Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
ecae7b31
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ecae7b31
编写于
9月 30, 2022
作者:
W
Wen Sun
提交者:
GitHub
9月 30, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Support both use_calc_stream and sync_op in allgather API (#46295)
上级
255890ff
变更
13
隐藏空白更改
内联
并排
Showing
13 changed file
with
648 addition
and
10 deletion
+648
-10
paddle/fluid/distributed/collective/ProcessGroup.h
paddle/fluid/distributed/collective/ProcessGroup.h
+10
-1
paddle/fluid/distributed/collective/ProcessGroupNCCL.cc
paddle/fluid/distributed/collective/ProcessGroupNCCL.cc
+49
-7
paddle/fluid/distributed/collective/ProcessGroupNCCL.h
paddle/fluid/distributed/collective/ProcessGroupNCCL.h
+9
-0
paddle/fluid/distributed/collective/ProcessGroupStream.cc
paddle/fluid/distributed/collective/ProcessGroupStream.cc
+26
-1
paddle/fluid/distributed/collective/ProcessGroupStream.h
paddle/fluid/distributed/collective/ProcessGroupStream.h
+14
-0
paddle/fluid/distributed/collective/Utils.h
paddle/fluid/distributed/collective/Utils.h
+145
-0
paddle/fluid/pybind/distributed_py.cc
paddle/fluid/pybind/distributed_py.cc
+106
-0
python/paddle/distributed/communication/stream/__init__.py
python/paddle/distributed/communication/stream/__init__.py
+2
-1
python/paddle/distributed/communication/stream/all_gather.py
python/paddle/distributed/communication/stream/all_gather.py
+136
-0
python/paddle/fluid/tests/unittests/collective/CMakeLists.txt
...on/paddle/fluid/tests/unittests/collective/CMakeLists.txt
+8
-0
python/paddle/fluid/tests/unittests/collective/communication_stream_allgather_api_dygraph.py
.../collective/communication_stream_allgather_api_dygraph.py
+91
-0
python/paddle/fluid/tests/unittests/collective/test_communication_stream_allgather_api.py
...sts/collective/test_communication_stream_allgather_api.py
+51
-0
python/paddle/fluid/tests/unittests/collective/testslist.csv
python/paddle/fluid/tests/unittests/collective/testslist.csv
+1
-0
未找到文件。
paddle/fluid/distributed/collective/ProcessGroup.h
浏览文件 @
ecae7b31
...
...
@@ -193,7 +193,16 @@ class ProcessGroup {
std
::
vector
<
phi
::
DenseTensor
>&
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
)
{
// NOLINT
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"ProcessGroup%s does not support AllGather"
,
GetBackendName
()));
"ProcessGroup%s does not support all_gather"
,
GetBackendName
()));
}
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllGather
(
std
::
vector
<
phi
::
DenseTensor
>&
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
,
// NOLINT
bool
)
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"ProcessGroup%s does not support all_gather with sync_op flag"
,
GetBackendName
()));
}
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllGather_Partial
(
...
...
paddle/fluid/distributed/collective/ProcessGroupNCCL.cc
浏览文件 @
ecae7b31
...
...
@@ -936,6 +936,39 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather(
CommType
::
ALLGATHER
);
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupNCCL
::
AllGather
(
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
bool
sync_op
,
bool
use_calc_stream
)
{
PADDLE_ENFORCE_EQ
(
CheckTensorsInCudaPlace
(
in_tensors
),
true
,
platform
::
errors
::
InvalidArgument
(
"All inputs should be in CudaPlace."
));
PADDLE_ENFORCE_EQ
(
CheckTensorsInCudaPlace
(
out_tensors
),
true
,
platform
::
errors
::
InvalidArgument
(
"All outputs should be in CudaPlace."
));
return
Collective
(
in_tensors
,
out_tensors
,
[
&
](
const
phi
::
DenseTensor
&
input
,
phi
::
DenseTensor
&
output
,
ncclComm_t
comm
,
const
gpuStream_t
&
stream
)
{
return
platform
::
dynload
::
ncclAllGather
(
input
.
data
(),
output
.
data
(),
input
.
numel
(),
platform
::
ToNCCLDataType
(
input
.
dtype
()),
comm
,
stream
);
},
CommType
::
ALLGATHER
,
sync_op
,
use_calc_stream
);
}
void
*
GetPointerByOffset
(
void
*
raw_pointer
,
size_t
offset
,
experimental
::
DataType
type
)
{
...
