test_elementwise_nn_grad.py 15.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np

18
import paddle
19 20 21 22 23 24 25 26 27
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
import gradient_checker

from decorator_helper import prog_scope


class TestElementwiseMulDoubleGradCheck(unittest.TestCase):
28

29 30
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
31
        # the shape of input variable should be clearly specified, not inlcude -1.
32
        shape = [2, 3, 4, 5]
33 34 35 36 37 38 39 40 41 42 43
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape, False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_mul(x, y)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape).astype(dtype)

44 45 46 47 48
        gradient_checker.double_grad_check([x, y],
                                           out,
                                           x_init=[x_arr, y_arr],
                                           place=place,
                                           eps=eps)
49 50

    def test_grad(self):
51
        paddle.enable_static()
52 53 54 55 56 57 58 59
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseMulBroadcastDoubleGradCheck(unittest.TestCase):
60

61 62
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
63
        # the shape of input variable should be clearly specified, not inlcude -1.
64
        shape = [2, 3, 4, 5]
65 66 67 68 69 70 71 72 73 74 75
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape[:-1], False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_mul(x, y, axis=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype)

76 77 78 79 80
        gradient_checker.double_grad_check([x, y],
                                           out,
                                           x_init=[x_arr, y_arr],
                                           place=place,
                                           eps=eps)
81 82

    def test_grad(self):
83
        paddle.enable_static()
84 85 86 87 88 89 90 91
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseAddDoubleGradCheck(unittest.TestCase):
92

93 94
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
95
        # the shape of input variable should be clearly specified, not inlcude -1.
96
        shape = [2, 3, 4, 5]
97 98 99 100 101 102 103 104 105 106 107
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape, False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_add(x, y)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape).astype(dtype)

108 109 110 111 112
        gradient_checker.double_grad_check([x, y],
                                           out,
                                           x_init=[x_arr, y_arr],
                                           place=place,
                                           eps=eps)
113 114

    def test_grad(self):
115
        paddle.enable_static()
116 117 118 119 120 121 122 123
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseAddBroadcastDoubleGradCheck(unittest.TestCase):
124

125 126
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
127
        # the shape of input variable should be clearly specified, not inlcude -1.
128
        shape = [2, 3, 4, 5]
129 130 131 132 133 134 135 136 137 138 139
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape[:-1], False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_add(x, y, axis=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype)

140 141 142 143 144
        gradient_checker.double_grad_check([x, y],
                                           out,
                                           x_init=[x_arr, y_arr],
                                           place=place,
                                           eps=eps)
145 146

    def test_grad(self):
147
        paddle.enable_static()
148 149 150 151 152 153 154 155
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseSubDoubleGradCheck(unittest.TestCase):
156

157 158 159
    def subtract_wrapper(self, x):
        return paddle.subtract(x[0], x[1])

160 161
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
162
        # the shape of input variable should be clearly specified, not inlcude -1.
163
        shape = [2, 3, 4, 5]
164 165 166 167 168 169 170 171 172 173 174
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape, False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_sub(x, y)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape).astype(dtype)

175 176 177 178 179 180 181 182 183 184
        gradient_checker.double_grad_check([x, y],
                                           out,
                                           x_init=[x_arr, y_arr],
                                           place=place,
                                           eps=eps)
        gradient_checker.double_grad_check_for_dygraph(self.subtract_wrapper,
                                                       [x, y],
                                                       out,
                                                       x_init=[x_arr, y_arr],
                                                       place=place)
185 186

    def test_grad(self):
187
        paddle.enable_static()
188 189 190 191 192 193 194 195
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseSubBroadcastDoubleGradCheck(unittest.TestCase):
196

197 198
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
199
        # the shape of input variable should be clearly specified, not inlcude -1.
200
        shape = [2, 3, 4, 5]
201 202 203 204 205 206 207 208 209 210 211
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape[:-1], False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_sub(x, y, axis=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype)

212 213 214 215 216
        gradient_checker.double_grad_check([x, y],
                                           out,
                                           x_init=[x_arr, y_arr],
                                           place=place,
                                           eps=eps)
217 218

    def test_grad(self):
219
        paddle.enable_static()
220 221 222 223 224 225 226 227
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseDivDoubleGradCheck(unittest.TestCase):
228

