test_elementwise_nn_grad.py 13.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np

18
import paddle
19 20 21 22 23 24 25 26 27 28 29
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
import gradient_checker

from decorator_helper import prog_scope


class TestElementwiseMulDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
30
        # the shape of input variable should be clearly specified, not inlcude -1.
31
        shape = [2, 3, 4, 5]
32 33 34 35 36 37 38 39 40 41 42
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape, False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_mul(x, y)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape).astype(dtype)

43 44 45
        gradient_checker.double_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps
        )
46 47

    def test_grad(self):
48
        paddle.enable_static()
49 50 51 52 53 54 55 56 57 58
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseMulBroadcastDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
59
        # the shape of input variable should be clearly specified, not inlcude -1.
60
        shape = [2, 3, 4, 5]
61 62 63 64 65 66 67 68 69 70 71
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape[:-1], False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_mul(x, y, axis=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype)

72 73 74
        gradient_checker.double_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps
        )
75 76

    def test_grad(self):
77
        paddle.enable_static()
78 79 80 81 82 83 84 85 86 87
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseAddDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
88
        # the shape of input variable should be clearly specified, not inlcude -1.
89
        shape = [2, 3, 4, 5]
90 91 92 93 94 95 96 97 98 99 100
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape, False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_add(x, y)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape).astype(dtype)

101 102 103
        gradient_checker.double_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps
        )
104 105

    def test_grad(self):
106
        paddle.enable_static()
107 108 109 110 111 112 113 114 115 116
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseAddBroadcastDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
117
        # the shape of input variable should be clearly specified, not inlcude -1.
118
        shape = [2, 3, 4, 5]
119 120 121 122 123 124 125 126 127 128 129
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape[:-1], False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_add(x, y, axis=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype)

130 131 132
        gradient_checker.double_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps
        )
133 134

    def test_grad(self):
135
        paddle.enable_static()
136 137 138 139 140 141 142 143
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseSubDoubleGradCheck(unittest.TestCase):
144 145 146
    def subtract_wrapper(self, x):
        return paddle.subtract(x[0], x[1])

147 148
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
149
        # the shape of input variable should be clearly specified, not inlcude -1.
150
        shape = [2, 3, 4, 5]
151 152 153 154 155 156 157 158 159 160 161
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape, False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_sub(x, y)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape).astype(dtype)

162 163 164 165 166 167 168 169 170 171
        gradient_checker.double_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.subtract_wrapper,
            [x, y],
            out,
            x_init=[x_arr, y_arr],
            place=place,
        )
172 173

    def test_grad(self):
174
        paddle.enable_static()
175 176 177 178 179 180 181 182 183 184
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseSubBroadcastDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
185
        # the shape of input variable should be clearly specified, not inlcude -1.
186
        shape = [2, 3, 4, 5]
187 188 189 190 191 192 193 194 195 196 197
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape[:-1], False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_sub(x, y, axis=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype)

198 199 200
        gradient_checker.double_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps
        )
201 202

    def test_grad(self):
203
        paddle.enable_static()
204 205 206 207 208 209 210 211
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseDivDoubleGradCheck(unittest.TestCase):
212 213 214
    def divide_wrapper(self, x):
        return paddle.divide(x[0], x[1])

215 216
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
217
        # the shape of input variable should be clearly specified, not inlcude -1.
218
        shape = [2, 3, 4, 5]
219 220 221 222 223 224 225 226 227 228 229 230
        eps = 0.0001
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape, False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_div(x, y, axis=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr[np.abs(y_arr) < 0.005] = 0.02

231 232 233 234 235 236 237 238 239 240 241
        gradient_checker.double_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps, atol=1e-3
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.divide_wrapper,
            [x, y],
            out,
            x_init=[x_arr, y_arr],
            place=place,
            atol=1e-3,
        )
242 243

    def test_grad(self):
244
        paddle.enable_static()
245 246 247 248 249 250 251 252 253 254
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseDivBroadcastDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
255
        # the shape of input variable should be clearly specified, not inlcude -1.
256
        shape = [2, 3, 4, 5]
257 258 259 260 261 262 263 264 265 266 267 268
        eps = 0.0001
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape[1:-1], False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_div(x, y, axis=1)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape[1:-1]).astype(dtype)
        y_arr[np.abs(y_arr) < 0.005] = 0.02

269 270 271
        gradient_checker.double_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps, atol=1e-3
        )
272 273

    def test_grad(self):
274
        paddle.enable_static()
275 276 277 278 279 280 281
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
class TestElementwiseAddTripleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        shape = [2, 3, 4, 5]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape, False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_add(x, y)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape).astype(dtype)

298 299 300
        gradient_checker.triple_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps
        )
301 302

    def test_grad(self):
303
        paddle.enable_static()
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseAddBroadcastTripleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        shape = [2, 3, 4, 5]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape[:-1], False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_add(x, y, axis=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype)

327 328 329
        gradient_checker.triple_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps
        )
330 331

    def test_grad(self):
332
        paddle.enable_static()
333 334 335 336 337 338 339
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


340
class TestElementwiseMulTripleGradCheck(unittest.TestCase):
341 342 343
    def multiply_wrapper(self, x):
        return paddle.multiply(x[0], x[1])

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        shape = [2, 3, 4, 5]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape, False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_mul(x, y)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape).astype(dtype)

359 360 361
        gradient_checker.triple_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps
        )
362
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
363 364 365 366 367 368 369
        gradient_checker.triple_grad_check_for_dygraph(
            self.multiply_wrapper,
            [x, y],
            out,
            x_init=[x_arr, y_arr],
            place=place,
        )
370
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
371 372

    def test_grad(self):
373
        paddle.enable_static()
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseMulBroadcastTripleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        shape = [2, 3, 4, 5]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape[:-1], False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_add(x, y, axis=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype)

397 398 399
        gradient_checker.triple_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps
        )
400 401

    def test_grad(self):
402
        paddle.enable_static()
403 404 405 406 407 408 409
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


410 411
if __name__ == "__main__":
    unittest.main()