Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
4e00d2bb
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4e00d2bb
编写于
3月 02, 2022
作者:
B
Baibaifan
提交者:
GitHub
3月 02, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add_new_comm_primitive (#40040)
上级
aa47297a
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
259 addition
and
1 deletion
+259
-1
paddle/fluid/distributed/collective/ProcessGroup.h
paddle/fluid/distributed/collective/ProcessGroup.h
+19
-1
paddle/fluid/distributed/collective/ProcessGroupNCCL.cc
paddle/fluid/distributed/collective/ProcessGroupNCCL.cc
+156
-0
paddle/fluid/distributed/collective/ProcessGroupNCCL.h
paddle/fluid/distributed/collective/ProcessGroupNCCL.h
+17
-0
paddle/fluid/distributed/collective/Types.h
paddle/fluid/distributed/collective/Types.h
+4
-0
paddle/fluid/pybind/distributed_py.cc
paddle/fluid/pybind/distributed_py.cc
+33
-0
python/paddle/fluid/tests/unittests/process_group_nccl.py
python/paddle/fluid/tests/unittests/process_group_nccl.py
+30
-0
未找到文件。
paddle/fluid/distributed/collective/ProcessGroup.h
浏览文件 @
4e00d2bb
...
...
@@ -96,7 +96,25 @@ class ProcessGroup {
std
::
vector
<
Tensor
>&
/* tensors */
,
const
BroadcastOptions
&
=
BroadcastOptions
())
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"ProcessGroup%s does not support allreduce"
,
GetBackendName
()));
"ProcessGroup%s does not support broadcast"
,
GetBackendName
()));
}
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Barrier
(
const
BarrierOptions
&
=
BarrierOptions
())
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"ProcessGroup%s does not support barrier"
,
GetBackendName
()));
}
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Send
(
std
::
vector
<
Tensor
>&
tensors
/* tensors */
,
int
dst_rank
)
{
// NOLINT
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"ProcessGroup%s does not support send"
,
GetBackendName
()));
}
virtual
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Recv
(
std
::
vector
<
Tensor
>&
tensors
/* tensors */
,
int
src_rank
)
{
// NOLINT
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"ProcessGroup%s does not support receive"
,
GetBackendName
()));
}
protected:
...
...
paddle/fluid/distributed/collective/ProcessGroupNCCL.cc
浏览文件 @
4e00d2bb
...
...
@@ -14,6 +14,9 @@
#include "paddle/fluid/distributed/collective/ProcessGroupNCCL.h"
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/common/place.h"
DECLARE_bool
(
nccl_blocking_wait
);
DECLARE_bool
(
use_stream_safe_cuda_allocator
);
...
...
@@ -139,6 +142,14 @@ bool ProcessGroupNCCL::NCCLTask::Wait(std::chrono::milliseconds timeout) {
std
::
this_thread
::
sleep_for
(
std
::
chrono
::
milliseconds
(
kWaitBlockTImeout
));
}
}
if
(
!
barrierTensors_
.
empty
())
{
// If we use the work to do barrier, we should block cpu
for
(
auto
&
place
:
places_
)
{
platform
::
CUDADeviceGuard
gpuGuard
(
place
);
PADDLE_ENFORCE_GPU_SUCCESS
(
cudaDeviceSynchronize
());
}
}
return
true
;
}
...
...
@@ -193,6 +204,10 @@ void ProcessGroupNCCL::CreateNCCLManagerCache(
nccl_ids
.
resize
(
1
);
auto
&
nccl_id
=
nccl_ids
.
front
();
for
(
auto
&
place
:
places
)
{
used_place_ids_
.
insert
(
place
.
GetDeviceId
());
}
if
(
rank_
==
0
)
{
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclGetUniqueId
(
&
nccl_id
));
}
...
...
