test_dataset_dataloader.py 8.0 KB
Newer Older
Z
Zeng Jinle 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
Z
Zeng Jinle 已提交
16 17 18 19
import paddle.fluid as fluid
import numpy as np
import os
import unittest
20
import tempfile
Z
Zeng Jinle 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
from simple_nets import simple_fc_net_with_inputs

BATCH_SIZE = 32
BATCH_NUM = 10
EPOCH_NUM = 4

IMAGE_SHAPE = [2, 3]
LABEL_SHAPE = [1]


def get_place_string(p):
    if isinstance(p, (fluid.CPUPlace or fluid.CUDAPlace)):
        tmp = fluid.core.Place()
        tmp.set_place(p)
        p = tmp

    if p._type() == fluid.CPUPlace()._type():
        return 'CPUPlace()'
    else:
        return 'CUDAPlace()'


def write_reader_data_to_file(filename, reader):
    with open(filename, 'w') as fid:
        for instance_list in reader():
            for i, instance in enumerate(instance_list):
47 48 49 50 51 52
                instance = np.reshape(
                    instance,
                    [
                        instance.size,
                    ],
                )
Z
Zeng Jinle 已提交
53 54 55 56 57 58 59 60 61 62 63
                fid.write(str(instance.size) + ' ')
                fid.write(' '.join(map(str, instance)))
                fid.write(' ')

            fid.write('\n')


def fake_reader(batch_size=BATCH_SIZE, batch_num=BATCH_NUM):
    def __reader__():
        iteration = BATCH_SIZE * BATCH_NUM
        iteration = int(iteration + BATCH_SIZE / 2)
64
        for _ in range(iteration):
Z
Zeng Jinle 已提交
65
            image = np.random.random(size=IMAGE_SHAPE).astype('float32')
66 67 68
            label = np.random.random_integers(
                size=LABEL_SHAPE, low=0, high=9
            ).astype('int64')
Z
Zeng Jinle 已提交
69 70 71 72 73 74 75 76 77
            yield image, label

    return __reader__


class DatasetLoaderTestBase(unittest.TestCase):
    def setUp(self):
        self.dataset_name = "QueueDataset"
        self.drop_last = False
78
        self.temp_dir = tempfile.TemporaryDirectory()
Z
Zeng Jinle 已提交
79 80

    def tearDown(self):
81
        self.temp_dir.cleanup()
Z
Zeng Jinle 已提交
82 83 84 85 86

    def build_network(self):
        main_prog = fluid.Program()
        startup_prog = fluid.Program()
        with fluid.program_guard(main_prog, startup_prog):
87 88 89 90 91 92
            image = fluid.layers.data(
                name='image', shape=IMAGE_SHAPE, dtype='float32'
            )
            label = fluid.layers.data(
                name='label', shape=LABEL_SHAPE, dtype='int64'
            )
Z
Zeng Jinle 已提交
93 94 95 96 97 98 99

            simple_fc_net_with_inputs(image, label)

        return main_prog, startup_prog, [image, label]

    def check_batch_number(self, place, randomize_batch_num=False):
        main_prog, startup_prog, feeds = self.build_network()
100 101 102 103 104
        if self.dataset_name == "QueueDataset":
            dataset = paddle.distributed.QueueDataset()
        else:
            dataset = paddle.distributed.InMemoryDataset()
        dataset._set_batch_size(BATCH_SIZE)
Z
Zeng Jinle 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118

        if isinstance(place, fluid.CPUPlace):
            file_num = 10
            os.environ['CPU_NUM'] = str(file_num)
            places = fluid.cpu_places()
            use_cuda = False
        else:
            file_num = fluid.core.get_cuda_device_count()
            places = fluid.cuda_places()
            use_cuda = True

        filelist = []
        if file_num > 1 and randomize_batch_num:
            random_delta_batch_size = np.random.random_integers(
119 120
                low=-BATCH_NUM / 2, high=BATCH_NUM / 2, size=[file_num]
            )
Z
Zeng Jinle 已提交
121
            random_delta_batch_size[-1] = -int(
122 123
                np.sum(random_delta_batch_size[0:-1])
            )
Z
Zeng Jinle 已提交
124 125 126
        else:
            random_delta_batch_size = np.zeros(shape=[file_num])

