test_dataset_dataloader.py 8.0 KB
Newer Older
Z
Zeng Jinle 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
Z
Zeng Jinle 已提交
16 17 18 19 20
import paddle.fluid as fluid
import numpy as np
import six
import os
import unittest
21
import tempfile
Z
Zeng Jinle 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
from simple_nets import simple_fc_net_with_inputs

BATCH_SIZE = 32
BATCH_NUM = 10
EPOCH_NUM = 4

IMAGE_SHAPE = [2, 3]
LABEL_SHAPE = [1]


def get_place_string(p):
    if isinstance(p, (fluid.CPUPlace or fluid.CUDAPlace)):
        tmp = fluid.core.Place()
        tmp.set_place(p)
        p = tmp

    if p._type() == fluid.CPUPlace()._type():
        return 'CPUPlace()'
    else:
        return 'CUDAPlace()'


def write_reader_data_to_file(filename, reader):
    with open(filename, 'w') as fid:
        for instance_list in reader():
            for i, instance in enumerate(instance_list):
48 49 50
                instance = np.reshape(instance, [
                    instance.size,
                ])
Z
Zeng Jinle 已提交
51 52 53 54 55 56 57 58
                fid.write(str(instance.size) + ' ')
                fid.write(' '.join(map(str, instance)))
                fid.write(' ')

            fid.write('\n')


def fake_reader(batch_size=BATCH_SIZE, batch_num=BATCH_NUM):
59

Z
Zeng Jinle 已提交
60 61 62 63 64
    def __reader__():
        iteration = BATCH_SIZE * BATCH_NUM
        iteration = int(iteration + BATCH_SIZE / 2)
        for _ in six.moves.range(iteration):
            image = np.random.random(size=IMAGE_SHAPE).astype('float32')
65 66
            label = np.random.random_integers(size=LABEL_SHAPE, low=0,
                                              high=9).astype('int64')
Z
Zeng Jinle 已提交
67 68 69 70 71 72
            yield image, label

    return __reader__


class DatasetLoaderTestBase(unittest.TestCase):
73

Z
Zeng Jinle 已提交
74 75 76
    def setUp(self):
        self.dataset_name = "QueueDataset"
        self.drop_last = False
77
        self.temp_dir = tempfile.TemporaryDirectory()
Z
Zeng Jinle 已提交
78 79

    def tearDown(self):
80
        self.temp_dir.cleanup()
Z
Zeng Jinle 已提交
81 82 83 84 85

    def build_network(self):
        main_prog = fluid.Program()
        startup_prog = fluid.Program()
        with fluid.program_guard(main_prog, startup_prog):
86 87 88 89 90 91
            image = fluid.layers.data(name='image',
                                      shape=IMAGE_SHAPE,
                                      dtype='float32')
            label = fluid.layers.data(name='label',
                                      shape=LABEL_SHAPE,
                                      dtype='int64')
Z
Zeng Jinle 已提交
92 93 94 95 96 97 98

            simple_fc_net_with_inputs(image, label)

        return main_prog, startup_prog, [image, label]

    def check_batch_number(self, place, randomize_batch_num=False):
        main_prog, startup_prog, feeds = self.build_network()
99 100 101 102 103
        if self.dataset_name == "QueueDataset":
            dataset = paddle.distributed.QueueDataset()
        else:
            dataset = paddle.distributed.InMemoryDataset()
        dataset._set_batch_size(BATCH_SIZE)
Z
Zeng Jinle 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124

        if isinstance(place, fluid.CPUPlace):
            file_num = 10
            os.environ['CPU_NUM'] = str(file_num)
            places = fluid.cpu_places()
            use_cuda = False
        else:
            file_num = fluid.core.get_cuda_device_count()
            places = fluid.cuda_places()
            use_cuda = True

        filelist = []
        if file_num > 1 and randomize_batch_num:
            random_delta_batch_size = np.random.random_integers(
                low=-BATCH_NUM / 2, high=BATCH_NUM / 2, size=[file_num])
            random_delta_batch_size[-1] = -int(
                np.sum(random_delta_batch_size[0:-1]))
        else:
            random_delta_batch_size = np.zeros(shape=[file_num])

        for i in six.moves.range(file_num):
125 126
            filename = os.path.join(self.temp_dir.name,
                                    'dataset_test_{}.txt'.format(i))
Z
Zeng Jinle 已提交
127 128 129 130 131 132
            filelist.append(filename)
            write_reader_data_to_file(
                filename,
                fake_reader(batch_num=BATCH_NUM + random_delta_batch_size[i]))

        dataset.set_filelist(filelist)
133 134
        dataset._set_use_var(feeds)
        dataset._set_pipe_command("cat")
Z
Zeng Jinle 已提交
135 136 137
        if self.dataset_name == 'InMemoryDataset':
            dataset.load_into_memory()

