test_dataset_dataloader.py 8.0 KB
Newer Older
Z
Zeng Jinle 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
Z
Zeng Jinle 已提交
16 17 18 19
import paddle.fluid as fluid
import numpy as np
import os
import unittest
20
import tempfile
Z
Zeng Jinle 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
from simple_nets import simple_fc_net_with_inputs

BATCH_SIZE = 32
BATCH_NUM = 10
EPOCH_NUM = 4

IMAGE_SHAPE = [2, 3]
LABEL_SHAPE = [1]


def get_place_string(p):
    if isinstance(p, (fluid.CPUPlace or fluid.CUDAPlace)):
        tmp = fluid.core.Place()
        tmp.set_place(p)
        p = tmp

    if p._type() == fluid.CPUPlace()._type():
        return 'CPUPlace()'
    else:
        return 'CUDAPlace()'


def write_reader_data_to_file(filename, reader):
    with open(filename, 'w') as fid:
        for instance_list in reader():
            for i, instance in enumerate(instance_list):
47 48 49
                instance = np.reshape(instance, [
                    instance.size,
                ])
Z
Zeng Jinle 已提交
50 51 52 53 54 55 56 57
                fid.write(str(instance.size) + ' ')
                fid.write(' '.join(map(str, instance)))
                fid.write(' ')

            fid.write('\n')


def fake_reader(batch_size=BATCH_SIZE, batch_num=BATCH_NUM):
58

Z
Zeng Jinle 已提交
59 60 61
    def __reader__():
        iteration = BATCH_SIZE * BATCH_NUM
        iteration = int(iteration + BATCH_SIZE / 2)
62
        for _ in range(iteration):
Z
Zeng Jinle 已提交
63
            image = np.random.random(size=IMAGE_SHAPE).astype('float32')
64 65
            label = np.random.random_integers(size=LABEL_SHAPE, low=0,
                                              high=9).astype('int64')
Z
Zeng Jinle 已提交
66 67 68 69 70 71
            yield image, label

    return __reader__


class DatasetLoaderTestBase(unittest.TestCase):
72

Z
Zeng Jinle 已提交
73 74 75
    def setUp(self):
        self.dataset_name = "QueueDataset"
        self.drop_last = False
76
        self.temp_dir = tempfile.TemporaryDirectory()
Z
Zeng Jinle 已提交
77 78

    def tearDown(self):
79
        self.temp_dir.cleanup()
Z
Zeng Jinle 已提交
80 81 82 83 84

    def build_network(self):
        main_prog = fluid.Program()
        startup_prog = fluid.Program()
        with fluid.program_guard(main_prog, startup_prog):
85 86 87 88 89 90
            image = fluid.layers.data(name='image',
                                      shape=IMAGE_SHAPE,
                                      dtype='float32')
            label = fluid.layers.data(name='label',
                                      shape=LABEL_SHAPE,
                                      dtype='int64')
Z
Zeng Jinle 已提交
91 92 93 94 95 96 97

            simple_fc_net_with_inputs(image, label)

        return main_prog, startup_prog, [image, label]

    def check_batch_number(self, place, randomize_batch_num=False):
        main_prog, startup_prog, feeds = self.build_network()
98 99 100 101 102
        if self.dataset_name == "QueueDataset":
            dataset = paddle.distributed.QueueDataset()
        else:
            dataset = paddle.distributed.InMemoryDataset()
        dataset._set_batch_size(BATCH_SIZE)
Z
Zeng Jinle 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

        if isinstance(place, fluid.CPUPlace):
            file_num = 10
            os.environ['CPU_NUM'] = str(file_num)
            places = fluid.cpu_places()
            use_cuda = False
        else:
            file_num = fluid.core.get_cuda_device_count()
            places = fluid.cuda_places()
            use_cuda = True

        filelist = []
        if file_num > 1 and randomize_batch_num:
            random_delta_batch_size = np.random.random_integers(
                low=-BATCH_NUM / 2, high=BATCH_NUM / 2, size=[file_num])
            random_delta_batch_size[-1] = -int(
                np.sum(random_delta_batch_size[0:-1]))
        else:
            random_delta_batch_size = np.zeros(shape=[file_num])

