test_lu_unpack_op.py 8.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from op_test import OpTest
import unittest
import itertools
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
import scipy
import scipy.linalg
import copy


def scipy_lu_unpack(A):
    shape = A.shape
    if len(shape) == 2:
        return scipy.linalg.lu(A)
    else:
        preshape = shape[:-2]
        batchsize = np.product(shape) // (shape[-2] * shape[-1])
        Plst = []
        Llst = []
        Ulst = []

        NA = A.reshape((-1, shape[-2], shape[-1]))
        for b in range(batchsize):
            As = NA[b]
            P, L, U = scipy.linalg.lu(As)

            pshape = P.shape
            lshape = L.shape
            ushape = U.shape

            Plst.append(P)
            Llst.append(L)
            Ulst.append(U)

51 52 53 54 55
        return (
            np.array(Plst).reshape(preshape + pshape),
            np.array(Llst).reshape(preshape + lshape),
            np.array(Ulst).reshape(preshape + ushape),
        )
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76


def Pmat_to_perm(Pmat_org, cut):
    Pmat = copy.deepcopy(Pmat_org)
    shape = Pmat.shape
    rows = shape[-2]
    cols = shape[-1]
    batchsize = max(1, np.product(shape[:-2]))
    P = Pmat.reshape(batchsize, rows, cols)
    permmat = []
    for b in range(batchsize):
        permlst = []
        sP = P[b]
        for c in range(min(rows, cols)):
            idx = np.argmax(sP[:, c])
            permlst.append(idx)
            tmp = copy.deepcopy(sP[c, :])
            sP[c, :] = sP[idx, :]
            sP[idx, :] = tmp

        permmat.append(permlst)
77 78 79 80 81 82 83 84 85
    Pivot = (
        np.array(permmat).reshape(
            list(shape[:-2])
            + [
                rows,
            ]
        )
        + 1
    )
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

    return Pivot[..., :cut]


def perm_to_Pmat(perm, dim):
    pshape = perm.shape
    bs = int(np.product(perm.shape[:-1]).item())
    perm = perm.reshape((bs, pshape[-1]))
    oneslst = []
    for i in range(bs):
        idlst = np.arange(dim)
        perm_item = perm[i, :]
        for idx, p in enumerate(perm_item - 1):
            temp = idlst[idx]
            idlst[idx] = idlst[p]
            idlst[p] = temp

        ones = paddle.eye(dim)
        nmat = paddle.scatter(ones, paddle.to_tensor(idlst), ones)
        oneslst.append(nmat)
    return np.array(oneslst).reshape(list(pshape[:-1]) + [dim, dim])


# m > n
class TestLU_UnpackOp(OpTest):
    """
    case 1
    """

    def config(self):
        self.x_shape = [2, 12, 10]
        self.unpack_ludata = True
        self.unpack_pivots = True
        self.dtype = "float64"

    def set_output(self, A):
        sP, sL, sU = scipy_lu_unpack(A)
        self.L = sL
        self.U = sU
        self.P = sP

    def setUp(self):
        self.op_type = "lu_unpack"
129 130
        self.python_api = paddle.tensor.linalg.lu_unpack
        self.python_out_sig = ["Pmat", "L", "U"]
131 132 133 134 135 136 137 138 139 140 141 142
        self.config()
        x = np.random.random(self.x_shape).astype(self.dtype)
        if paddle.in_dynamic_mode():
            xt = paddle.to_tensor(x)
            lu, pivots = paddle.linalg.lu(xt)
            lu = lu.numpy()
            pivots = pivots.numpy()
        else:
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                place = fluid.CPUPlace()
                if core.is_compiled_with_cuda():
                    place = fluid.CUDAPlace(0)
143 144 145
                xv = paddle.fluid.data(
                    name="input", shape=self.x_shape, dtype=self.dtype
                )
146 147
                lu, p = paddle.linalg.lu(xv)
                exe = fluid.Executor(place)
148 149 150 151 152
                fetches = exe.run(
                    fluid.default_main_program(),
                    feed={"input": x},
                    fetch_list=[lu, p],
                )
153 154 155 156 157 158
                lu, pivots = fetches[0], fetches[1]

        self.inputs = {'X': lu, 'Pivots': pivots}

        self.attrs = {
            'unpack_ludata': self.unpack_ludata,
159
            'unpack_pivots': self.unpack_pivots,
160 161 162 163 164 165 166 167 168
        }
        self.set_output(x)
        self.outputs = {
            'Pmat': self.P,
            'L': self.L,
            'U': self.U,
        }

    def test_check_output(self):
169
        self.check_output(check_eager=True)
170 171

    def test_check_grad(self):
172
        self.check_grad(['X'], ['L', 'U'], check_eager=True)
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201


