT_VERSION));
Y
Yan Chunwei 已提交
66
}
67
static nvinfer1::IRuntime* createInferRuntime(nvinfer1::ILogger* logger) {
Y
Yan Chunwei 已提交
68
  return static_cast<nvinfer1::IRuntime*>(
69
      dy::createInferRuntime_INTERNAL(logger, NV_TENSORRT_VERSION));
Y
Yan Chunwei 已提交
70
}
71 72
#if IS_TRT_VERSION_GE(6000)
static nvinfer1::IPluginRegistry* GetPluginRegistry() {
P
Pei Yang 已提交
73 74
  return static_cast<nvinfer1::IPluginRegistry*>(dy::getPluginRegistry());
}
75 76 77
static int GetInferLibVersion() {
  return static_cast<int>(dy::getInferLibVersion());
}
78 79
#else
static int GetInferLibVersion() { return 0; }
80
#endif
Y
Yan Chunwei 已提交
81

82 83 84 85 86 87 88 89 90 91
static std::tuple<int, int, int> GetTrtRuntimeVersion() {
  int ver = GetInferLibVersion();
  int major = ver / 1000;
  ver -= major * 1000;
  int minor = ver / 100;
  int patch = ver - minor * 100;
  return std::tuple<int, int, int>{major, minor, patch};
}

static std::tuple<int, int, int> GetTrtCompileVersion() {
92 93
  return std::tuple<int, int, int>{
      NV_TENSORRT_MAJOR, NV_TENSORRT_MINOR, NV_TENSORRT_PATCH};
94 95
}

Y
Yan Chunwei 已提交
96 97 98
// A logger for create TensorRT infer builder.
class NaiveLogger : public nvinfer1::ILogger {
 public:
99 100
  void log(nvinfer1::ILogger::Severity severity,
           const char* msg) TRT_NOEXCEPT override {
Y
Yan Chunwei 已提交
101
    switch (severity) {
P
Pei Yang 已提交
102
      case Severity::kVERBOSE:
103
        VLOG(3) << msg;
Y
Yan Chunwei 已提交
104
        break;
P
Pei Yang 已提交
105 106 107
      case Severity::kINFO:
        VLOG(2) << msg;
        break;
Y
Yan Chunwei 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
      case Severity::kWARNING:
        LOG(WARNING) << msg;
        break;
      case Severity::kINTERNAL_ERROR:
      case Severity::kERROR:
        LOG(ERROR) << msg;
        break;
      default:
        break;
    }
  }

  static nvinfer1::ILogger& Global() {
    static nvinfer1::ILogger* x = new NaiveLogger;
    return *x;
  }

125
  ~NaiveLogger() override {}
Y
Yan Chunwei 已提交
126 127
};

N
nhzlx 已提交
128 129 130 131 132
class NaiveProfiler : public nvinfer1::IProfiler {
 public:
  typedef std::pair<std::string, float> Record;
  std::vector<Record> mProfile;

133
  virtual void reportLayerTime(const char* layerName, float ms) TRT_NOEXCEPT {
N
nhzlx 已提交
134
    auto record =
135 136 137
        std::find_if(mProfile.begin(), mProfile.end(), [&](const Record& r) {
          return r.first == layerName;
        });
N
nhzlx 已提交
138 139 140 141 142 143 144 145 146
    if (record == mProfile.end())
      mProfile.push_back(std::make_pair(layerName, ms));
    else
      record->second += ms;
  }

  void printLayerTimes() {
    float totalTime = 0;
    for (size_t i = 0; i < mProfile.size(); i++) {
147 148
      printf(
          "%-40.40s %4.3fms\n", mProfile[i].first.c_str(), mProfile[i].second);
N
nhzlx 已提交
149 150 151 152 153 154
      totalTime += mProfile[i].second;
    }
    printf("Time over all layers: %4.3f\n", totalTime);
  }
};

155 156 157 158 159 160 161 162
inline size_t ProductDim(const nvinfer1::Dims& dims) {
  size_t v = 1;
  for (int i = 0; i < dims.nbDims; i++) {
    v *= dims.d[i];
  }
  return v;
}

163 164 165 166 167 168 169 170 171 172 173 174 175
inline void PrintITensorShape(nvinfer1::ITensor* X) {
  auto dims = X->getDimensions();
  auto name = X->getName();
  std::cout << "ITensor " << name << " shape: [";
  for (int i = 0; i < dims.nbDims; i++) {
    if (i == dims.nbDims - 1)
      std::cout << dims.d[i];
    else
      std::cout << dims.d[i] << ", ";
  }
  std::cout << "]\n";
}

176 177 178 179 180 181 182 183 184 185
template <typename T>
inline std::string Vec2Str(const std::vector<T>& vec) {
  std::ostringstream os;
  os << "(";
  for (size_t i = 0; i < vec.size() - 1; ++i) {
    os << vec[i] << ",";
  }
  os << vec[vec.size() - 1] << ")";
  return os.str();
}
Y
Yan Chunwei 已提交
186 187 188
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle