distributed_py.cc 59.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <fcntl.h>
#ifdef _POSIX_C_SOURCE
#undef _POSIX_C_SOURCE
#endif

#ifdef _XOPEN_SOURCE
#undef _XOPEN_SOURCE
#endif

#include "paddle/fluid/distributed/collective/ProcessGroup.h"
25
#include "paddle/fluid/distributed/collective/ProcessGroupStream.h"
26
#include "paddle/fluid/distributed/collective/Types.h"
27
#include "paddle/fluid/distributed/collective/Utils.h"
28
#include "paddle/fluid/distributed/collective/reducer.h"
29 30 31 32 33 34 35
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/pybind/distributed_py.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/all.h"

36
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
37 38 39
#include "paddle/fluid/distributed/collective/ProcessGroupNCCL.h"
#endif

W
wuhuachaocoding 已提交
40 41 42 43
#if defined(PADDLE_WITH_MPI)
#include "paddle/fluid/distributed/collective/ProcessGroupMPI.h"
#endif

44 45 46 47
#if defined(PADDLE_WITH_ASCEND_CL)
#include "paddle/fluid/distributed/collective/ProcessGroupHCCL.h"
#endif

48 49 50 51
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
#include "paddle/fluid/distributed/collective/ProcessGroupCustom.h"
#endif

52 53 54 55 56
#if defined(PADDLE_WITH_GLOO) && defined(PADDLE_WITH_PSCORE) && \
    (defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_ASCEND_CL))
#include "paddle/fluid/distributed/collective/ProcessGroupHeter.h"
#endif

57 58 59 60 61
#if defined(PADDLE_WITH_GLOO)
#include "paddle/fluid/distributed/collective/ProcessGroupGloo.h"
#include "paddle/fluid/distributed/store/tcp_store.h"
#endif

62 63 64 65 66 67 68
namespace py = pybind11;

namespace paddle {
namespace pybind {

using Tensor = paddle::experimental::Tensor;

69 70 71 72 73
std::shared_ptr<distributed::EagerReducer> CreateEagerReducer(
    py::handle py_tensors,
    const std::vector<std::vector<size_t>> &group_indices,
    const std::vector<bool> &is_sparse_gradient,
    std::shared_ptr<distributed::ProcessGroup> process_group,
74 75
    const std::vector<size_t> &group_size_limits,
    bool find_unused_parameters) {
76
  auto params = CastPyArg2VectorOfTensor(py_tensors.ptr(), 0);
77 78 79 80 81 82
  return std::make_shared<distributed::EagerReducer>(params,
                                                     group_indices,
                                                     is_sparse_gradient,
                                                     process_group,
                                                     group_size_limits,
                                                     find_unused_parameters);
83 84
}

85 86 87 88 89 90 91 92
#if defined(PADDLE_WITH_GLOO)
using ProcessGroupGloo = paddle::distributed::ProcessGroupGloo;
using GlooStore = paddle::distributed::ProcessGroupGloo::GlooStore;
using GlooOptions = paddle::distributed::ProcessGroupGloo::GlooOptions;
#endif

static std::string GLOO_SOCKET_IFNAME_ENV = "GLOO_SOCKET_IFNAME";  // NOLINT

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
void BindDistributed(py::module *m) {
  py::enum_<distributed::ReduceOp>(*m, "ReduceOp")
      .value("SUM", distributed::ReduceOp::SUM)
      .value("AVG", distributed::ReduceOp::AVG)
      .value("MAX", distributed::ReduceOp::MAX)
      .value("MIN", distributed::ReduceOp::MIN)
      .value("PRODUCT", distributed::ReduceOp::PRODUCT);

  py::class_<distributed::AllreduceOptions>(*m, "AllreduceOptions")
      .def(py::init<>())
      .def_readwrite("reduce_op", &distributed::AllreduceOptions::reduce_op);

  py::class_<distributed::BroadcastOptions>(*m, "BroadcastOptions")
      .def(py::init<>())
      .def_readwrite("source_rank", &distributed::BroadcastOptions::source_rank)
      .def_readwrite("source_root",
                     &distributed::BroadcastOptions::source_root);

B
Baibaifan 已提交
111 112 113 114
  py::class_<distributed::BarrierOptions>(*m, "BarrierOptions")
      .def(py::init<>())
      .def_readwrite("place_ids", &distributed::BarrierOptions::place_ids);

115 116 117 118 119
  py::class_<distributed::ReduceOptions>(*m, "ReduceOptions")
      .def(py::init<>())
      .def_readwrite("reduce_op", &distributed::ReduceOptions::reduce_op)
      .def_readwrite("source_root", &distributed::ReduceOptions::root_rank);

120 121 122 123 124 125
  auto ProcessGroup =
      py::class_<distributed::ProcessGroup,
                 std::shared_ptr<distributed::ProcessGroup>>(*m, "ProcessGroup")
          .def("rank", &distributed::ProcessGroup::GetRank)
          .def("size", &distributed::ProcessGroup::GetSize)
          .def("name", &distributed::ProcessGroup::GetBackendName)
126 127
          .def(
              "allreduce",
128 129
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
130 131 132 133 134 135 136 137 138
                 distributed::ReduceOp op) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                distributed::AllreduceOptions opts;
                opts.reduce_op = op;
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.AllReduce(tensors, tensors, opts);
              },
139 140
              py::arg("tensor"),
              py::arg("op") = distributed::ReduceOp::SUM,
141 142
              py::call_guard<py::gil_scoped_release>())

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
          .def(
              "allreduce",
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
                 distributed::ReduceOp op,
                 bool sync_op) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                distributed::AllreduceOptions opts;
                opts.reduce_op = op;
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.AllReduce(tensors, tensors, opts, sync_op);
              },
              py::arg("tensor"),
              py::arg("op"),
              py::arg("sync_op"),
              py::call_guard<py::gil_scoped_release>())

162 163
          .def(
              "broadcast",
164 165
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
166 167 168 169 170 171 172 173 174
                 int source_rank) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                distributed::BroadcastOptions opts;
                opts.source_rank = source_rank;
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Broadcast(tensors, tensors, opts);
              },
175 176
              py::arg("tensor"),
              py::arg("source_rank"),
177 178
              py::call_guard<py::gil_scoped_release>())

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
          .def(
              "broadcast",
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
                 int src,
                 bool sync_op) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                distributed::BroadcastOptions opts{src};
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Broadcast(tensors, tensors, opts, sync_op);
              },
              py::arg("tensor"),
              py::arg("src"),
              py::arg("sync_op"),
              py::call_guard<py::gil_scoped_release>())

197 198 199 200 201 202 203 204 205 206 207 208
          .def(
              "barrier",
              [](distributed::ProcessGroup &self, std::vector<int> place_ids) {
                distributed::BarrierOptions opts;
                opts.place_ids = place_ids;
                return self.Barrier(opts);
              },
              py::arg("place_ids") = std::vector<int>{},
              py::call_guard<py::gil_scoped_release>())

          .def(
              "send",
209 210
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
211 212 213 214 215 216 217
                 int dst) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Send(tensors, dst);
              },
218 219
              py::arg("tensor"),
              py::arg("dst"),
220 221
              py::call_guard<py::gil_scoped_release>())

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
          .def(
              "send",
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
                 int dst,
                 bool sync_op) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Send(tensors, dst, sync_op);
              },
              py::arg("tensor"),
              py::arg("dst"),
              py::arg("sync_op"),
              py::call_guard<py::gil_scoped_release>())

239 240 241 242 243 244 245 246 247 248
          .def(
              "send_partial",
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
                 int dst_rank,
                 int nranks,
                 int rank_id) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
249 250 251
                int64_t numel = (*dense).numel();
                int64_t send_numel = numel / nranks;
                int64_t offset = send_numel * rank_id;
252 253 254 255 256 257 258 259
                return self.Send_Partial(*dense, dst_rank, offset, send_numel);
              },
              py::arg("tensor"),
              py::arg("dst"),
              py::arg("num"),
              py::arg("id"),
              py::call_guard<py::gil_scoped_release>())

260 261 262 263 264 265 266 267 268 269 270
          .def(
              "send_partial",
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
                 int dst_rank,
                 int nranks,
                 int rank_id,
                 bool sync_op) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
271 272 273
                int64_t numel = (*dense).numel();
                int64_t send_numel = numel / nranks;
                int64_t offset = send_numel * rank_id;
274 275 276 277 278 279 280 281 282 283
                return self.Send_Partial(
                    *dense, dst_rank, offset, send_numel, sync_op);
              },
              py::arg("tensor"),
              py::arg("dst"),
              py::arg("num"),
              py::arg("id"),
              py::arg("sync_op"),
              py::call_guard<py::gil_scoped_release>())

284 285
          .def(
              "recv",
286 287
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
288 289 290 291 292 293 294
                 int src) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Recv(tensors, src);
              },
295 296
              py::arg("tensor"),
              py::arg("src"),
297 298
              py::call_guard<py::gil_scoped_release>())

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
          .def(
              "recv",
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
                 int src,
                 bool sync_op) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Recv(tensors, src, sync_op);
              },
              py::arg("tensor"),
              py::arg("src"),
              py::arg("sync_op"),
              py::call_guard<py::gil_scoped_release>())

316 317 318 319 320 321 322 323 324 325
          .def(
              "recv_partial",
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
                 int src_rank,
                 int nranks,
                 int rank_id) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
326 327 328
                int64_t numel = (*dense).numel();
                int64_t recv_numel = numel / nranks;
                int64_t offset = recv_numel * rank_id;
329 330 331 332 333 334 335 336
                return self.Recv_Partial(*dense, src_rank, offset, recv_numel);
              },
              py::arg("tensor"),
              py::arg("src"),
              py::arg("num"),
              py::arg("id"),
              py::call_guard<py::gil_scoped_release>())

337 338 339 340 341 342 343 344 345 346 347
          .def(
              "recv_partial",
              [](distributed::ProcessGroup &self,
                 py::handle py_tensor,
                 int src_rank,
                 int nranks,
                 int rank_id,
                 bool sync_op) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
348 349 350
                int64_t numel = (*dense).numel();
                int64_t recv_numel = numel / nranks;
                int64_t offset = recv_numel * rank_id;
351 352 353 354 355 356 357 358 359 360
                return self.Recv_Partial(
                    *dense, src_rank, offset, recv_numel, sync_op);
              },
              py::arg("tensor"),
              py::arg("src"),
              py::arg("num"),
              py::arg("id"),
              py::arg("sync_op"),
              py::call_guard<py::gil_scoped_release>())

