test_elementwise_nn_grad.py 12.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np

20
import paddle
21 22 23 24 25 26 27 28 29 30 31
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
import gradient_checker

from decorator_helper import prog_scope


class TestElementwiseMulDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
32
        # the shape of input variable should be clearly specified, not inlcude -1.
33
        shape = [2, 3, 4, 5]
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape, False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_mul(x, y)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)

    def test_grad(self):
49
        paddle.enable_static()
50 51 52 53 54 55 56 57 58 59
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseMulBroadcastDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
60
        # the shape of input variable should be clearly specified, not inlcude -1.
61
        shape = [2, 3, 4, 5]
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape[:-1], False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_mul(x, y, axis=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype)

        gradient_checker.double_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)

    def test_grad(self):
77
        paddle.enable_static()
78 79 80 81 82 83 84 85 86 87
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseAddDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
88
        # the shape of input variable should be clearly specified, not inlcude -1.
89
        shape = [2, 3, 4, 5]
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape, False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_add(x, y)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)

    def test_grad(self):
105
        paddle.enable_static()
106 107 108 109 110 111 112 113 114 115
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseAddBroadcastDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
116
        # the shape of input variable should be clearly specified, not inlcude -1.
117
        shape = [2, 3, 4, 5]
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape[:-1], False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_add(x, y, axis=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype)

        gradient_checker.double_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)

    def test_grad(self):
133
        paddle.enable_static()
134 135 136 137 138 139 140 141 142 143
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseSubDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
144
        # the shape of input variable should be clearly specified, not inlcude -1.
145
        shape = [2, 3, 4, 5]
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape, False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_sub(x, y)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)

    def test_grad(self):
161
        paddle.enable_static()
162 163 164 165 166 167 168 169 170 171
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseSubBroadcastDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
172
        # the shape of input variable should be clearly specified, not inlcude -1.
173
        shape = [2, 3, 4, 5]
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape[:-1], False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_sub(x, y, axis=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype)

        gradient_checker.double_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)

    def test_grad(self):
189
        paddle.enable_static()
190 191 192 193 194 195 196 197 198 199
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseDivDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
200
        # the shape of input variable should be clearly specified, not inlcude -1.
201
        shape = [2, 3, 4, 5]
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
        eps = 0.0001
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape, False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_div(x, y, axis=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr[np.abs(y_arr) < 0.005] = 0.02

        gradient_checker.double_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps, atol=1e-3)

    def test_grad(self):
218
        paddle.enable_static()
219 220 221 222 223 224 225 226 227 228
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseDivBroadcastDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
229
        # the shape of input variable should be clearly specified, not inlcude -1.
230
        shape = [2, 3, 4, 5]
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
        eps = 0.0001
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape[1:-1], False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_div(x, y, axis=1)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape[1:-1]).astype(dtype)
        y_arr[np.abs(y_arr) < 0.005] = 0.02

        gradient_checker.double_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps, atol=1e-3)

    def test_grad(self):
247
        paddle.enable_static()
248 249 250 251 252 253 254
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
class TestElementwiseAddTripleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        shape = [2, 3, 4, 5]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape, False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_add(x, y)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        gradient_checker.triple_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)

    def test_grad(self):
275
        paddle.enable_static()
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseAddBroadcastTripleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        shape = [2, 3, 4, 5]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape[:-1], False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_add(x, y, axis=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype)

        gradient_checker.triple_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)

    def test_grad(self):
303
        paddle.enable_static()
304 305 306 307 308 309 310
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


311
class TestElementwiseMulTripleGradCheck(unittest.TestCase):
312 313 314
    def multiply_wrapper(self, x):
        return paddle.multiply(x[0], x[1])

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        shape = [2, 3, 4, 5]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape, False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_mul(x, y)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        gradient_checker.triple_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
332 333 334 335 336
        gradient_checker.triple_grad_check_for_dygraph(
            self.multiply_wrapper, [x, y],
            out,
            x_init=[x_arr, y_arr],
            place=place)
337 338

    def test_grad(self):
339
        paddle.enable_static()
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestElementwiseMulBroadcastTripleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        shape = [2, 3, 4, 5]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        y = layers.data('y', shape[:-1], False, dtype)
        x.persistable = True
        y.persistable = True
        out = layers.elementwise_add(x, y, axis=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, shape[:-1]).astype(dtype)

        gradient_checker.triple_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)

    def test_grad(self):
367
        paddle.enable_static()
368 369 370 371 372 373 374
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


375 376
if __name__ == "__main__":
    unittest.main()