...
@@ -1250,13 +1283,22 @@ ncclComm_t ProcessGroupNCCL::NCCLComm(const Place& place) const {
phi
::
DeviceContext
*
ProcessGroupNCCL
::
GetDeviceContext
(
const
Place
&
place
)
const
{
std
::
vector
<
Place
>
places
=
{
place
};
const
auto
&
iter
=
places_to_ctx_
.
find
(
GetKeyFromPlaces
(
places
));
PADDLE_ENFORCE_NE
(
iter
,
places_to_ctx_
.
end
(),
platform
::
errors
::
InvalidArgument
(
"Cannot find device context in process group."
));
return
iter
->
second
[
0
].
get
();
return
GetDeviceContext
(
place
,
/*use_calc_stream*/
false
);
}
phi
::
DeviceContext
*
ProcessGroupNCCL
::
GetDeviceContext
(
const
Place
&
place
,
bool
use_calc_stream
)
const
{
if
(
use_calc_stream
)
{
return
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
);
}
else
{
std
::
vector
<
Place
>
places
=
{
place
};
const
auto
&
iter
=
places_to_ctx_
.
find
(
GetKeyFromPlaces
(
places
));
PADDLE_ENFORCE_NE
(
iter
,
places_to_ctx_
.
end
(),
platform
::
errors
::
InvalidArgument
(
"Cannot find device context in process group."
));
return
iter
->
second
[
0
].
get
();
}
}
}
// namespace distributed
...
...
paddle/fluid/distributed/collective/ProcessGroupNCCL.h
浏览文件 @
ecae7b31
...
...
@@ -98,6 +98,9 @@ class ProcessGroupNCCL : public ProcessGroupStream {
phi
::
DeviceContext
*
GetDeviceContext
(
const
Place
&
place
)
const
override
;
phi
::
DeviceContext
*
GetDeviceContext
(
const
Place
&
place
,
bool
use_calc_stream
)
const
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllReduce
(
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
// NOLINT
...
...
@@ -167,6 +170,12 @@ class ProcessGroupNCCL : public ProcessGroupStream {
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllGather
(
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
bool
sync_op
,
bool
use_calc_stream
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllGather_Partial
(
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
...
...
paddle/fluid/distributed/collective/ProcessGroupStream.cc
浏览文件 @
ecae7b31
...
...
@@ -23,6 +23,31 @@ ProcessGroupStream::ProcessGroupStream(int rank,
int
gid
)
:
ProcessGroup
(
rank
,
size
,
place
,
gid
)
{}
phi
::
DeviceContext
*
ProcessGroupStream
::
GetDeviceContext
(
const
Place
&
place
,
bool
use_calc_stream
)
const
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"ProcessGroup%s does not support get device_context."
,
GetBackendName
()));
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupStream
::
AllGather
(
std
::
vector
<
phi
::
DenseTensor
>&
input_tensors
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
output_tensors
,
// NOLINT
bool
sync_op
)
{
return
AllGather
(
input_tensors
,
output_tensors
,
sync_op
,
/*use_calc_stream*/
false
);
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupStream
::
AllGather
(
std
::
vector
<
phi
::
DenseTensor
>&
input_tensors
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
output_tensors
,
// NOLINT
bool
sync_op
,
bool
use_calc_stream
)
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"ProcessGroup%s does not support do all_gather"
,
GetBackendName
()));
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupStream
::
AllReduce
(
std
::
vector
<
phi
::
DenseTensor
>&
input_tensors
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
output_tensors
,
// NOLINT
...
...
@@ -42,7 +67,7 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupStream::AllReduce(
bool
sync_op
,
bool
use_calc_stream
)
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"ProcessGroup%s does not support do allreduce"
,
GetBackendName
()));
"ProcessGroup%s does not support do all
_
reduce"
,
GetBackendName
()));
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupStream
::
Send
(
...