@@ -274,6 +289,54 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
return
task
;
}
template
<
typename
Fn
>
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupNCCL
::
PointToPoint
(
std
::
vector
<
Tensor
>&
tensors
,
Fn
fn
,
int
dst_rank
,
CommType
op_type
)
{
const
auto
places
=
GetPlaceList
(
tensors
);
const
auto
key
=
GetKeyFromPlaces
(
places
);
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
if
(
places_to_ncclcomm_
.
find
(
key
)
==
places_to_ncclcomm_
.
end
())
{
CreateNCCLManagerCache
(
key
,
places
);
}
}
auto
&
nccl_comms
=
places_to_ncclcomm_
[
key
];
SyncDefaultStream
(
places
,
places_to_events_
[
key
],
places_to_ctx_
[
key
]);
auto
task
=
CreateTask
(
places
,
rank_
,
op_type
,
tensors
);
// construct uninitialize guard for device
platform
::
CUDADeviceGuard
cuda_guard
;
if
(
FLAGS_use_stream_safe_cuda_allocator
)
{
for
(
size_t
i
=
0
;
i
<
tensors
.
size
();
++
i
)
{
cuda_guard
.
SetDevice
(
places
[
i
]);
auto
dense_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
tensors
[
i
].
impl
());
memory
::
RecordStream
(
dense_tensor
->
Holder
(),
places_to_ctx_
[
key
][
i
]
->
stream
());
}
}
{
platform
::
NCCLGroupGuard
nccl_guard
;
for
(
size_t
i
=
0
;
i
<
tensors
.
size
();
++
i
)
{
cuda_guard
.
SetDevice
(
places
[
i
]);
const
auto
&
nccl_stream
=
places_to_ctx_
[
key
][
i
]
->
stream
();
fn
(
tensors
[
i
],
nccl_comms
[
i
]
->
GetNcclComm
(),
nccl_stream
,
dst_rank
);
}
}
for
(
size_t
i
=
0
;
i
<
tensors
.
size
();
++
i
)
{
cuda_guard
.
SetDevice
(
places
[
i
]);
task
->
control_events_
[
i
].
Record
(
*
places_to_ctx_
[
key
][
i
]);
}
return
task
;
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupNCCL
::
AllReduce
(
std
::
vector
<
Tensor
>&
tensors
,
const
AllreduceOptions
&
opts
)
{
PADDLE_ENFORCE_EQ
(
...
...
@@ -317,5 +380,98 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Broadcast(
CommType
::
BROADCAST
);
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupNCCL
::
Barrier
(
const
BarrierOptions
&
opts
)
{
std
::
vector
<
phi
::
GPUPlace
>
places
;
if
(
!
opts
.
place_ids
.
empty
())
{
for
(
auto
place_id
:
opts
.
place_ids
)
{
places
.
emplace_back
(
place_id
);
}
}
else
if
(
!
used_place_ids_
.
empty
())
{
for
(
auto
place_id
:
used_place_ids_
)
{
places
.
emplace_back
(
place_id
);
}
}
else
{
auto
numGPUs
=
GetSize
();
int
place_id
=
static_cast
<
int
>
(
rank_
%
numGPUs
);
places
.
emplace_back
(
place_id
);
}
std
::
vector
<
Tensor
>
barrierTensors
;
barrierTensors
.
reserve
(
places
.
size
());
platform
::
CUDADeviceGuard
gpuGuard
;
for
(
auto
&
place
:
places
)
{
gpuGuard
.
SetDeviceIndex
(
place
.
GetDeviceId
());
auto
dt
=
full
({
1
},
0
,
phi
::
DataType
::
FLOAT32
,
phi
::
Backend
::
GPU
);
barrierTensors
.
push_back
(
dt
);
}
auto
task
=
ProcessGroupNCCL
::
AllReduce
(
barrierTensors
);
auto
nccl_task
=
dynamic_cast
<
ProcessGroupNCCL
::
NCCLTask
*>
(
task
.
get
());
nccl_task
->
barrierTensors_
=
std
::
move
(
barrierTensors
);
return
task
;
}
void
CheckTensorsInDifferentDevices
(
const
std
::
vector
<
Tensor
>&
tensors
,
const
size_t
num_devices
)
{
PADDLE_ENFORCE_EQ
(
tensors
.
size
()
==
0
,
false
,
platform
::
errors
::
InvalidArgument
(
"Tensor list must be nonempty."
));
PADDLE_ENFORCE_LE
(
tensors
.
size
(),
num_devices
,
platform
::
errors
::
InvalidArgument
(
"Tensor list mustn't be larger than the number of available GPUs."
