helper.h 6.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

#include <NvInfer.h>
#include <cuda.h>
#include <glog/logging.h>
20

N
nhzlx 已提交
21 22 23
#include <string>
#include <utility>
#include <vector>
24

Y
Yan Chunwei 已提交
25 26
#include "paddle/fluid/platform/dynload/tensorrt.h"
#include "paddle/fluid/platform/enforce.h"
27
#include "paddle/phi/common/data_type.h"
Y
Yan Chunwei 已提交
28 29 30 31 32

namespace paddle {
namespace inference {
namespace tensorrt {

33 34 35 36
#define IS_TRT_VERSION_GE(version)                       \
  ((NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + \
    NV_TENSORRT_PATCH * 10 + NV_TENSORRT_BUILD) >= version)

37 38 39 40
#define IS_TRT_VERSION_LT(version)                       \
  ((NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + \
    NV_TENSORRT_PATCH * 10 + NV_TENSORRT_BUILD) < version)

41 42 43 44
#define TRT_VERSION                                    \
  NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + \
      NV_TENSORRT_PATCH * 10 + NV_TENSORRT_BUILD

45 46 47 48 49 50
#if IS_TRT_VERSION_GE(8000)
#define TRT_NOEXCEPT noexcept
#else
#define TRT_NOEXCEPT
#endif

Y
Yan Chunwei 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63
namespace dy = paddle::platform::dynload;

// TensorRT data type to size
const int kDataTypeSize[] = {
    4,  // kFLOAT
    2,  // kHALF
    1,  // kINT8
    4   // kINT32
};

// The following two API are implemented in TensorRT's header file, cannot load
// from the dynamic library. So create our own implementation and directly
// trigger the method from the dynamic library.
64
static nvinfer1::IBuilder* createInferBuilder(nvinfer1::ILogger* logger) {
Y
Yan Chunwei 已提交
65
  return static_cast<nvinfer1::IBuilder*>(
66
      dy::createInferBuilder_INTERNAL(logger, NV_TENSORRT_VERSION));
Y
Yan Chunwei 已提交
67
}
68
static nvinfer1::IRuntime* createInferRuntime(nvinfer1::ILogger* logger) {
Y
Yan Chunwei 已提交
69
  return static_cast<nvinfer1::IRuntime*>(
70
      dy::createInferRuntime_INTERNAL(logger, NV_TENSORRT_VERSION));
Y
Yan Chunwei 已提交
71
}
72 73
#if IS_TRT_VERSION_GE(6000)
static nvinfer1::IPluginRegistry* GetPluginRegistry() {
P
Pei Yang 已提交
74 75
  return static_cast<nvinfer1::IPluginRegistry*>(dy::getPluginRegistry());
}
76 77 78
static int GetInferLibVersion() {
  return static_cast<int>(dy::getInferLibVersion());
}
79 80
#else
static int GetInferLibVersion() { return 0; }
81
#endif
Y
Yan Chunwei 已提交
82

83 84 85 86 87 88 89 90 91 92
static std::tuple<int, int, int> GetTrtRuntimeVersion() {
  int ver = GetInferLibVersion();
  int major = ver / 1000;
  ver -= major * 1000;
  int minor = ver / 100;
  int patch = ver - minor * 100;
  return std::tuple<int, int, int>{major, minor, patch};
}

static std::tuple<int, int, int> GetTrtCompileVersion() {
93 94
  return std::tuple<int, int, int>{
      NV_TENSORRT_MAJOR, NV_TENSORRT_MINOR, NV_TENSORRT_PATCH};
95 96
}