...
paddle/fluid/distributed/collective/ProcessGroupStream.h
浏览文件 @
ecae7b31
...
...
@@ -54,6 +54,20 @@ class ProcessGroupStream : public ProcessGroup {
ProcessGroupStream
(
int
rank
,
int
size
,
const
platform
::
Place
&
place
,
int
gid
);
virtual
~
ProcessGroupStream
()
=
default
;
virtual
phi
::
DeviceContext
*
GetDeviceContext
(
const
Place
&
place
,
bool
use_calc_stream
)
const
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllGather
(
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
// NOLINT
bool
sync_op
)
override
;
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllGather
(
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
// NOLINT
bool
sync_op
,
bool
use_calc_stream
);
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllReduce
(
std
::
vector
<
phi
::
DenseTensor
>&
input_tensors
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
output_tensors
,
// NOLINT
...
...
paddle/fluid/distributed/collective/Utils.h
0 → 100644
浏览文件 @
ecae7b31
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/phi/api/include/tensor.h"
#include "paddle/phi/backends/device_manager.h"
namespace
paddle
{
namespace
distributed
{
template
<
typename
DeviceContext
,
typename
T
>
struct
SplitDenseTensor
{
void
operator
()(
const
DeviceContext
*
context
,
const
phi
::
DenseTensor
&
in
,
std
::
vector
<
phi
::
DenseTensor
*>
*
out
,
int
axis
=
0
)
{
std
::
vector
<
const
phi
::
DenseTensor
*>
shape_refer
;
shape_refer
.
reserve
(
out
->
size
());
for
(
auto
*
p_tensor
:
*
out
)
{
shape_refer
.
emplace_back
(
p_tensor
);
}
operators
::
math
::
SplitFunctor
<
DeviceContext
,
T
>
split_functor_
;
split_functor_
(
*
context
,
in
,
shape_refer
,
axis
,
out
);
}
};
#ifdef PADDLE_WITH_CUSTOM_DEVICE
template
<
typename
T
>
struct
SplitDenseTensor
<
platform
::
CustomDeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CustomDeviceContext
*
context
,
const
phi
::
DenseTensor
&
in
,
std
::
vector
<
phi
::
DenseTensor
*>
*
out
)
{
auto
*
in_data
=
in
.
data
<
T
>
();
auto
*
device
=
phi
::
DeviceManager
::
GetDeviceWithPlace
(
context
->
GetPlace
());
size_t
offset
=
0
;
for
(
auto
*
p_tensor
:
*
out
)
{
auto
*
out_data
=
p_tensor
->
data
<
T
>
();
auto
sz
=
p_tensor
->
numel
()
*
sizeof
(
T
);
device
->
MemoryCopyD2D
(
out_data
,
in_data
+
offset
,
sz
,
nullptr
);
offset
+=
sz
;
}
}
};
#endif
template
<
typename
DeviceContext
>
void
SplitDenseTensorWithType
(
const
DeviceContext
*
dev_ctx
,
const
phi
::
DenseTensor
&
p_dense
,
std
::
vector
<
phi
::
DenseTensor
*>
*
p_list
,
phi
::
DataType
type
)
{
switch
(
type
)
{
case
phi
::
DataType
::
BOOL
:
SplitDenseTensor
<
DeviceContext
,
bool
>
()(
dev_ctx
,
p_dense
,
p_list
);
break
;
case
phi
::
DataType
::
UINT8
:
SplitDenseTensor
<
DeviceContext
,
uint8_t
>
()(
dev_ctx
,
p_dense
,
p_list
);
break
;
case
phi
::
DataType
::
INT8
:
SplitDenseTensor
<
DeviceContext
,
int8_t
>
()(
dev_ctx
,
p_dense
,
p_list
);
break
;
case
phi
::
DataType
::
INT32
:
SplitDenseTensor
<
DeviceContext
,
int32_t
>
()(
dev_ctx
,
p_dense
,
p_list
);
break
;
case
phi
::
DataType
::
INT64
:
SplitDenseTensor
<
DeviceContext
,
int64_t
>
()(
dev_ctx
,
p_dense
,
p_list
);
break
;
case
phi
::
DataType
::
FLOAT16
:
SplitDenseTensor
<
DeviceContext
,
platform
::
float16
>
()(
dev_ctx
,
p_dense
,
p_list
);
break
;
case
phi
::
DataType
::
FLOAT32
:
SplitDenseTensor
<
DeviceContext
,
float
>
()(
dev_ctx
,
p_dense
,
p_list
);
break
;
case
phi
::
DataType
::
FLOAT64
:
SplitDenseTensor
<
DeviceContext
,
double
>
()(
dev_ctx
,
p_dense
,
p_list
);
break
;
default:
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Data type (%s) is not supported when it splits tensors for "
"allgather."
,
type
));
}
}
void
SplitTensor
(
const
phi
::
DeviceContext
*
dev_ctx
,
const
phi
::
DenseTensor
&
tensor
,
const
std
::
vector
<
experimental
::
Tensor
>
*
tensor_list
)
{
std
::
vector
<
phi
::
DenseTensor
*>
dense_list
;
for
(
auto
&
tensor
:
*
tensor_list
)
{
auto
p_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
tensor
.
impl
()).
get
();
dense_list
.
emplace_back
(
p_tensor
);
}
const
auto
&
place
=
dev_ctx
->
GetPlace
();
if
(
platform
::
is_gpu_place
(
place
))
{
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
SplitDenseTensorWithType
(
static_cast
<
const
phi
::
GPUContext
*>
(
dev_ctx
),
tensor
,
&
dense_list
,
tensor
.
dtype
());
#else
PADDLE_THROW
(
platform
::
errors
::
PermissionDenied
(
"Paddle can't split tensor since it's not support NCCL/RCCL, please "
"recompile or reinstall Paddle with NCCL/RCCL support."
));
#endif
}
else
if
(
platform
::
is_custom_place
(
place
))
{
#ifdef PADDLE_WITH_CUSTOM_DEVICE
SplitDenseTensorWithType
(
static_cast
<
const
platform
::
CustomDeviceContext
*>
(
dev_ctx
),
tensor
,
&
dense_list
,
tensor
.
dtype
());
#else
PADDLE_THROW
(
platform
::
errors
::
PermissionDenied
(
"Paddle can't split tensor since it's not compiled with CUSTOM_DEVICE, "
"please recompile or reinstall Paddle with CUSTOM_DEVICE support."
));
#endif
}
else
if
(
platform
::
is_cpu_place
(
place
))
{
SplitDenseTensorWithType
(
static_cast
<
const
phi
::
CPUContext
*>
(
dev_ctx
),
tensor
,
&
dense_list
,
tensor
.
dtype
());
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Split tensor not supported on place (%s)"
,
place
));
}
}
}
// namespace distributed
}
// namespace paddle
paddle/fluid/pybind/distributed_py.cc
浏览文件 @
ecae7b31
...
...
@@ -24,6 +24,7 @@ limitations under the License. */
#include "paddle/fluid/distributed/collective/ProcessGroup.h"
#include "paddle/fluid/distributed/collective/ProcessGroupStream.h"
#include "paddle/fluid/distributed/collective/Types.h"
#include "paddle/fluid/distributed/collective/Utils.h"
#include "paddle/fluid/distributed/collective/reducer.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/tensor.h"
...
...
@@ -358,6 +359,57 @@ void BindDistributed(py::module *m) {
py
::
arg
(
"out"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
"allgather"
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_in_tensor
,
py
::
handle
py_out_tensor_list
,
bool
sync_op
)
{
auto
in_tensor
=
CastPyArg2Tensor
(
py_in_tensor
.
ptr
(),
0
);
auto
in_dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
in_tensor
.
impl
());
std
::
vector
<
phi
::
DenseTensor
>
in_wrapper
=
{
*
in_dense
};
auto
out_tensor_list
=
CastPyArg2VectorOfTensor
(
py_out_tensor_list
.
ptr
(),
0
);
Tensor
concat_out_tensor
=
paddle
::
concat
(
out_tensor_list
,
0
);
auto
out_dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
concat_out_tensor
.
impl
());
std
::
vector
<
phi
::
DenseTensor
>
out_wrapper
=
{
*
out_dense
};
const
auto
*
dev_ctx
=
self
.