));
std
::
set
<
Place
>
used_devices
;
for
(
const
auto
&
t
:
tensors
)
{
PADDLE_ENFORCE_EQ
(
t
.
is_cuda
()
&&
t
.
is_dense_tensor
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Tensors must be CUDA and dense tensor."
));
const
auto
inserted
=
used_devices
.
insert
(
t
.
inner_place
()).
second
;
PADDLE_ENFORCE_EQ
(
inserted
,
true
,
platform
::
errors
::
InvalidArgument
(
"Tensors must be on distinct GPU devices."
));
}
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupNCCL
::
Send
(
std
::
vector
<
Tensor
>&
tensors
,
int
dst_rank
)
{
CheckTensorsInDifferentDevices
(
tensors
,
static_cast
<
size_t
>
(
GetSize
()));
auto
task
=
PointToPoint
(
tensors
,
[
&
](
Tensor
&
input
,
ncclComm_t
comm
,
const
gpuStream_t
&
stream
,
int
dst_rank
)
{
auto
input_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
input
.
impl
());
return
platform
::
dynload
::
ncclSend
(
input_tensor
->
data
(),
input_tensor
->
numel
(),
platform
::
ToNCCLDataType
(
input
.
type
()),
dst_rank
,
comm
,
stream
);
},
dst_rank
,
CommType
::
SEND
);
return
task
;
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupNCCL
::
Recv
(
std
::
vector
<
Tensor
>&
tensors
,
int
src_rank
)
{
CheckTensorsInDifferentDevices
(
tensors
,
static_cast
<
size_t
>
(
GetSize
()));
auto
task
=
PointToPoint
(
tensors
,
[
&
](
Tensor
&
output
,
ncclComm_t
comm
,
const
gpuStream_t
&
stream
,
int
src_rank
)
{
auto
output_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
output
.
impl
());
return
platform
::
dynload
::
ncclRecv
(
output_tensor
->
data
(),
output_tensor
->
numel
(),
platform
::
ToNCCLDataType
(
output
.
type
()),
src_rank
,
comm
,
stream
);
},
src_rank
,
CommType
::
RECV
);
return
task
;
}
}
// namespace distributed
}
// namespace paddle
paddle/fluid/distributed/collective/ProcessGroupNCCL.h
浏览文件 @
4e00d2bb
...
...
@@ -65,6 +65,7 @@ class ProcessGroupNCCL : public ProcessGroup {
virtual
~
NCCLTask
();
std
::
vector
<
EventManager
>
control_events_
;
std
::
vector
<
Tensor
>
barrierTensors_
;
protected:
std
::
vector
<
Place
>
places_
;
...
...
@@ -88,6 +89,15 @@ class ProcessGroupNCCL : public ProcessGroup {
std
::
vector
<
Tensor
>&
tensors
,
const
BroadcastOptions
&
=
BroadcastOptions
())
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Barrier
(
const
BarrierOptions
&
=
BarrierOptions
())
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Send
(
std
::
vector
<
Tensor
>&
tensors
,
int
dst_rank
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Recv
(
std
::
vector
<
Tensor
>&
tensors
,
int
src_rank
)
override
;
protected:
virtual
std
::
shared_ptr
<
ProcessGroupNCCL
::
NCCLTask
>
CreateTask
(
std
::
vector
<
Place
>
places
,
int
rank
,
CommType
opType
,
...
...
@@ -106,6 +116,8 @@ class ProcessGroupNCCL : public ProcessGroup {
std
::
vector
<
std
::
unique_ptr
<
CUDADeviceContext
>>>
places_to_ctx_
;
std
::
set
<
int
>
used_place_ids_
;
private:
void
BcastNCCLId
(
std
::
vector
<
ncclUniqueId
>&
nccl_ids
,
int
root
,
// NOLINT
int
server_fd
);
...
...
@@ -118,6 +130,11 @@ class ProcessGroupNCCL : public ProcessGroup {
std
::
vector
<
Tensor
>&
outputs
,
// NOLINT
Fn
fn
,
CommType
op_type
);
template
<
typename
Fn
>
std
::
shared_ptr
<
ProcessGroup
::
Task
>
PointToPoint
(
std
::
vector
<
Tensor
>&
tensors
,
// NOLINT
Fn
fn
,
int
dst_rank
,
CommType
op_type
);
void
CreateNCCLManagerCache
(
const
std
::
string
&
places_key
,
const
std
::
vector
<
Place
>&
places
);
};
...