Y
Yan Chunwei 已提交
97 98 99
// A logger for create TensorRT infer builder.
class NaiveLogger : public nvinfer1::ILogger {
 public:
100 101
  void log(nvinfer1::ILogger::Severity severity,
           const char* msg) TRT_NOEXCEPT override {
Y
Yan Chunwei 已提交
102
    switch (severity) {
P
Pei Yang 已提交
103
      case Severity::kVERBOSE:
104
        VLOG(3) << msg;
Y
Yan Chunwei 已提交
105
        break;
P
Pei Yang 已提交
106 107 108
      case Severity::kINFO:
        VLOG(2) << msg;
        break;
Y
Yan Chunwei 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
      case Severity::kWARNING:
        LOG(WARNING) << msg;
        break;
      case Severity::kINTERNAL_ERROR:
      case Severity::kERROR:
        LOG(ERROR) << msg;
        break;
      default:
        break;
    }
  }

  static nvinfer1::ILogger& Global() {
    static nvinfer1::ILogger* x = new NaiveLogger;
    return *x;
  }

126
  ~NaiveLogger() override {}
Y
Yan Chunwei 已提交
127 128
};

N
nhzlx 已提交
129 130 131 132 133
class NaiveProfiler : public nvinfer1::IProfiler {
 public:
  typedef std::pair<std::string, float> Record;
  std::vector<Record> mProfile;

134
  virtual void reportLayerTime(const char* layerName, float ms) TRT_NOEXCEPT {
N
nhzlx 已提交
135
    auto record =
136 137 138
        std::find_if(mProfile.begin(), mProfile.end(), [&](const Record& r) {
          return r.first == layerName;
        });
N
nhzlx 已提交
139 140 141 142 143 144 145 146 147
    if (record == mProfile.end())
      mProfile.push_back(std::make_pair(layerName, ms));
    else
      record->second += ms;
  }

  void printLayerTimes() {
    float totalTime = 0;
    for (size_t i = 0; i < mProfile.size(); i++) {
148 149
      printf(
          "%-40.40s %4.3fms\n", mProfile[i].first.c_str(), mProfile[i].second);
N
nhzlx 已提交
150 151 152 153 154 155
      totalTime += mProfile[i].second;
    }
    printf("Time over all layers: %4.3f\n", totalTime);
  }
};

156 157 158 159 160 161 162 163
inline size_t ProductDim(const nvinfer1::Dims& dims) {
  size_t v = 1;
  for (int i = 0; i < dims.nbDims; i++) {
    v *= dims.d[i];
  }
  return v;
}

164 165 166 167 168 169 170 171 172 173 174 175 176
inline void PrintITensorShape(nvinfer1::ITensor* X) {
  auto dims = X->getDimensions();
  auto name = X->getName();
  std::cout << "ITensor " << name << " shape: [";
  for (int i = 0; i < dims.nbDims; i++) {
    if (i == dims.nbDims - 1)
      std::cout << dims.d[i];
    else
      std::cout << dims.d[i] << ", ";
  }
  std::cout << "]\n";
}

177 178 179 180 181 182 183 184 185 186
template <typename T>
inline std::string Vec2Str(const std::vector<T>& vec) {
  std::ostringstream os;
  os << "(";
  for (size_t i = 0; i < vec.size() - 1; ++i) {
    os << vec[i] << ",";
  }
  os << vec[vec.size() - 1] << ")";
  return os.str();
}
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

static inline nvinfer1::DataType PhiType2NvType(phi::DataType type) {
  nvinfer1::DataType nv_type = nvinfer1::DataType::kFLOAT;
  switch (type) {
    case phi::DataType::FLOAT32:
      nv_type = nvinfer1::DataType::kFLOAT;
      break;
    case phi::DataType::FLOAT16:
      nv_type = nvinfer1::DataType::kHALF;
      break;
    case phi::DataType::INT32:
    case phi::DataType::INT64:
      nv_type = nvinfer1::DataType::kINT32;
      break;
    case phi::DataType::INT8:
      nv_type = nvinfer1::DataType::kINT8;
      break;
#if IS_TRT_VERSION_GE(7000)
    case phi::DataType::BOOL:
      nv_type = nvinfer1::DataType::kBOOL;
      break;
#endif
    default:
      paddle::platform::errors::InvalidArgument(
          "phi::DataType not supported data type %s.", type);
      break;
  }
  return nv_type;
}
Y
Yan Chunwei 已提交
216 217 218
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle