test_lu_unpack_op.py 9.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from op_test import OpTest
import unittest
import itertools
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
import scipy
import scipy.linalg
import copy


def scipy_lu_unpack(A):
    shape = A.shape
    if len(shape) == 2:
        return scipy.linalg.lu(A)
    else:
        preshape = shape[:-2]
        batchsize = np.product(shape) // (shape[-2] * shape[-1])
        Plst = []
        Llst = []
        Ulst = []

        NA = A.reshape((-1, shape[-2], shape[-1]))
        for b in range(batchsize):
            As = NA[b]
            P, L, U = scipy.linalg.lu(As)

            pshape = P.shape
            lshape = L.shape
            ushape = U.shape

            Plst.append(P)
            Llst.append(L)
            Ulst.append(U)

        return np.array(Plst).reshape(preshape + pshape), np.array(
            Llst).reshape(preshape + lshape), np.array(Ulst).reshape(preshape +
                                                                     ushape)


def Pmat_to_perm(Pmat_org, cut):
    Pmat = copy.deepcopy(Pmat_org)
    shape = Pmat.shape
    rows = shape[-2]
    cols = shape[-1]
    batchsize = max(1, np.product(shape[:-2]))
    P = Pmat.reshape(batchsize, rows, cols)
    permmat = []
    for b in range(batchsize):
        permlst = []
        sP = P[b]
        for c in range(min(rows, cols)):
            idx = np.argmax(sP[:, c])
            permlst.append(idx)
            tmp = copy.deepcopy(sP[c, :])
            sP[c, :] = sP[idx, :]
            sP[idx, :] = tmp

        permmat.append(permlst)
75 76 77
    Pivot = np.array(permmat).reshape(list(shape[:-2]) + [
        rows,
    ]) + 1
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

    return Pivot[..., :cut]


def perm_to_Pmat(perm, dim):
    pshape = perm.shape
    bs = int(np.product(perm.shape[:-1]).item())
    perm = perm.reshape((bs, pshape[-1]))
    oneslst = []
    for i in range(bs):
        idlst = np.arange(dim)
        perm_item = perm[i, :]
        for idx, p in enumerate(perm_item - 1):
            temp = idlst[idx]
            idlst[idx] = idlst[p]
            idlst[p] = temp

        ones = paddle.eye(dim)
        nmat = paddle.scatter(ones, paddle.to_tensor(idlst), ones)
        oneslst.append(nmat)
    return np.array(oneslst).reshape(list(pshape[:-1]) + [dim, dim])


# m > n
class TestLU_UnpackOp(OpTest):
    """
    case 1
    """

    def config(self):
        self.x_shape = [2, 12, 10]
        self.unpack_ludata = True
        self.unpack_pivots = True
        self.dtype = "float64"

    def set_output(self, A):
        sP, sL, sU = scipy_lu_unpack(A)
        self.L = sL
        self.U = sU
        self.P = sP

    def setUp(self):
        self.op_type = "lu_unpack"
121 122
        self.python_api = paddle.tensor.linalg.lu_unpack
        self.python_out_sig = ["Pmat", "L", "U"]
123 124 125 126 127 128 129 130 131 132 133 134
        self.config()
        x = np.random.random(self.x_shape).astype(self.dtype)
        if paddle.in_dynamic_mode():
            xt = paddle.to_tensor(x)
            lu, pivots = paddle.linalg.lu(xt)
            lu = lu.numpy()
            pivots = pivots.numpy()
        else:
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                place = fluid.CPUPlace()
                if core.is_compiled_with_cuda():
                    place = fluid.CUDAPlace(0)
135 136 137
                xv = paddle.fluid.data(name="input",
                                       shape=self.x_shape,
                                       dtype=self.dtype)
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
                lu, p = paddle.linalg.lu(xv)
                exe = fluid.Executor(place)
                fetches = exe.run(fluid.default_main_program(),
                                  feed={"input": x},
                                  fetch_list=[lu, p])
                lu, pivots = fetches[0], fetches[1]

        self.inputs = {'X': lu, 'Pivots': pivots}

        self.attrs = {
            'unpack_ludata': self.unpack_ludata,
            'unpack_pivots': self.unpack_pivots
        }
        self.set_output(x)
        self.outputs = {
            'Pmat': self.P,
            'L': self.L,
            'U': self.U,
        }

    def test_check_output(self):
159
        self.check_output(check_eager=True)
160 161

    def test_check_grad(self):
162
        self.check_grad(['X'], ['L', 'U'], check_eager=True)
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191