138 139 140
        dataloader = fluid.io.DataLoader.from_dataset(dataset=dataset,
                                                      places=places,
                                                      drop_last=self.drop_last)
Z
Zeng Jinle 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
        prog = fluid.CompiledProgram(main_prog).with_data_parallel()
        exe = fluid.Executor(place)

        exe.run(startup_prog)

        for _ in six.moves.range(EPOCH_NUM):
            has_complete_batch = False
            for batch_id, data in enumerate(dataloader):
                self.assertEquals(len(places), len(data))
                for idx, data_on_each_device in enumerate(data):
                    image = data_on_each_device["image"]
                    label = data_on_each_device["label"]

                    if self.drop_last:
                        batch_size = BATCH_SIZE
                    else:
                        if batch_id == BATCH_NUM:
                            batch_size = BATCH_SIZE / 2
                        else:
                            batch_size = BATCH_SIZE

                    self.assertEquals(image.shape()[1:], IMAGE_SHAPE)
163 164 165
                    self.assertTrue(image._place()._equals(places[idx]),
                                    msg=get_place_string(image._place()) +
                                    ' vs ' + get_place_string(places[idx]))
Z
Zeng Jinle 已提交
166 167 168
                    if self.drop_last:
                        self.assertEquals(image.shape()[0], BATCH_SIZE)
                    else:
169 170
                        self.assertTrue(image.shape()[0] == BATCH_SIZE
                                        or image.shape()[0] == BATCH_SIZE / 2)
Z
Zeng Jinle 已提交
171 172 173 174 175 176

                    self.assertEquals(label.shape()[1:], LABEL_SHAPE)
                    self.assertTrue(label._place()._equals(places[idx]))
                    if self.drop_last:
                        self.assertEquals(label.shape()[0], BATCH_SIZE)
                    else:
177 178
                        self.assertTrue(label.shape()[0] == BATCH_SIZE
                                        or label.shape()[0] == BATCH_SIZE / 2)
Z
Zeng Jinle 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206

                    self.assertEquals(image.shape()[0], label.shape()[0])

                    if image.shape()[0] == BATCH_SIZE:
                        has_complete_batch = True

                exe.run(prog, feed=data)

            self.assertTrue(has_complete_batch)

    def get_all_places(self):
        p = [fluid.CPUPlace()]
        if fluid.is_compiled_with_cuda():
            p.append(fluid.CUDAPlace(0))
        return p

    def test_batch_number_with_same_length_files(self):
        for p in self.get_all_places():
            with fluid.scope_guard(fluid.Scope()):
                self.check_batch_number(place=p, randomize_batch_num=False)

    def test_batch_number_with_different_length_files(self):
        for p in self.get_all_places():
            with fluid.scope_guard(fluid.Scope()):
                self.check_batch_number(place=p, randomize_batch_num=True)


class QueueDatasetTestWithoutDropLast(DatasetLoaderTestBase):
207

Z
Zeng Jinle 已提交
208 209 210
    def setUp(self):
        self.dataset_name = "QueueDataset"
        self.drop_last = True
211
        self.temp_dir = tempfile.TemporaryDirectory()
Z
Zeng Jinle 已提交
212 213 214


class InMemoryDatasetTestWithoutDropLast(DatasetLoaderTestBase):
215

Z
Zeng Jinle 已提交
216 217 218
    def setUp(self):
        self.dataset_name = "InMemoryDataset"
        self.drop_last = False
219
        self.temp_dir = tempfile.TemporaryDirectory()
Z
Zeng Jinle 已提交
220 221 222


class InMemoryDatasetTestWithDropLast(DatasetLoaderTestBase):
223

Z
Zeng Jinle 已提交
224 225 226
    def setUp(self):
        self.dataset_name = "InMemoryDataset"
        self.drop_last = True
227
        self.temp_dir = tempfile.TemporaryDirectory()
Z
Zeng Jinle 已提交
228 229 230 231


if __name__ == '__main__':
    unittest.main()