GetDeviceContext
(
in_tensor
.
place
());
auto
task
=
self
.
AllGather
(
in_wrapper
,
out_wrapper
,
sync_op
);
distributed
::
SplitTensor
(
dev_ctx
,
*
out_dense
,
&
out_tensor_list
);
return
task
;
},
py
::
arg
(
"in"
),
py
::
arg
(
"out"
),
py
::
arg
(
"sync_op"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
"allgather_base"
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_in_tensor
,
py
::
handle
py_out_tensor
,
bool
sync_op
)
{
auto
in_tensor
=
CastPyArg2Tensor
(
py_in_tensor
.
ptr
(),
0
);
auto
in_dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
in_tensor
.
impl
());
std
::
vector
<
phi
::
DenseTensor
>
in_wrapper
=
{
*
in_dense
};
auto
out_tensor
=
CastPyArg2Tensor
(
py_out_tensor
.
ptr
(),
0
);
auto
out_dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
out_tensor
.
impl
());
std
::
vector
<
phi
::
DenseTensor
>
out_wrapper
=
{
*
out_dense
};
return
self
.
AllGather
(
in_wrapper
,
out_wrapper
,
sync_op
);
},
py
::
arg
(
"in"
),
py
::
arg
(
"out"
),
py
::
arg
(
"sync_op"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
"all_gather_partial"
,
[](
distributed
::
ProcessGroup
&
self
,
...
...
@@ -494,6 +546,60 @@ void BindDistributed(py::module *m) {
py
::
class_
<
distributed
::
ProcessGroupStream
,
std
::
shared_ptr
<
distributed
::
ProcessGroupStream
>>
(
*
m
,
"ProcessGroupStream"
,
ProcessGroup
)
.
def
(
"allgather_on_calc_stream"
,
[](
distributed
::
ProcessGroupStream
&
self
,
py
::
handle
py_in_tensor
,
py
::
handle
py_out_tensor_list
)
{
auto
in_tensor
=
CastPyArg2Tensor
(
py_in_tensor
.
ptr
(),
0
);
auto
in_dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
in_tensor
.
impl
());
std
::
vector
<
phi
::
DenseTensor
>
in_wrapper
=
{
*
in_dense
};
auto
out_tensor_list
=
CastPyArg2VectorOfTensor
(
py_out_tensor_list
.
ptr
(),
0
);
Tensor
concat_out_tensor
=
paddle
::
concat
(
out_tensor_list
,
0
);
auto
out_dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
concat_out_tensor
.
impl
());
std
::
vector
<
phi
::
DenseTensor
>
out_wrapper
=
{
*
out_dense
};
const
auto
*
dev_ctx
=
self
.
GetDeviceContext
(
in_tensor
.
place
(),
true
);
auto
task
=
self
.
AllGather
(
in_wrapper
,
out_wrapper
,
/*sync_op*/
true
,
/*use_calc_stream*/
true
);
distributed
::
SplitTensor
(
dev_ctx
,
*
out_dense
,
&
out_tensor_list
);
return
task
;
},
py
::
arg
(
"in"
),
py
::
arg
(
"out"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
"allgather_base_on_calc_stream"
,
[](
distributed
::
ProcessGroupStream
&
self
,
py
::
handle
py_in_tensor
,
py
::
handle
py_out_tensor
)
{
auto
in_tensor
=
CastPyArg2Tensor
(
py_in_tensor
.
ptr
(),
0
);
auto
in_dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
in_tensor
.
impl
());
std
::
vector
<
phi
::
DenseTensor
>
in_wrapper
=
{
*
in_dense
};
auto
out_tensor
=
CastPyArg2Tensor
(
py_out_tensor
.
ptr
(),
0
);
auto
out_dense
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
out_tensor
.
impl
());
std
::
vector
<
phi
::
DenseTensor
>
out_wrapper
=
{
*
out_dense
};
return
self
.
AllGather
(
in_wrapper
,
out_wrapper
,
/*sync_op*/
true
,
/*use_calc_stream*/
true
);
},
py
::
arg
(
"in"
),
py
::
arg
(
"out"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
"allreduce_on_calc_stream"
,
[](
distributed
::
ProcessGroupStream
&
self
,
...