361 362
          .def(
              "all_gather",
363 364
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
365 366 367 368 369 370 371 372 373 374 375
                 py::handle py_out_tensor) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> in_tensors = {*in_dense};
                std::vector<phi::DenseTensor> out_tensors = {*out_dense};
                return self.AllGather(in_tensors, out_tensors);
              },
376 377
              py::arg("in"),
              py::arg("out"),
378 379
              py::call_guard<py::gil_scoped_release>())

380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
          .def(
              "allgather",
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor_list,
                 bool sync_op) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                std::vector<phi::DenseTensor> in_wrapper = {*in_dense};

                auto out_tensor_list =
                    CastPyArg2VectorOfTensor(py_out_tensor_list.ptr(), 0);
                Tensor concat_out_tensor = paddle::concat(out_tensor_list, 0);
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    concat_out_tensor.impl());
                std::vector<phi::DenseTensor> out_wrapper = {*out_dense};

                const auto *dev_ctx = self.GetDeviceContext(in_tensor.place());
                auto task = self.AllGather(in_wrapper, out_wrapper, sync_op);
                distributed::SplitTensor(dev_ctx, *out_dense, &out_tensor_list);
                return task;
              },
              py::arg("in"),
              py::arg("out"),
              py::arg("sync_op"),
              py::call_guard<py::gil_scoped_release>())

          .def(
409
              "allgather_into_tensor",
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor,
                 bool sync_op) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                std::vector<phi::DenseTensor> in_wrapper = {*in_dense};

                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> out_wrapper = {*out_dense};

                return self.AllGather(in_wrapper, out_wrapper, sync_op);
              },
              py::arg("in"),
              py::arg("out"),
              py::arg("sync_op"),
              py::call_guard<py::gil_scoped_release>())

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
          .def(
              "all_gather_partial",
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor,
                 int nranks,
                 int rank_id) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> in_tensors = {*in_dense};
                std::vector<phi::DenseTensor> out_tensors = {*out_dense};
446 447 448
                int64_t numel = (*in_dense).numel();
                int64_t send_numel = numel / nranks;
                int64_t offset = send_numel * rank_id;
449 450 451 452 453 454 455 456 457
                return self.AllGather_Partial(
                    in_tensors, out_tensors, offset, send_numel);
              },
              py::arg("in"),
              py::arg("out"),
              py::arg("num"),
              py::arg("id"),
              py::call_guard<py::gil_scoped_release>())

458 459
          .def(
              "alltoall",
460 461
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
462 463 464 465 466 467 468 469 470 471 472
                 py::handle py_out_tensor) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> in_tensors = {*in_dense};
                std::vector<phi::DenseTensor> out_tensors = {*out_dense};
                return self.AllToAll(in_tensors, out_tensors);
              },
473 474
              py::arg("in"),
              py::arg("out"),
475 476
              py::call_guard<py::gil_scoped_release>())

477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
          .def(
              "alltoall",
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor_list,
                 py::handle py_out_tensor_list,
                 bool sync_op) {
                auto in_tensor_list =
                    CastPyArg2VectorOfTensor(py_in_tensor_list.ptr(), 0);
                Tensor concat_in_tensor = paddle::concat(in_tensor_list, 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    concat_in_tensor.impl());
                std::vector<phi::DenseTensor> in_wrapper = {*in_dense};

                auto out_tensor_list =
                    CastPyArg2VectorOfTensor(py_out_tensor_list.ptr(), 0);
                Tensor concat_out_tensor = paddle::concat(out_tensor_list, 0);
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    concat_out_tensor.impl());
                std::vector<phi::DenseTensor> out_wrapper = {*out_dense};

                // in_tensor_list should not be empty
                const auto *dev_ctx =
                    self.GetDeviceContext(in_tensor_list.back().place());
                auto task = self.AllToAll(in_wrapper, out_wrapper, sync_op);
                distributed::SplitTensor(dev_ctx, *out_dense, &out_tensor_list);
                return task;
              },
              py::arg("in"),
              py::arg("out"),
              py::arg("sync_op"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "alltoall_tensor",
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor,
                 bool sync_op) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                std::vector<phi::DenseTensor> in_wrapper = {*in_dense};

                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> out_wrapper = {*out_dense};

                return self.AllToAll(in_wrapper, out_wrapper, sync_op);
              },
              py::arg("in"),
              py::arg("out"),
              py::arg("sync_op"),
              py::call_guard<py::gil_scoped_release>())

532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
          .def(
              "alltoall_single",
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor,
                 std::vector<int64_t> in_sizes,
                 std::vector<int64_t> out_sizes) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> in_tensors = {*in_dense};
                std::vector<phi::DenseTensor> out_tensors = {*out_dense};
                return self.AllToAll_Single(
                    in_tensors, out_tensors, in_sizes, out_sizes);
              },
              py::arg("in"),
              py::arg("out"),
              py::arg("in_sizes"),
              py::arg("out_sizes"),
              py::call_guard<py::gil_scoped_release>())