229 230 231
    def divide_wrapper(self, x):
        return paddle.divide(x[0], x[1])

232 233
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
234
        # the shape of input variable should be clearly specified, not inlcude -1.
235
        shape = [2, 3, 4, 5]
236 237 238 239 240 241 242 243 244 245 246 247
        eps = 0.0001
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape, False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_div(x, y, axis=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr[np.abs(y_arr) < 0.005] = 0.02

248 249 250 251 252 253 254 255 256 257 258 259
        gradient_checker.double_grad_check([x, y],
                                           out,
                                           x_init=[x_arr, y_arr],
                                           place=place,
                                           eps=eps,
                                           atol=1e-3)
        gradient_checker.double_grad_check_for_dygraph(self.divide_wrapper,
                                                       [x, y],
                                                       out,
                                                       x_init=[x_arr, y_arr],
                                                       place=place,
                                                       atol=1e-3)
260 261

    def test_grad(self):
262
        paddle.enable_static()
263 264 265 266 267 268 269 270
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseDivBroadcastDoubleGradCheck(unittest.TestCase):
271

272 273
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
274
        # the shape of input variable should be clearly specified, not inlcude -1.
275
        shape = [2, 3, 4, 5]
276 277 278 279 280 281 282 283 284 285 286 287
        eps = 0.0001
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape[1:-1], False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_div(x, y, axis=1)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape[1:-1]).astype(dtype)
        y_arr[np.abs(y_arr) < 0.005] = 0.02

288 289 290 291 292 293
        gradient_checker.double_grad_check([x, y],
                                           out,
                                           x_init=[x_arr, y_arr],
                                           place=place,
                                           eps=eps,
                                           atol=1e-3)
294 295

    def test_grad(self):
296
        paddle.enable_static()
297 298 299 300 301 302 303
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


304
class TestElementwiseAddTripleGradCheck(unittest.TestCase):
305

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        shape = [2, 3, 4, 5]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape, False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_add(x, y)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape).astype(dtype)

321 322 323 324 325
        gradient_checker.triple_grad_check([x, y],
                                           out,
                                           x_init=[x_arr, y_arr],
                                           place=place,
                                           eps=eps)
326 327

    def test_grad(self):
328
        paddle.enable_static()
329 330 331 332 333 334 335 336
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseAddBroadcastTripleGradCheck(unittest.TestCase):
337

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        shape = [2, 3, 4, 5]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape[:-1], False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_add(x, y, axis=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype)

353 354 355 356 357
        gradient_checker.triple_grad_check([x, y],
                                           out,
                                           x_init=[x_arr, y_arr],
                                           place=place,
                                           eps=eps)
358 359

    def test_grad(self):
360
        paddle.enable_static()
361 362 363 364 365 366 367
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


368
class TestElementwiseMulTripleGradCheck(unittest.TestCase):
369

370 371 372
    def multiply_wrapper(self, x):
        return paddle.multiply(x[0], x[1])

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        shape = [2, 3, 4, 5]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape, False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_mul(x, y)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape).astype(dtype)

388 389 390 391 392
        gradient_checker.triple_grad_check([x, y],
                                           out,
                                           x_init=[x_arr, y_arr],
                                           place=place,
                                           eps=eps)
393
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
394 395 396 397 398
        gradient_checker.triple_grad_check_for_dygraph(self.multiply_wrapper,
                                                       [x, y],
                                                       out,
                                                       x_init=[x_arr, y_arr],
                                                       place=place)
399
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
400 401

    def test_grad(self):
402
        paddle.enable_static()
403 404 405 406 407 408 409 410
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseMulBroadcastTripleGradCheck(unittest.TestCase):
411

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        shape = [2, 3, 4, 5]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape[:-1], False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_add(x, y, axis=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype)

427 428 429 430 431
        gradient_checker.triple_grad_check([x, y],
                                           out,
                                           x_init=[x_arr, y_arr],
                                           place=place,
                                           eps=eps)
432 433

    def test_grad(self):
434
        paddle.enable_static()
435 436 437 438 439 440 441
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


442 443
if __name__ == "__main__":
    unittest.main()