...
python/paddle/distributed/communication/stream/__init__.py
浏览文件 @
ecae7b31
...
...
@@ -12,8 +12,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
.all_gather
import
all_gather
from
.all_reduce
import
all_reduce
from
.send
import
send
from
.recv
import
recv
__all__
=
[
"all_reduce"
,
"send"
,
"recv"
]
__all__
=
[
"all_
gather"
,
"all_
reduce"
,
"send"
,
"recv"
]
python/paddle/distributed/communication/stream/all_gather.py
0 → 100644
浏览文件 @
ecae7b31
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
import
paddle.fluid.framework
as
framework
from
paddle.distributed
import
collective
def
_check_tensor_shape
(
tensor
,
shape
,
nranks
=
1
):
expect_shape
=
list
(
shape
)
expect_shape
[
0
]
*=
nranks
if
list
(
tensor
.
shape
)
!=
expect_shape
:
raise
RuntimeError
(
'The tensor for all_gather is not correctly-sized.'
)
def
_check_tensor_list_shape
(
tensor_list
,
shape
,
nranks
=
1
):
if
len
(
tensor_list
)
!=
nranks
:
raise
RuntimeError
(
'The tensor_list for all_gather is not correctly-sized.'
)
for
tensor
in
tensor_list
:
if
tensor
.
shape
!=
shape
:
raise
RuntimeError
(
'The tensor_list for all_gather is not correctly-sized.'
)
def
_all_gather_base_in_dygraph
(
out_tensor
,
in_tensor
,
group
,
sync_op
,
use_calc_stream
):
group
=
collective
.
_get_default_group
()
if
group
is
None
else
group
_check_tensor_shape
(
out_tensor
,
in_tensor
.
shape
,
group
.
nranks
)
if
use_calc_stream
:
return
group
.
process_group
.
allgather_base_on_calc_stream
(
in_tensor
,
out_tensor
)
task
=
group
.
process_group
.
allgather_base
(
in_tensor
,
out_tensor
,
sync_op
)
if
sync_op
:
task
.
wait
()
return
task
def
_all_gather_in_dygraph
(
tensor_list
,
tensor
,
group
,
sync_op
,
use_calc_stream
):
group
=
collective
.
_get_default_group
()
if
group
is
None
else
group
if
len
(
tensor_list
)
==
0
:
tensor_list
+=
[
paddle
.
empty_like
(
tensor
)
for
_
in
range
(
group
.
nranks
)]
else
:
_check_tensor_list_shape
(
tensor_list
,
tensor
.
shape
,
group
.
nranks
)
if
use_calc_stream
:
return
group
.
process_group
.
allgather_on_calc_stream
(
tensor
,
tensor_list
)
task
=
group
.
process_group
.
allgather
(
tensor
,
tensor_list
,
sync_op
)
if
sync_op
:
task
.
wait
()
return
task
def
all_gather
(
tensor_or_tensor_list
,
tensor
,
group
=
None
,
sync_op
=
True
,
use_calc_stream
=
False
):
"""
Gather tensors across devices to a correctly-sized tensor or a tensor list.
Args:
tensor_or_tensor_list (Union[Tensor, List[Tensor]]): The output. If it is a tensor, it should be correctly-sized. If it is a list, it
should be empty or contain correctly-sized tensors.
tensor (Tensor): The input tensor on each rank. The result will overwrite this tenor after communication. Support
float16, float32, float64, int32 or int64 as the input data type.
group (Group, optional): Communicate in which group. If none is given, use the global group as default.
sync_op (bool, optional): Indicate whether the communication is sync or not. If none is given, use true as default.
use_calc_stream (bool, optional): Indicate whether the communication is done on calculation stream. If none is given, use false as default. This
option is designed for high performance demand, be careful to turn it on except you are clearly know its meaning.
Returns:
Return a task object.
Warning:
This API only supports the dygraph mode now.