556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
          .def(
              "alltoall_single",
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor,
                 std::vector<int64_t> &in_sizes,
                 std::vector<int64_t> &out_sizes,
                 bool sync_op) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                std::vector<phi::DenseTensor> in_wrapper = {*in_dense};

                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> out_wrapper = {*out_dense};

                return self.AllToAllSingle(
                    in_wrapper, out_wrapper, in_sizes, out_sizes, sync_op);
              },
              py::arg("in"),
              py::arg("out"),
              py::arg("in_sizes"),
              py::arg("out_sizes"),
              py::arg("sync_op"),
              py::call_guard<py::gil_scoped_release>())

584 585
          .def(
              "reduce",
586 587 588 589
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
                 int dst,
                 distributed::ReduceOp op) {
590 591 592 593 594 595 596 597 598
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                distributed::ReduceOptions opts;
                opts.reduce_op = op;
                opts.root_rank = dst;
                auto dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Reduce(tensors, tensors, opts);
              },
599 600
              py::arg("tensor"),
              py::arg("dst"),
601 602
              py::arg("op") = distributed::ReduceOp::SUM,
              py::call_guard<py::gil_scoped_release>())
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679

          .def(
              "reduce",
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
                 int dst,
                 distributed::ReduceOp op,
                 bool sync_op) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                distributed::ReduceOptions opts{op, dst};
                auto dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Reduce(tensors, tensors, opts, sync_op);
              },
              py::arg("tensor"),
              py::arg("dst"),
              py::arg("op"),
              py::arg("sync_op"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "reduce_scatter",
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor_list,
                 py::handle py_out_tensor,
                 distributed::ReduceOp op,
                 bool sync_op) {
                auto in_tensor_list =
                    CastPyArg2VectorOfTensor(py_in_tensor_list.ptr(), 0);
                Tensor concat_in_tensor = paddle::concat(in_tensor_list, 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    concat_in_tensor.impl());
                std::vector<phi::DenseTensor> in_wrapper = {*in_dense};

                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> out_wrapper = {*out_dense};

                distributed::ReduceScatterOptions opts{op};
                return self.ReduceScatter(
                    in_wrapper, out_wrapper, opts, sync_op);
              },
              py::arg("in"),
              py::arg("out"),
              py::arg("op"),
              py::arg("sync_op"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "reduce_scatter_tensor",
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor,
                 distributed::ReduceOp op,
                 bool sync_op) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                std::vector<phi::DenseTensor> in_wrapper = {*in_dense};

                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> out_wrapper = {*out_dense};

                distributed::ReduceScatterOptions opts{op};
                return self.ReduceScatter(
                    in_wrapper, out_wrapper, opts, sync_op);
              },
              py::arg("in"),
              py::arg("out"),
              py::arg("op"),
              py::arg("sync_op"),
              py::call_guard<py::gil_scoped_release>())

680 681
          .def(
              "scatter",
682 683 684 685
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor,
                 int src) {
686 687 688 689 690 691 692 693 694 695 696 697
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                distributed::ScatterOptions opts;
                opts.root_rank = src;
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> in_tensors = {*in_dense};
                std::vector<phi::DenseTensor> out_tensors = {*out_dense};
                return self.Scatter(in_tensors, out_tensors, opts);
              },
698 699 700
              py::arg("in"),
              py::arg("out"),
              py::arg("src"),
701
              py::call_guard<py::gil_scoped_release>())
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756

          .def(
              "scatter",
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor_list,
                 py::handle py_out_tensor,
                 int src,
                 bool sync_op) {
                auto in_tensor_list =
                    CastPyArg2VectorOfTensor(py_in_tensor_list.ptr(), 0);
                Tensor concat_in_tensor = paddle::concat(in_tensor_list, 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    concat_in_tensor.impl());
                std::vector<phi::DenseTensor> in_wrapper = {*in_dense};

                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> out_wrapper = {*out_dense};

                distributed::ScatterOptions opts{src};
                return self.Scatter(in_wrapper, out_wrapper, opts, sync_op);
              },
              py::arg("in"),
              py::arg("out"),
              py::arg("src"),
              py::arg("sync_op"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "scatter_tensor",
              [](distributed::ProcessGroup &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor,
                 int src,
                 bool sync_op) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                std::vector<phi::DenseTensor> in_wrapper = {*in_dense};

                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> out_wrapper = {*out_dense};

                distributed::ScatterOptions opts{src};
                return self.Scatter(in_wrapper, out_wrapper, opts, sync_op);
              },
              py::arg("in"),
              py::arg("out"),
              py::arg("src"),
              py::arg("sync_op"),
              py::call_guard<py::gil_scoped_release>())

757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
          .def(
              "_reduce_scatter_base",
              [](distributed::ProcessGroup &self,
                 py::handle py_out_tensor,
                 py::handle py_in_tensor,
                 distributed::ReduceOp op) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                distributed::ReduceScatterOptions opts;
                opts.reduce_op = op;
                auto dense_out = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                auto dense_in = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                return self._ReduceScatterBase(*dense_out, *dense_in, opts);
              },
              py::arg("out_tensor"),
              py::arg("in_tensor"),
              py::arg("op") = distributed::ReduceOp::SUM,
776
              py::call_guard<py::gil_scoped_release>());
777