127
        for i in range(file_num):
128 129 130
            filename = os.path.join(
                self.temp_dir.name, 'dataset_test_{}.txt'.format(i)
            )
Z
Zeng Jinle 已提交
131 132 133
            filelist.append(filename)
            write_reader_data_to_file(
                filename,
134 135
                fake_reader(batch_num=BATCH_NUM + random_delta_batch_size[i]),
            )
Z
Zeng Jinle 已提交
136 137

        dataset.set_filelist(filelist)
138 139
        dataset._set_use_var(feeds)
        dataset._set_pipe_command("cat")
Z
Zeng Jinle 已提交
140 141 142
        if self.dataset_name == 'InMemoryDataset':
            dataset.load_into_memory()

143 144 145
        dataloader = fluid.io.DataLoader.from_dataset(
            dataset=dataset, places=places, drop_last=self.drop_last
        )
Z
Zeng Jinle 已提交
146 147 148 149 150
        prog = fluid.CompiledProgram(main_prog).with_data_parallel()
        exe = fluid.Executor(place)

        exe.run(startup_prog)

151
        for _ in range(EPOCH_NUM):
Z
Zeng Jinle 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
            has_complete_batch = False
            for batch_id, data in enumerate(dataloader):
                self.assertEquals(len(places), len(data))
                for idx, data_on_each_device in enumerate(data):
                    image = data_on_each_device["image"]
                    label = data_on_each_device["label"]

                    if self.drop_last:
                        batch_size = BATCH_SIZE
                    else:
                        if batch_id == BATCH_NUM:
                            batch_size = BATCH_SIZE / 2
                        else:
                            batch_size = BATCH_SIZE

                    self.assertEquals(image.shape()[1:], IMAGE_SHAPE)
168 169 170 171 172 173
                    self.assertTrue(
                        image._place()._equals(places[idx]),
                        msg=get_place_string(image._place())
                        + ' vs '
                        + get_place_string(places[idx]),
                    )
Z
Zeng Jinle 已提交
174 175 176
                    if self.drop_last:
                        self.assertEquals(image.shape()[0], BATCH_SIZE)
                    else:
177 178 179 180
                        self.assertTrue(
                            image.shape()[0] == BATCH_SIZE
                            or image.shape()[0] == BATCH_SIZE / 2
                        )
Z
Zeng Jinle 已提交
181 182 183 184 185 186

                    self.assertEquals(label.shape()[1:], LABEL_SHAPE)
                    self.assertTrue(label._place()._equals(places[idx]))
                    if self.drop_last:
                        self.assertEquals(label.shape()[0], BATCH_SIZE)
                    else:
187 188 189 190
                        self.assertTrue(
                            label.shape()[0] == BATCH_SIZE
                            or label.shape()[0] == BATCH_SIZE / 2
                        )
Z
Zeng Jinle 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

                    self.assertEquals(image.shape()[0], label.shape()[0])

                    if image.shape()[0] == BATCH_SIZE:
                        has_complete_batch = True

                exe.run(prog, feed=data)

            self.assertTrue(has_complete_batch)

    def get_all_places(self):
        p = [fluid.CPUPlace()]
        if fluid.is_compiled_with_cuda():
            p.append(fluid.CUDAPlace(0))
        return p

    def test_batch_number_with_same_length_files(self):
        for p in self.get_all_places():
            with fluid.scope_guard(fluid.Scope()):
                self.check_batch_number(place=p, randomize_batch_num=False)

    def test_batch_number_with_different_length_files(self):
        for p in self.get_all_places():
            with fluid.scope_guard(fluid.Scope()):
                self.check_batch_number(place=p, randomize_batch_num=True)


class QueueDatasetTestWithoutDropLast(DatasetLoaderTestBase):
    def setUp(self):
        self.dataset_name = "QueueDataset"
        self.drop_last = True
222
        self.temp_dir = tempfile.TemporaryDirectory()
Z
Zeng Jinle 已提交
223 224 225 226 227 228


class InMemoryDatasetTestWithoutDropLast(DatasetLoaderTestBase):
    def setUp(self):
        self.dataset_name = "InMemoryDataset"
        self.drop_last = False
229
        self.temp_dir = tempfile.TemporaryDirectory()
Z
Zeng Jinle 已提交
230 231 232 233 234 235


class InMemoryDatasetTestWithDropLast(DatasetLoaderTestBase):
    def setUp(self):
        self.dataset_name = "InMemoryDataset"
        self.drop_last = True
236
        self.temp_dir = tempfile.TemporaryDirectory()
Z
Zeng Jinle 已提交
237 238 239 240


if __name__ == '__main__':
    unittest.main()