# m = n
class TestLU_UnpackOp2(TestLU_UnpackOp):
    """
    case 2
    """

    def config(self):
        self.x_shape = [2, 10, 10]
        self.unpack_ludata = True
        self.unpack_pivots = True
        self.dtype = "float64"


# m < n
class TestLU_UnpackOp3(TestLU_UnpackOp):
    """
    case 3
    """

    def config(self):
        self.x_shape = [2, 10, 12]
        self.unpack_ludata = True
        self.unpack_pivots = True
        self.dtype = "float64"


class TestLU_UnpackAPI(unittest.TestCase):
192

193 194 195
    def setUp(self):
        np.random.seed(2022)

196
    def test_dygraph(self):
197

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
        def run_lu_unpack_dygraph(shape, dtype):
            if dtype == "float32":
                np_dtype = np.float32
            elif dtype == "float64":
                np_dtype = np.float64
            a = np.random.rand(*shape).astype(np_dtype)
            m = a.shape[-2]
            n = a.shape[-1]
            min_mn = min(m, n)

            places = [fluid.CPUPlace()]
            if core.is_compiled_with_cuda():
                places.append(fluid.CUDAPlace(0))
            for place in places:
                paddle.disable_static(place)

                x = paddle.to_tensor(a, dtype=dtype)
                sP, sL, sU = scipy_lu_unpack(a)
                LU, P = paddle.linalg.lu(x)
                pP, pL, pU = paddle.linalg.lu_unpack(LU, P)

219 220 221
                np.testing.assert_allclose(sU, pU, rtol=1e-05, atol=1e-05)
                np.testing.assert_allclose(sL, pL, rtol=1e-05, atol=1e-05)
                np.testing.assert_allclose(sP, pP, rtol=1e-05, atol=1e-05)
222 223 224 225

        tensor_shapes = [
            (3, 5),
            (5, 5),
226
            (5, 3),  # 2-dim Tensors
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
            (2, 3, 5),
            (3, 5, 5),
            (4, 5, 3),  # 3-dim Tensors
            (2, 5, 3, 5),
            (3, 5, 5, 5),
            (4, 5, 5, 3)  # 4-dim Tensors
        ]
        dtypes = ["float32", "float64"]
        for tensor_shape, dtype in itertools.product(tensor_shapes, dtypes):
            run_lu_unpack_dygraph(tensor_shape, dtype)

    def test_static(self):
        paddle.enable_static()

        def run_lu_static(shape, dtype):
            if dtype == "float32":
                np_dtype = np.float32
            elif dtype == "float64":
                np_dtype = np.float64
            a = np.random.rand(*shape).astype(np_dtype)
            m = a.shape[-2]
            n = a.shape[-1]
            min_mn = min(m, n)

            places = [fluid.CPUPlace()]
            if core.is_compiled_with_cuda():
                places.append(fluid.CUDAPlace(0))
            for place in places:
                with fluid.program_guard(fluid.Program(), fluid.Program()):
                    sP, sL, sU = scipy_lu_unpack(a)

258 259 260
                    x = paddle.fluid.data(name="input",
                                          shape=shape,
                                          dtype=dtype)
261 262 263 264 265 266
                    lu, p = paddle.linalg.lu(x)
                    pP, pL, pU = paddle.linalg.lu_unpack(lu, p)
                    exe = fluid.Executor(place)
                    fetches = exe.run(fluid.default_main_program(),
                                      feed={"input": a},
                                      fetch_list=[pP, pL, pU])
267 268 269 270 271 272 273 274 275 276 277 278
                    np.testing.assert_allclose(fetches[0],
                                               sP,
                                               rtol=1e-05,
                                               atol=1e-05)
                    np.testing.assert_allclose(fetches[1],
                                               sL,
                                               rtol=1e-05,
                                               atol=1e-05)
                    np.testing.assert_allclose(fetches[2],
                                               sU,
                                               rtol=1e-05,
                                               atol=1e-05)
279 280 281 282

        tensor_shapes = [
            (3, 5),
            (5, 5),
283
            (5, 3),  # 2-dim Tensors
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
            (2, 3, 5),
            (3, 5, 5),
            (4, 5, 3),  # 3-dim Tensors
            (2, 5, 3, 5),
            (3, 5, 5, 5),
            (4, 5, 5, 3)  # 4-dim Tensors
        ]
        dtypes = ["float32", "float64"]
        for tensor_shape, dtype in itertools.product(tensor_shapes, dtypes):
            run_lu_static(tensor_shape, dtype)


if __name__ == "__main__":
    paddle.enable_static()
    unittest.main()