778 779 780 781
  auto ProcessGroupStream =
      py::class_<distributed::ProcessGroupStream,
                 std::shared_ptr<distributed::ProcessGroupStream>>(
          *m, "ProcessGroupStream", ProcessGroup)
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
          .def(
              "allgather_on_calc_stream",
              [](distributed::ProcessGroupStream &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor_list) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                std::vector<phi::DenseTensor> in_wrapper = {*in_dense};

                auto out_tensor_list =
                    CastPyArg2VectorOfTensor(py_out_tensor_list.ptr(), 0);
                Tensor concat_out_tensor = paddle::concat(out_tensor_list, 0);
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    concat_out_tensor.impl());
                std::vector<phi::DenseTensor> out_wrapper = {*out_dense};

                const auto *dev_ctx =
                    self.GetDeviceContext(in_tensor.place(), true);
                auto task = self.AllGather(in_wrapper,
                                           out_wrapper,
                                           /*sync_op*/ true,
                                           /*use_calc_stream*/ true);
                distributed::SplitTensor(dev_ctx, *out_dense, &out_tensor_list);
                return task;
              },
              py::arg("in"),
              py::arg("out"),
              py::call_guard<py::gil_scoped_release>())

          .def(
813
              "allgather_into_tensor_on_calc_stream",
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
              [](distributed::ProcessGroupStream &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                std::vector<phi::DenseTensor> in_wrapper = {*in_dense};

                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> out_wrapper = {*out_dense};

                return self.AllGather(in_wrapper,
                                      out_wrapper,
                                      /*sync_op*/ true,
                                      /*use_calc_stream*/ true);
              },
              py::arg("in"),
              py::arg("out"),
              py::call_guard<py::gil_scoped_release>())

836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
          .def(
              "all_gather_partial_on_calc_stream",
              [](distributed::ProcessGroupStream &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor,
                 int nranks,
                 int rank_id) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> in_tensors = {*in_dense};
                std::vector<phi::DenseTensor> out_tensors = {*out_dense};
                int64_t numel = (*in_dense).numel();
                int64_t send_numel = numel / nranks;
                int64_t offset = send_numel * rank_id;
                return self.AllGather_Partial(in_tensors,
                                              out_tensors,
                                              offset,
                                              send_numel,
                                              /*sync_op*/ true,
                                              /*use_calc_stream*/ true);
              },
              py::arg("in"),
              py::arg("out"),
              py::arg("num"),
              py::arg("id"),
              py::call_guard<py::gil_scoped_release>())

867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
          .def(
              "allreduce_on_calc_stream",
              [](distributed::ProcessGroupStream &self,
                 py::handle py_tensor,
                 distributed::ReduceOp op) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                distributed::AllreduceOptions opts;
                opts.reduce_op = op;
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.AllReduce(tensors,
                                      tensors,
                                      opts,
                                      /*sync_op*/ true,
                                      /*use_calc_stream*/ true);
              },
              py::arg("tensor"),
              py::arg("op"),
886 887
              py::call_guard<py::gil_scoped_release>())

888
          .def(
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
              "alltoall_on_calc_stream",
              [](distributed::ProcessGroupStream &self,
                 py::handle py_in_tensor_list,
                 py::handle py_out_tensor_list) {
                auto in_tensor_list =
                    CastPyArg2VectorOfTensor(py_in_tensor_list.ptr(), 0);
                Tensor concat_in_tensor = paddle::concat(in_tensor_list, 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    concat_in_tensor.impl());
                std::vector<phi::DenseTensor> in_wrapper = {*in_dense};

                auto out_tensor_list =
                    CastPyArg2VectorOfTensor(py_out_tensor_list.ptr(), 0);
                Tensor concat_out_tensor = paddle::concat(out_tensor_list, 0);
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    concat_out_tensor.impl());
                std::vector<phi::DenseTensor> out_wrapper = {*out_dense};

                // in_tensor_list must not be empty
                const auto *dev_ctx = self.GetDeviceContext(
                    in_tensor_list.back().place(), /*use_calc_stream*/ true);
                auto task = self.AllToAll(in_wrapper,
                                          out_wrapper,
                                          /*sync_op*/ true,
                                          /*use_calc_stream*/ true);
                distributed::SplitTensor(dev_ctx, *out_dense, &out_tensor_list);
                return task;
              },
              py::arg("in"),
              py::arg("out"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "alltoall_tensor_on_calc_stream",
              [](distributed::ProcessGroupStream &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                std::vector<phi::DenseTensor> in_wrapper = {*in_dense};

                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> out_wrapper = {*out_dense};

                return self.AllToAll(in_wrapper,
                                     out_wrapper,
                                     /*sync_op*/ true,
                                     /*use_calc_stream*/ true);
              },
              py::arg("in"),
              py::arg("out"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "alltoall_single_on_calc_stream",
947 948 949
              [](distributed::ProcessGroupStream &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor,
950 951
                 std::vector<int64_t> &in_sizes,
                 std::vector<int64_t> &out_sizes) {
952
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
953 954 955 956
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                std::vector<phi::DenseTensor> in_wrapper = {*in_dense};