...
paddle/fluid/distributed/collective/Types.h
浏览文件 @
4e00d2bb
...
...
@@ -32,5 +32,9 @@ struct BroadcastOptions {
int
source_root
=
0
;
};
struct
BarrierOptions
{
std
::
vector
<
int
>
place_ids
;
};
}
// namespace distributed
}
// namespace paddle
paddle/fluid/pybind/distributed_py.cc
浏览文件 @
4e00d2bb
...
...
@@ -60,6 +60,10 @@ void BindDistributed(py::module *m) {
.
def_readwrite
(
"source_root"
,
&
distributed
::
BroadcastOptions
::
source_root
);
py
::
class_
<
distributed
::
BarrierOptions
>
(
*
m
,
"BarrierOptions"
)
.
def
(
py
::
init
<>
())
.
def_readwrite
(
"place_ids"
,
&
distributed
::
BarrierOptions
::
place_ids
);
auto
ProcessGroup
=
py
::
class_
<
distributed
::
ProcessGroup
,
std
::
shared_ptr
<
distributed
::
ProcessGroup
>>
(
*
m
,
"ProcessGroup"
)
...
...
@@ -88,6 +92,35 @@ void BindDistributed(py::module *m) {
return
self
.
Broadcast
(
tensors
,
opts
);
},
py
::
arg
(
"tensor"
),
py
::
arg
(
"source_rank"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
"barrier"
,
[](
distributed
::
ProcessGroup
&
self
,
std
::
vector
<
int
>
place_ids
)
{
distributed
::
BarrierOptions
opts
;
opts
.
place_ids
=
place_ids
;
return
self
.
Barrier
(
opts
);
},
py
::
arg
(
"place_ids"
)
=
std
::
vector
<
int
>
{},
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
"send"
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_tensor
,
int
dst
)
{
auto
tensor
=
CastPyArg2Tensor
(
py_tensor
.
ptr
(),
0
);
std
::
vector
<
Tensor
>
tensors
=
{
tensor
};
return
self
.
Send
(
tensors
,
dst
);
},
py
::
arg
(
"tensor"
),
py
::
arg
(
"dst"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
())
.
def
(
"recv"
,
[](
distributed
::
ProcessGroup
&
self
,
py
::
handle
py_tensor
,
int
src
)
{
auto
tensor
=
CastPyArg2Tensor
(
py_tensor
.
ptr
(),
0
);
std
::
vector
<
Tensor
>
tensors
=
{
tensor
};
return
self
.
Recv
(
tensors
,
src
);
},
py
::
arg
(
"tensor"
),
py
::
arg
(
"src"
),
py
::
call_guard
<
py
::
gil_scoped_release
>
());
#if defined(PADDLE_WITH_NCCL)
...
...
python/paddle/fluid/tests/unittests/process_group_nccl.py
浏览文件 @
4e00d2bb
...
...
@@ -132,6 +132,36 @@ class TestProcessGroupFp32(unittest.TestCase):
print
(
"test broadcast api ok"
)
# test barrier
# rank 0
if
pg
.
rank
()
==
0
:
task
=
pg
.
barrier
()
task
.
wait
()
# rank 1
else
:
task
=
pg
.
barrier
()
task
.
wait
()
print
(
"test barrier api ok
\n
"
)
# test send/recv
# rank 0
x
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_x
=
paddle
.
to_tensor
(
x
)
if
pg
.
rank
()
==
0
:
task
=
pg
.
send
(
tensor_x
,
dst
=
1
)
task
.
wait
()
paddle
.
device
.
cuda
.
synchronize
()
# rank 1
else
:
y
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_y
=
paddle
.
to_tensor
(
y
)
task
=
pg
.
recv
(
tensor_y
,
src
=
0
)
task
.
wait
()
paddle
.
device
.
cuda
.
synchronize
()
assert
np
.
array_equal
(
tensor_x
,
tensor_y
)
print
(
"test send/recv api ok
\n
"
)
class
TestProcessGroupFp16
(
TestProcessGroupFp32
):
def
setUp
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录