# m = n
class TestLU_UnpackOp2(TestLU_UnpackOp):
    """
    case 2
    """

    def config(self):
        self.x_shape = [2, 10, 10]
        self.unpack_ludata = True
        self.unpack_pivots = True
        self.dtype = "float64"


# m < n
class TestLU_UnpackOp3(TestLU_UnpackOp):
    """
    case 3
    """

    def config(self):
        self.x_shape = [2, 10, 12]
        self.unpack_ludata = True
        self.unpack_pivots = True
        self.dtype = "float64"


class TestLU_UnpackAPI(unittest.TestCase):
202 203 204
    def setUp(self):
        np.random.seed(2022)

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
    def test_dygraph(self):
        def run_lu_unpack_dygraph(shape, dtype):
            if dtype == "float32":
                np_dtype = np.float32
            elif dtype == "float64":
                np_dtype = np.float64
            a = np.random.rand(*shape).astype(np_dtype)
            m = a.shape[-2]
            n = a.shape[-1]
            min_mn = min(m, n)

            places = [fluid.CPUPlace()]
            if core.is_compiled_with_cuda():
                places.append(fluid.CUDAPlace(0))
            for place in places:
                paddle.disable_static(place)

                x = paddle.to_tensor(a, dtype=dtype)
                sP, sL, sU = scipy_lu_unpack(a)
                LU, P = paddle.linalg.lu(x)
                pP, pL, pU = paddle.linalg.lu_unpack(LU, P)

227 228 229
                np.testing.assert_allclose(sU, pU, rtol=1e-05, atol=1e-05)
                np.testing.assert_allclose(sL, pL, rtol=1e-05, atol=1e-05)
                np.testing.assert_allclose(sP, pP, rtol=1e-05, atol=1e-05)
230 231 232 233

        tensor_shapes = [
            (3, 5),
            (5, 5),
234
            (5, 3),  # 2-dim Tensors
235 236 237 238 239
            (2, 3, 5),
            (3, 5, 5),
            (4, 5, 3),  # 3-dim Tensors
            (2, 5, 3, 5),
            (3, 5, 5, 5),
240
            (4, 5, 5, 3),  # 4-dim Tensors
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
        ]
        dtypes = ["float32", "float64"]
        for tensor_shape, dtype in itertools.product(tensor_shapes, dtypes):
            run_lu_unpack_dygraph(tensor_shape, dtype)

    def test_static(self):
        paddle.enable_static()

        def run_lu_static(shape, dtype):
            if dtype == "float32":
                np_dtype = np.float32
            elif dtype == "float64":
                np_dtype = np.float64
            a = np.random.rand(*shape).astype(np_dtype)
            m = a.shape[-2]
            n = a.shape[-1]
            min_mn = min(m, n)

            places = [fluid.CPUPlace()]
            if core.is_compiled_with_cuda():
                places.append(fluid.CUDAPlace(0))
            for place in places:
                with fluid.program_guard(fluid.Program(), fluid.Program()):
                    sP, sL, sU = scipy_lu_unpack(a)

266 267 268
                    x = paddle.fluid.data(
                        name="input", shape=shape, dtype=dtype
                    )
269 270 271
                    lu, p = paddle.linalg.lu(x)
                    pP, pL, pU = paddle.linalg.lu_unpack(lu, p)
                    exe = fluid.Executor(place)
272 273 274 275 276 277 278 279 280 281 282 283 284 285
                    fetches = exe.run(
                        fluid.default_main_program(),
                        feed={"input": a},
                        fetch_list=[pP, pL, pU],
                    )
                    np.testing.assert_allclose(
                        fetches[0], sP, rtol=1e-05, atol=1e-05
                    )
                    np.testing.assert_allclose(
                        fetches[1], sL, rtol=1e-05, atol=1e-05
                    )
                    np.testing.assert_allclose(
                        fetches[2], sU, rtol=1e-05, atol=1e-05
                    )
286 287 288 289

        tensor_shapes = [
            (3, 5),
            (5, 5),
290
            (5, 3),  # 2-dim Tensors
291 292 293 294 295
            (2, 3, 5),
            (3, 5, 5),
            (4, 5, 3),  # 3-dim Tensors
            (2, 5, 3, 5),
            (3, 5, 5, 5),
296
            (4, 5, 5, 3),  # 4-dim Tensors
297 298 299 300 301 302 303 304 305
        ]
        dtypes = ["float32", "float64"]
        for tensor_shape, dtype in itertools.product(tensor_shapes, dtypes):
            run_lu_static(tensor_shape, dtype)


if __name__ == "__main__":
    paddle.enable_static()
    unittest.main()