957
                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> out_wrapper = {*out_dense};

                return self.AllToAllSingle(in_wrapper,
                                           out_wrapper,
                                           in_sizes,
                                           out_sizes,
                                           /*sync_op*/ true,
                                           /*use_calc_stream*/ true);
              },
              py::arg("in"),
              py::arg("out"),
              py::arg("in_sizes"),
              py::arg("out_sizes"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "broadcast_on_calc_stream",
              [](distributed::ProcessGroupStream &self,
                 py::handle py_tensor,
                 int src) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                distributed::BroadcastOptions opts{src};
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Broadcast(tensors,
                                      tensors,
                                      opts,
                                      /*sync_op*/ true,
                                      /*use_calc_stream*/ true);
              },
              py::arg("tensor"),
              py::arg("src"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "reduce_on_calc_stream",
              [](distributed::ProcessGroupStream &self,
                 py::handle py_in_tensor,
                 int dst,
                 distributed::ReduceOp op) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                distributed::ReduceOptions opts{op, dst};
                auto dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Reduce(tensors,
                                   tensors,
                                   opts,
                                   /*sync_op*/ true,
                                   /*use_calc_stream*/ true);
              },
              py::arg("tensor"),
              py::arg("dst"),
              py::arg("op"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "reduce_scatter_on_calc_stream",
              [](distributed::ProcessGroupStream &self,
                 py::handle py_in_tensor_list,
                 py::handle py_out_tensor,
                 distributed::ReduceOp op) {
                auto in_tensor_list =
                    CastPyArg2VectorOfTensor(py_in_tensor_list.ptr(), 0);
                Tensor concat_in_tensor = paddle::concat(in_tensor_list, 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    concat_in_tensor.impl());
                std::vector<phi::DenseTensor> in_wrapper = {*in_dense};

                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> out_wrapper = {*out_dense};

                distributed::ReduceScatterOptions opts{op};
                return self.ReduceScatter(in_wrapper,
                                          out_wrapper,
                                          opts,
                                          /*sync_op*/ true,
                                          /*use_calc_stream*/ true);
              },
              py::arg("in"),
              py::arg("out"),
              py::arg("op"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "reduce_scatter_tensor_on_calc_stream",
              [](distributed::ProcessGroupStream &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor,
                 distributed::ReduceOp op) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
1054 1055
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
1056 1057 1058
                std::vector<phi::DenseTensor> in_wrapper = {*in_dense};

                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
1059 1060
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
1061 1062 1063 1064 1065 1066 1067 1068
                std::vector<phi::DenseTensor> out_wrapper = {*out_dense};

                distributed::ReduceScatterOptions opts{op};
                return self.ReduceScatter(in_wrapper,
                                          out_wrapper,
                                          opts,
                                          /*sync_op*/ true,
                                          /*use_calc_stream*/ true);
1069 1070 1071
              },
              py::arg("in"),
              py::arg("out"),
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
              py::arg("op"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "scatter_on_calc_stream",
              [](distributed::ProcessGroupStream &self,
                 py::handle py_in_tensor_list,
                 py::handle py_out_tensor,
                 int src) {
                auto in_tensor_list =
                    CastPyArg2VectorOfTensor(py_in_tensor_list.ptr(), 0);
                Tensor concat_in_tensor = paddle::concat(in_tensor_list, 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    concat_in_tensor.impl());
                std::vector<phi::DenseTensor> in_wrapper = {*in_dense};

                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> out_wrapper = {*out_dense};

                distributed::ScatterOptions opts{src};
                return self.Scatter(in_wrapper,
                                    out_wrapper,
                                    opts,
                                    /*sync_op*/ true,
                                    /*use_calc_stream*/ true);
              },
              py::arg("in"),
              py::arg("out"),
              py::arg("src"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "scatter_tensor_on_calc_stream",
              [](distributed::ProcessGroupStream &self,
                 py::handle py_in_tensor,
                 py::handle py_out_tensor,
                 int src) {
                auto in_tensor = CastPyArg2Tensor(py_in_tensor.ptr(), 0);
                auto in_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    in_tensor.impl());
                std::vector<phi::DenseTensor> in_wrapper = {*in_dense};

                auto out_tensor = CastPyArg2Tensor(py_out_tensor.ptr(), 0);
                auto out_dense = std::dynamic_pointer_cast<phi::DenseTensor>(
                    out_tensor.impl());
                std::vector<phi::DenseTensor> out_wrapper = {*out_dense};

                distributed::ScatterOptions opts{src};
                return self.Scatter(in_wrapper,
                                    out_wrapper,
                                    opts,
                                    /*sync_op*/ true,
                                    /*use_calc_stream*/ true);
              },
              py::arg("in"),
              py::arg("out"),
              py::arg("src"),
1131 1132
              py::call_guard<py::gil_scoped_release>())