Examples:
.. code-block:: python
# required: distributed
import paddle
import paddle.distributed as dist
dist.init_parallel_env()
local_rank = dist.get_rank()
tensor_list = []
if local_rank == 0:
data = paddle.to_tensor([[4, 5, 6], [4, 5, 6]])
else:
data = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
task = dist.stream.all_gather(tensor_list, data, sync_op=False)
task.wait()
print(tensor_list)
# [[[4, 5, 6], [4, 5, 6]], [[1, 2, 3], [1, 2, 3]]] (2 GPUs)
"""
if
group
is
not
None
and
not
group
.
is_member
():
raise
RuntimeError
(
"The group should not be None and all ranks which invoke this operation should be the member of this group."
)
if
not
sync_op
and
use_calc_stream
:
raise
RuntimeError
(
"use_calc_stream can only be true in sync op behavior."
)
if
framework
.
in_dygraph_mode
():
if
paddle
.
is_tensor
(
tensor_or_tensor_list
):
return
_all_gather_base_in_dygraph
(
tensor_or_tensor_list
,
tensor
,
group
,
sync_op
,
use_calc_stream
)
else
:
return
_all_gather_in_dygraph
(
tensor_or_tensor_list
,
tensor
,
group
,
sync_op
,
use_calc_stream
)
raise
RuntimeError
(
"paddle.distributed.stream.all_gather is only supported in dygraph mode now."
)
python/paddle/fluid/tests/unittests/collective/CMakeLists.txt
浏览文件 @
ecae7b31
...
...
@@ -266,6 +266,14 @@ if((WITH_GPU OR WITH_ROCM) AND (LINUX))
set_tests_properties
(
test_collective_wait PROPERTIES TIMEOUT
"300"
LABELS
"RUN_TYPE=DIST"
)
endif
()
if
((
WITH_GPU OR WITH_ROCM
)
AND
(
LINUX
))
py_test_modules
(
test_communication_stream_allgather_api MODULES
test_communication_stream_allgather_api ENVS
"PYTHONPATH=..:
${
PADDLE_BINARY_DIR
}
/python;http_proxy=;https_proxy="
)
set_tests_properties
(
test_communication_stream_allgather_api
PROPERTIES TIMEOUT
"120"
LABELS
"RUN_TYPE=DIST"
)
endif
()
if
((
WITH_GPU OR WITH_ROCM
)
AND
(
LINUX
))
py_test_modules
(
test_communication_stream_allreduce_api MODULES
...
...
python/paddle/fluid/tests/unittests/collective/communication_stream_allgather_api_dygraph.py
0 → 100644
浏览文件 @
ecae7b31
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.distributed
as
dist
import
test_communication_api_base
as
test_base
import
test_collective_api_base
as
test_collective_base
class
StreamAllgatherTestCase
():
def
__init__
(
self
):
self
.
_sync_op
=
eval
(
os
.
getenv
(
"sync_op"
))
self
.
_use_calc_stream
=
eval
(
os
.
getenv
(
"use_calc_stream"
))
self
.
_backend
=
os
.
getenv
(
"backend"
)
self
.
_shape
=
eval
(
os
.
getenv
(
"shape"
))
self
.
_dtype
=
os
.
getenv
(
"dtype"
)
self
.
_seeds
=
eval
(
os
.
getenv
(
"seeds"
))
if
self
.
_backend
not
in
[
"nccl"
,
"gloo"
]:
raise
NotImplementedError
(
"Only support nccl and gloo as the backend for now."
)
os
.
environ
[
"PADDLE_DISTRI_BACKEND"
]
=
self
.
_backend
def
run_test_case
(
self
):
dist
.
init_parallel_env
()
test_data_list
=
[]
for
seed
in
self
.
_seeds
:
test_data_list
.
append
(
test_collective_base
.
create_test_data
(
shape
=
self
.
_shape
,
dtype
=
self
.
_dtype
,
seed
=
seed
))
rank
=
dist
.
get_rank
()
tensor
=
paddle
.
to_tensor
(
test_data_list
[
rank
])
# case 1: pass an empty tensor list
empty_tensor_list
=
[]
task
=
dist
.
stream
.
all_gather
(
empty_tensor_list
,
tensor
,
sync_op
=
self
.
_sync_op
,
use_calc_stream
=
self
.
_use_calc_stream
)
if
not
self
.