123
        for i in range(file_num):
124 125
            filename = os.path.join(self.temp_dir.name,
                                    'dataset_test_{}.txt'.format(i))
Z
Zeng Jinle 已提交
126 127 128 129 130 131
            filelist.append(filename)
            write_reader_data_to_file(
                filename,
                fake_reader(batch_num=BATCH_NUM + random_delta_batch_size[i]))

        dataset.set_filelist(filelist)
132 133
        dataset._set_use_var(feeds)
        dataset._set_pipe_command("cat")
Z
Zeng Jinle 已提交
134 135 136
        if self.dataset_name == 'InMemoryDataset':
            dataset.load_into_memory()

137 138 139
        dataloader = fluid.io.DataLoader.from_dataset(dataset=dataset,
                                                      places=places,
                                                      drop_last=self.drop_last)
Z
Zeng Jinle 已提交
140 141 142 143 144
        prog = fluid.CompiledProgram(main_prog).with_data_parallel()
        exe = fluid.Executor(place)

        exe.run(startup_prog)

145
        for _ in range(EPOCH_NUM):
Z
Zeng Jinle 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
            has_complete_batch = False
            for batch_id, data in enumerate(dataloader):
                self.assertEquals(len(places), len(data))
                for idx, data_on_each_device in enumerate(data):
                    image = data_on_each_device["image"]
                    label = data_on_each_device["label"]

                    if self.drop_last:
                        batch_size = BATCH_SIZE
                    else:
                        if batch_id == BATCH_NUM:
                            batch_size = BATCH_SIZE / 2
                        else:
                            batch_size = BATCH_SIZE

                    self.assertEquals(image.shape()[1:], IMAGE_SHAPE)
162 163 164
                    self.assertTrue(image._place()._equals(places[idx]),
                                    msg=get_place_string(image._place()) +
                                    ' vs ' + get_place_string(places[idx]))
Z
Zeng Jinle 已提交
165 166 167
                    if self.drop_last:
                        self.assertEquals(image.shape()[0], BATCH_SIZE)
                    else:
168 169
                        self.assertTrue(image.shape()[0] == BATCH_SIZE
                                        or image.shape()[0] == BATCH_SIZE / 2)
Z
Zeng Jinle 已提交
170 171 172 173 174 175

                    self.assertEquals(label.shape()[1:], LABEL_SHAPE)
                    self.assertTrue(label._place()._equals(places[idx]))
                    if self.drop_last:
                        self.assertEquals(label.shape()[0], BATCH_SIZE)
                    else:
176 177
                        self.assertTrue(label.shape()[0] == BATCH_SIZE
                                        or label.shape()[0] == BATCH_SIZE / 2)
Z
Zeng Jinle 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

                    self.assertEquals(image.shape()[0], label.shape()[0])

                    if image.shape()[0] == BATCH_SIZE:
                        has_complete_batch = True

                exe.run(prog, feed=data)

            self.assertTrue(has_complete_batch)

    def get_all_places(self):
        p = [fluid.CPUPlace()]
        if fluid.is_compiled_with_cuda():
            p.append(fluid.CUDAPlace(0))
        return p

    def test_batch_number_with_same_length_files(self):
        for p in self.get_all_places():
            with fluid.scope_guard(fluid.Scope()):
                self.check_batch_number(place=p, randomize_batch_num=False)

    def test_batch_number_with_different_length_files(self):
        for p in self.get_all_places():
            with fluid.scope_guard(fluid.Scope()):
                self.check_batch_number(place=p, randomize_batch_num=True)


class QueueDatasetTestWithoutDropLast(DatasetLoaderTestBase):
206

Z
Zeng Jinle 已提交
207 208 209
    def setUp(self):
        self.dataset_name = "QueueDataset"
        self.drop_last = True
210
        self.temp_dir = tempfile.TemporaryDirectory()
Z
Zeng Jinle 已提交
211 212 213


class InMemoryDatasetTestWithoutDropLast(DatasetLoaderTestBase):
214

Z
Zeng Jinle 已提交
215 216 217
    def setUp(self):
        self.dataset_name = "InMemoryDataset"
        self.drop_last = False
218
        self.temp_dir = tempfile.TemporaryDirectory()
Z
Zeng Jinle 已提交
219 220 221


class InMemoryDatasetTestWithDropLast(DatasetLoaderTestBase):
222

Z
Zeng Jinle 已提交
223 224 225
    def setUp(self):
        self.dataset_name = "InMemoryDataset"
        self.drop_last = True
226
        self.temp_dir = tempfile.TemporaryDirectory()
Z
Zeng Jinle 已提交
227 228 229 230


if __name__ == '__main__':
    unittest.main()