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
          .def(
              "send_on_calc_stream",
              [](distributed::ProcessGroupStream &self,
                 py::handle py_tensor,
                 int dst) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Send(tensors,
                                 dst,
                                 /*sync_op*/ true,
                                 /*use_calc_stream*/ true);
              },
              py::arg("tensor"),
              py::arg("dst"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "send_partial_on_calc_stream",
              [](distributed::ProcessGroupStream &self,
                 py::handle py_tensor,
                 int dst_rank,
                 int nranks,
                 int rank_id) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
1161 1162 1163
                int64_t numel = (*dense).numel();
                int64_t send_numel = numel / nranks;
                int64_t offset = send_numel * rank_id;
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
                return self.Send_Partial(*dense,
                                         dst_rank,
                                         offset,
                                         send_numel,
                                         /*sync_op*/ true,
                                         /*use_calc_stream*/ true);
              },
              py::arg("tensor"),
              py::arg("dst"),
              py::arg("num"),
              py::arg("id"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "recv_on_calc_stream",
              [](distributed::ProcessGroupStream &self,
                 py::handle py_tensor,
                 int src) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
                std::vector<phi::DenseTensor> tensors = {*dense};
                return self.Recv(tensors,
                                 src,
                                 /*sync_op*/ true,
                                 /*use_calc_stream*/ true);
              },
              py::arg("tensor"),
              py::arg("src"),
              py::call_guard<py::gil_scoped_release>())

          .def(
              "recv_partial_on_calc_stream",
              [](distributed::ProcessGroupStream &self,
                 py::handle py_tensor,
                 int src_rank,
                 int nranks,
                 int rank_id) {
                auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
                auto dense =
                    std::dynamic_pointer_cast<phi::DenseTensor>(tensor.impl());
1205 1206 1207
                int64_t numel = (*dense).numel();
                int64_t recv_numel = numel / nranks;
                int64_t offset = recv_numel * rank_id;
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
                return self.Recv_Partial(*dense,
                                         src_rank,
                                         offset,
                                         recv_numel,
                                         /*sync_op*/ true,
                                         /*use_calc_stream*/ true);
              },
              py::arg("tensor"),
              py::arg("src"),
              py::arg("num"),
              py::arg("id"),
1219 1220
              py::call_guard<py::gil_scoped_release>());

1221
#if defined(PADDLE_WITH_RCCL) || defined(PADDLE_WITH_NCCL)
1222 1223 1224
  auto processGroupNCCL =
      py::class_<distributed::ProcessGroupNCCL,
                 std::shared_ptr<distributed::ProcessGroupNCCL>>(
1225
          *m, "ProcessGroupNCCL", ProcessGroupStream)
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
          .def(py::init<const std::shared_ptr<distributed::Store> &,
                        int,
                        int,
                        const platform::CUDAPlace &,
                        int>(),
               py::arg("store"),
               py::arg("rank"),
               py::arg("world_size"),
               py::arg("place"),
               py::arg("group_id") = 0,
               py::call_guard<py::gil_scoped_release>());

  processGroupNCCL.def_static(
      "group_start", []() { distributed::ProcessGroupNCCL::GroupStart(); });
  processGroupNCCL.def_static(
      "group_end", []() { distributed::ProcessGroupNCCL::GroupEnd(); });

1243
#endif
1244

W
wuhuachaocoding 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
#if defined(PADDLE_WITH_MPI)
  py::class_<distributed::ProcessGroupMPI,
             std::shared_ptr<distributed::ProcessGroupMPI>>(
      *m, "ProcessGroupMPI", ProcessGroup)
      .def_static(
          "create",
          [](const std::vector<int> &ranks,
             int gid) -> std::shared_ptr<distributed::ProcessGroupMPI> {
            return paddle::distributed::ProcessGroupMPI::CreateProcessGroupMPI(
                ranks, gid);
          })
      .def("get_rank",
           &distributed::ProcessGroup::GetRank,
           py::call_guard<py::gil_scoped_release>())
      .def("get_world_size",
           &distributed::ProcessGroup::GetSize,
           py::call_guard<py::gil_scoped_release>());
#endif

1264 1265 1266 1267 1268
#if defined(PADDLE_WITH_GLOO) && defined(PADDLE_WITH_PSCORE) && \
    (defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_ASCEND_CL))
  py::class_<distributed::ProcessGroupHeter,
             std::shared_ptr<distributed::ProcessGroupHeter>>(
      *m, "ProcessGroupHeter", ProcessGroup)
1269 1270 1271
      .def(py::init<const std::shared_ptr<distributed::Store> &,
                    int,
                    int,
1272 1273 1274 1275 1276
#if defined(PADDLE_WITH_ASCEND_CL)
                    const platform::NPUPlace &,
#else
                    const platform::CUDAPlace &,
#endif
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
                    int,
                    int,
                    int,
                    int,
                    int,
                    bool,
                    std::string,
                    int,
                    int>(),
           py::arg("store"),
           py::arg("rank"),
           py::arg("world_size"),
           py::arg("place"),
           py::arg("gid") = 0,
           py::arg("local_rank") = 0,
           py::arg("local_size") = 1,
           py::arg("gloo_rank") = 0,
           py::arg("gloo_size") = 1,
           py::arg("with_switch") = false,
           py::arg("switch_endpoint") = "",
           py::arg("src_rank") = "",
           py::arg("dst_rank") = "",
           py::call_guard<py::gil_scoped_release>());
1300
#endif
1301