_sync_op
:
task
.
wait
()
assert
np
.
allclose
(
empty_tensor_list
,
test_data_list
,
rtol
=
1e-05
,
atol
=
1e-05
)
# case 2: pass a pre-sized tensor list
full_tensor_list
=
[
paddle
.
empty_like
(
tensor
)
for
_
in
test_data_list
]
task
=
dist
.
stream
.
all_gather
(
full_tensor_list
,
tensor
,
sync_op
=
self
.
_sync_op
,
use_calc_stream
=
self
.
_use_calc_stream
)
if
not
self
.
_sync_op
:
task
.
wait
()
assert
np
.
allclose
(
full_tensor_list
,
test_data_list
,
rtol
=
1e-05
,
atol
=
1e-05
)
# case 3: pass a pre-sized tensor
result_tensor
=
paddle
.
concat
(
[
paddle
.
to_tensor
(
data
)
for
data
in
test_data_list
])
out_tensor
=
paddle
.
empty_like
(
result_tensor
)
task
=
dist
.
stream
.
all_gather
(
out_tensor
,
tensor
,
sync_op
=
self
.
_sync_op
,
use_calc_stream
=
self
.
_use_calc_stream
)
if
not
self
.
_sync_op
:
task
.
wait
()
assert
np
.
allclose
(
out_tensor
,
result_tensor
,
rtol
=
1e-05
,
atol
=
1e-05
)
if
__name__
==
"__main__"
:
StreamAllgatherTestCase
().
run_test_case
()
python/paddle/fluid/tests/unittests/collective/test_communication_stream_allgather_api.py
0 → 100644
浏览文件 @
ecae7b31
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
paddle
import
itertools
import
test_communication_api_base
as
test_base
class
TestCommunicationStreamAllgatherAPI
(
test_base
.
CommunicationTestDistBase
):
def
setUp
(
self
):
super
(
TestCommunicationStreamAllgatherAPI
,
self
).
setUp
(
num_of_devices
=
2
,
timeout
=
120
)
self
.
_default_envs
=
{
"backend"
:
"nccl"
,
"shape"
:
"(100, 200)"
,
"dtype"
:
"float32"
,
"seeds"
:
str
(
self
.
_seeds
)
}
self
.
_changeable_envs
=
{
"sync_op"
:
[
"True"
,
"False"
],
"use_calc_stream"
:
[
"True"
,
"False"
]
}
def
test_allgather_stream
(
self
):
envs_list
=
test_base
.
gen_product_envs_list
(
self
.
_default_envs
,
self
.
_changeable_envs
)
for
envs
in
envs_list
:
if
eval
(
envs
[
"use_calc_stream"
])
and
not
eval
(
envs
[
"sync_op"
]):
continue
self
.
run_test_case
(
"communication_stream_allgather_api_dygraph.py"
,
user_defined_envs
=
envs
)
def
tearDown
(
self
):
super
(
TestCommunicationStreamAllgatherAPI
,
self
).
tearDown
()
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/collective/testslist.csv
浏览文件 @
ecae7b31
...
...
@@ -32,6 +32,7 @@ test_collective_split_col_linear,linux,gpu;rocm,300,DIST,test_runner.py,2,,http_
test_collective_split_embedding_none_divisible,linux,gpu;rocm,300,DIST,test_runner.py,2,,http_proxy=;https_proxy=;PYTHONPATH=..,
test_collective_split_row_linear,linux,gpu;rocm,300,DIST,test_runner.py,2,,http_proxy=;https_proxy=;PYTHONPATH=..,
test_collective_wait,linux,gpu;rocm,300,DIST,test_runner.py,2,,http_proxy=;https_proxy=;PYTHONPATH=..,
test_communication_stream_allgather_api,linux,gpu;rocm,120,DIST,,2,,PYTHONPATH=..;http_proxy=;https_proxy=,
test_communication_stream_allreduce_api,linux,gpu;rocm,120,DIST,,2,,PYTHONPATH=..;http_proxy=;https_proxy=,
test_communication_stream_sendrecv_api,linux,gpu;rocm,120,DIST,,2,,PYTHONPATH=..;http_proxy=;https_proxy=,
test_eager_dist_api,linux,gpu;rocm,120,DIST,test_runner.py,2,,http_proxy=;https_proxy=;PYTHONPATH=..,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录