parallel_executor.cc 10.9 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
Q
qiaolongfei 已提交
16

C
chengduoZH 已提交
17
#include <string>
18
#include <tuple>
Q
qiaolongfei 已提交
19
#include <vector>
Y
Yu Yang 已提交
20

Y
Yu Yang 已提交
21
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
22
#include "paddle/fluid/framework/details/reference_count_pass.h"
Y
Yu Yang 已提交
23
#include "paddle/fluid/platform/nccl_helper.h"
Y
Yu Yang 已提交
24
#endif
Y
Yang Yang 已提交
25

S
sneaxiy 已提交
26 27 28 29 30
#include "paddle/fluid/framework/details/all_reduce_op_handle.h"
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
#include "paddle/fluid/framework/details/computation_op_handle.h"
#include "paddle/fluid/framework/details/reduce_op_handle.h"
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
Y
yuyang18 已提交
31
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
32
#include "paddle/fluid/framework/details/ssa_graph_builder_factory.h"
Y
Yu Yang 已提交
33
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
34
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
35

Y
Yang Yang 已提交
36
namespace paddle {
Y
Yu Yang 已提交
37 38
namespace framework {

Y
Yu Yang 已提交
39 40 41
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
42
      : places_(places) {}
Y
Yu Yang 已提交
43 44 45 46

  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
  Scope *global_scope_;
Y
Yu Yang 已提交
47
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
48

Y
Yu Yang 已提交
49
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
50
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
51
#endif
C
chengduoZH 已提交
52 53
  bool own_local_scope_;
  bool use_cuda_;
Y
Yu Yang 已提交
54 55
};

56 57 58 59
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yu Yang 已提交
60
ParallelExecutor::ParallelExecutor(
61
    const std::vector<platform::Place> &places,
Y
Yu Yang 已提交
62
    const std::unordered_set<std::string> &params,
63 64
    const std::unordered_set<std::string> &bcast_vars,
    const ProgramDesc &main_program, const std::string &loss_var_name,
Y
yuyang18 已提交
65
    Scope *scope, const std::vector<Scope *> &local_scopes,
66
    const ExecutionStrategy &exec_strategy, const BuildStrategy &build_strategy,
67
    size_t num_trainers, size_t trainer_id)
Y
Yu Yang 已提交
68
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
69
  member_->global_scope_ = scope;
70
  member_->use_cuda_ = exec_strategy.use_cuda_;
Y
Yu Yang 已提交
71

72
  // Step 1. Bcast the params to devs.
Y
Yu Yang 已提交
73
  // Create local scopes
74
  if (local_scopes.empty()) {
C
chengduoZH 已提交
75
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
76 77
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
78
      member_->local_scopes_.emplace_back(&scope->NewScope());
79 80
    }
  } else {
C
chengduoZH 已提交
81
    member_->own_local_scope_ = false;
82 83
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
84
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
85
    }
Y
Yu Yang 已提交
86 87
  }

C
chengduoZH 已提交
88
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
89 90
// Bcast Parameters to all GPUs
#ifdef PADDLE_WITH_CUDA
C
chengduoZH 已提交
91 92 93 94 95 96 97 98 99
    auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
    ncclUniqueId *nccl_id = nullptr;
    if (nccl_id_var != nullptr) {
      nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
    }
    member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
        member_->places_, nccl_id, num_trainers, trainer_id));
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
100
#endif
C
chengduoZH 已提交
101 102 103
  }

  if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
104
    BCastParamsToGPUs(bcast_vars);
Y
Yu Yang 已提交
105
  }
Y
yuyang18 已提交
106 107 108 109 110 111 112 113 114 115
  // Startup Program has been run. All local scopes has correct parameters.

  // Step 2. Create vars in each scope;
  std::vector<details::VariableInfo> var_infos;
  for (auto *var : main_program.Block(0).AllVars()) {
    var_infos.emplace_back();
    var_infos.back().name_ = var->Name();
    var_infos.back().type_ = var->GetType();
    var_infos.back().persistable_ = var->Persistable();
  }
Y
Yu Yang 已提交
116

Y
yuyang18 已提交
117 118 119
  // Step 3. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  details::SSAGraphBuilderFactory builder_factory(
Y
Yancey1989 已提交
120
      member_->places_, loss_var_name, params, member_->local_scopes_,
Y
yuyang18 已提交
121
      build_strategy);
C
chengduoZH 已提交
122
  if (member_->use_cuda_) {
Y
yuyang18 已提交
123
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    std::unique_ptr<ir::Graph> graph = ApplyParallelExecutorPass(
        main_program, member_->places_, loss_var_name, params,
        member_->local_scopes_, member_->use_cuda_, build_strategy,
        member_->nccl_ctxs_.get());