1302 1303 1304 1305
#if defined(PADDLE_WITH_ASCEND_CL)
  py::class_<distributed::ProcessGroupHCCL,
             std::shared_ptr<distributed::ProcessGroupHCCL>>(
      *m, "ProcessGroupHCCL", ProcessGroup)
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
      .def(py::init<const std::shared_ptr<distributed::Store> &,
                    int,
                    int,
                    const platform::NPUPlace &,
                    int>(),
           py::arg("store"),
           py::arg("rank"),
           py::arg("world_size"),
           py::arg("place"),
           py::arg("group_id") = 0,
1316
           py::call_guard<py::gil_scoped_release>());
1317

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
#endif

#if defined(PADDLE_WITH_CUSTOM_DEVICE)
  py::class_<distributed::ProcessGroupCustom,
             std::shared_ptr<distributed::ProcessGroupCustom>>(
      *m, "ProcessGroupCustom", ProcessGroup)
      .def(py::init<const std::shared_ptr<distributed::Store> &,
                    int,
                    int,
                    const platform::CustomPlace &,
                    int>(),
           py::arg("store"),
           py::arg("rank"),
           py::arg("world_size"),
           py::arg("place"),
           py::arg("group_id") = 0,
           py::call_guard<py::gil_scoped_release>());

1336 1337
#endif

1338 1339 1340
  py::class_<distributed::ProcessGroup::Task,
             std::shared_ptr<distributed::ProcessGroup::Task>>(*m, "task")
      .def("is_completed", &distributed::ProcessGroup::Task::IsCompleted)
1341
      .def("is_sync", &distributed::ProcessGroup::Task::IsSync)
1342 1343
      .def("wait",
           &distributed::ProcessGroup::Task::Wait,
1344 1345
           py::arg("timeout") = kWaitTimeout,
           py::call_guard<py::gil_scoped_release>())
1346 1347
      .def("synchronize",
           &distributed::ProcessGroup::Task::Synchronize,
1348 1349
           py::call_guard<py::gil_scoped_release>());

1350 1351 1352
#if defined(PADDLE_WITH_GLOO)
  py::class_<ProcessGroupGloo, std::shared_ptr<ProcessGroupGloo>>(
      *m, "ProcessGroupGloo", ProcessGroup)
1353 1354 1355 1356 1357
      .def(py::init<const std::shared_ptr<paddle::distributed::Store> &,
                    int,
                    int,
                    const platform::CPUPlace &,
                    int,
1358
                    std::shared_ptr<GlooOptions> &>(),
1359
           py::call_guard<py::gil_scoped_release>())
1360
      .def(py::init([](const std::shared_ptr<paddle::distributed::Store> &store,
1361 1362 1363 1364
                       int rank,
                       int world_size,
                       const platform::CPUPlace &place,
                       int gid) {
1365 1366 1367 1368 1369 1370 1371 1372
             auto opts = GlooOptions::create();
             char *ifname = getenv(GLOO_SOCKET_IFNAME_ENV.c_str());
             if (ifname && strlen(ifname) > 1) {
               opts->device = ProcessGroupGloo::createDeviceForInterface(
                   std::string(ifname));
             } else {
               opts->device = ProcessGroupGloo::createDefaultDevice();
             }
1373 1374
             return std::make_shared<ProcessGroupGloo>(
                 store, rank, world_size, place, gid, opts);
1375
           }),
1376 1377 1378 1379 1380
           py::arg("store"),
           py::arg("rank"),
           py::arg("world_size"),
           py::arg("place"),
           py::arg("group_id") = 0,
1381
           py::call_guard<py::gil_scoped_release>())
1382 1383 1384 1385
      .def_static("create_default_device",
                  &ProcessGroupGloo::createDefaultDevice);
#endif

1386 1387
  m->def(
      "eager_assign_group_by_size",
1388 1389
      [](py::handle py_tensors,
         std::vector<bool> is_sparse_gradient,
1390 1391 1392 1393 1394 1395
         std::vector<size_t> group_size_limits,
         std::vector<int64_t> tensor_indices) {
        auto tensors = CastPyArg2VectorOfTensor(py_tensors.ptr(), 0);
        return distributed::Eager_AssignGroupBySize(
            tensors, is_sparse_gradient, group_size_limits, tensor_indices);
      },
1396 1397
      py::arg("tensors"),
      py::arg("is_sparse_gradient"),
1398 1399 1400
      py::arg("group_size_limits") = std::vector<size_t>{25 * 1024 * 1024},
      py::arg("tensor_indices") = std::vector<int64_t>{},
      py::call_guard<py::gil_scoped_release>());
1401 1402

  py::class_<distributed::EagerReducer,
1403 1404
             std::shared_ptr<distributed::EagerReducer>>(
      *m, "EagerReducer", R"DOC()DOC")
1405
      .def(py::init(&CreateEagerReducer))
1406 1407 1408 1409 1410 1411
      .def(
          "prepare_for_backward",
          [](distributed::EagerReducer &self, py::handle py_tensors) {
            auto params = CastPyArg2VectorOfTensor(py_tensors.ptr(), 0);
            self.PrepareForBackward(params);
          },
1412 1413
          py::arg("tensors"),
          py::call_guard<py::gil_scoped_release>());
1414 1415 1416 1417
}

}  // end namespace pybind
}  // namespace paddle