    auto max_memory_size = GetEagerDeletionThreshold();
    if (max_memory_size >= 0) {
      for (auto &place : member_->places_) {
        if (!platform::is_gpu_place(place)) continue;
        auto gpu_place = boost::get<platform::CUDAPlace>(place);
        if (gcs_[gpu_place.device] == nullptr) {
          ref_cnts_[gpu_place.device].reset(new details::ReferenceCountMap());
          cur_ref_cnts_[gpu_place.device].reset(
              new details::AtomicReferenceCountMap());
          gcs_[gpu_place.device].reset(
              new StreamGarbageCollector<Tensor>(gpu_place, max_memory_size));
        }
      }
      if (!gcs_.empty()) {
        auto ref_cnt_pass =
            ir::PassRegistry::Instance().Get("reference_count_pass");
        ref_cnt_pass->SetNotOwned(details::kGlobalReferenceCount, &ref_cnts_);
        ref_cnt_pass->SetNotOwned(details::kCurReferenceCount, &cur_ref_cnts_);
        ref_cnt_pass->SetNotOwned(details::kGarbageCollector, &gcs_);
        graph = ref_cnt_pass->Apply(std::move(graph));
        graph->SetNotOwned("garbage_collector", &gcs_);
      }
    }
C
chengduoZH 已提交
152 153
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
154
#endif
C
chengduoZH 已提交
155
  }
Y
yuyang18 已提交
156 157 158 159

  member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
      exec_strategy, member_->local_scopes_, std::move(var_infos),
      member_->places_, std::move(member_->executor_)));
Y
Yu Yang 已提交
160 161 162
}

void ParallelExecutor::BCastParamsToGPUs(
163
    const std::unordered_set<std::string> &vars) const {
Y
yi.wu 已提交
164 165
  // the the initializing bcast, all vars would be bcast from device(0),
  // otherwise
166
  // bcast from the specified device.
Y
wip  
yi.wu 已提交
167
  bool initializing = builder_.get() == nullptr ? true : false;
Y
Yu Yang 已提交
168

169
  for (auto &var : vars) {
170 171
    int var_dev_id =
        builder_.get() == nullptr ? -1 : builder_->GetVarDeviceID(var);
Y
yi.wu 已提交
172
    if (!initializing && var_dev_id == -1) continue;
173 174

    framework::Variable *main_var = nullptr;
Y
yi.wu 已提交
175
    if (initializing) {
176 177 178 179 180
      main_var = member_->local_scopes_[0]->FindVar(var);
    } else {
      main_var = member_->local_scopes_[var_dev_id]->FindVar(var);
    }

J
JiayiFeng 已提交
181
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
182 183 184 185 186 187
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
C
chengduoZH 已提交
188
#ifdef PADDLE_WITH_CUDA
189
      std::vector<void *> buffers;
190 191 192 193 194
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
195

Y
yi.wu 已提交
196
        if ((initializing && i == 0) ||
Y
update  
yi.wu 已提交
197
            (!initializing && static_cast<int>(i) == var_dev_id)) {
198 199
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
200
          auto local_scope = member_->local_scopes_[i];
201
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
202
          t->Resize(dims);
203
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
204
        }
205
        buffers.push_back(buffer);
206
      }
207

208 209 210 211 212 213
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]);
Y
yi.wu 已提交
214 215 216 217
          if (initializing) {
            platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                         nccl_ctx.comm_, nccl_ctx.stream());
          } else {
Y
update  
yi.wu 已提交
218
            if (var_dev_id >= 0) {
Y
yi.wu 已提交
219 220 221 222 223
              platform::dynload::ncclBcast(buffers[i], numel, data_type,
                                           var_dev_id, nccl_ctx.comm_,
                                           nccl_ctx.stream());
            }
          }
224
        }
225
        member_->nccl_ctxs_->WaitAll();
226
      }
227

C
chengduoZH 已提交
228 229 230
#else
      PADDLE_THROW("Not compiled with CUDA");
#endif
231 232 233 234 235 236 237 238
    } else {
      platform::CPUPlace cpu;
      for (size_t i = 1; i < member_->places_.size(); ++i) {
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
        t->Resize(dims);
        t->mutable_data(cpu, main_tensor.type());
        paddle::framework::TensorCopy(main_tensor, cpu, t);
Y
Yu Yang 已提交
239
      }
Y
Stash  
Yu Yang 已提交
240 241
    }
  }
Y
Yu Yang 已提交
242
}
Y
Yu Yang 已提交
243

Y
Yu Yang 已提交
244 245
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
X
Xin Pan 已提交
246
  platform::RecordBlock b(0);
S
sneaxiy 已提交
247 248 249 250 251
#ifdef PADDLE_WITH_CUDA
  if (!gcs_.empty()) {
    ResetReferenceCount();
  }
#endif
Y
Yu Yang 已提交
252 253 254
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
255
}
Y
Yu Yang 已提交
256

Y
Yu Yang 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
276 277 278 279 280
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
281 282
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
283
      auto t =
Y
Yu Yang 已提交
284
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
285 286
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
287 288 289 290
    }
  }
}

291
ParallelExecutor::~ParallelExecutor() {
C
chengduoZH 已提交
292
  if (member_->own_local_scope_) {
293 294 295 296 297 298
    for (size_t i = 1; i < member_->local_scopes_.size(); ++i) {
      member_->global_scope_->DeleteScope(member_->local_scopes_[i]);
    }
  }
}

Y
Yu Yang 已提交
299
}  // namespace framework
Y
Yang Yang 已提交
300
}  // namespace paddle
S
sneaxiy 已提交
301 302 303 304 305 306 307 308

USE_PASS(graph_viz_pass);
USE_PASS(multi_devices_pass);
USE_PASS(multi_devices_check_pass);
USE_PASS(multi_devices_print_pass);
#ifdef PADDLE_WITH_CUDA
USE_PASS(reference_count_pass);
#endif