ProcessGroupNCCL.cc 51.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/distributed/collective/ProcessGroupNCCL.h"
16

L
lilong12 已提交
17
#include "paddle/fluid/distributed/collective/Common.h"
18
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
19
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
B
Baibaifan 已提交
20
#include "paddle/fluid/platform/place.h"
L
LiYuRio 已提交
21
#include "paddle/phi/api/lib/utils/allocator.h"
B
Baibaifan 已提交
22
#include "paddle/phi/common/place.h"
L
LiYuRio 已提交
23
#include "paddle/phi/core/device_context.h"
24 25 26 27 28 29 30 31 32 33 34

DECLARE_bool(nccl_blocking_wait);
DECLARE_bool(use_stream_safe_cuda_allocator);

constexpr int64_t kWaitBlockTImeout = 10;

namespace paddle {
namespace distributed {

void SyncDefaultStream(
    const std::vector<Place>& places,
L
Leo Chen 已提交
35 36
    std::vector<EventManager>& ncclEvents,                     // NOLINT
    std::vector<std::unique_ptr<phi::GPUContext>>& dev_ctx) {  // NOLINT
37
  for (size_t i = 0; i < places.size(); ++i) {
L
Leo Chen 已提交
38
    auto* default_ctx = static_cast<phi::GPUContext*>(
39
        platform::DeviceContextPool::Instance().Get(places[i]));
40 41
    ncclEvents[i].Record(*default_ctx);
    ncclEvents[i].Block(*dev_ctx[i]);
42 43 44 45
  }
}

std::shared_ptr<ProcessGroupNCCL::NCCLTask> ProcessGroupNCCL::CreateTask(
46 47 48
    std::vector<Place> places,
    int rank,
    CommType comm_type,
49
    const std::vector<phi::DenseTensor>& inputs) {
50 51
  return std::make_shared<ProcessGroupNCCL::NCCLTask>(
      places, rank, comm_type, inputs);
52 53
}

54 55 56 57 58 59 60 61 62 63 64
std::shared_ptr<ProcessGroupNCCL::NCCLTask> ProcessGroupNCCL::CreateTask(
    const std::vector<Place>& places,
    int rank,
    CommType comm_type,
    const std::vector<phi::DenseTensor>& inputs,
    bool is_sync,
    bool use_calc_stream) {
  return std::make_shared<ProcessGroupNCCL::NCCLTask>(
      places, rank, comm_type, inputs, is_sync, use_calc_stream);
}

65
ProcessGroupNCCL::NCCLTask::NCCLTask(
66 67 68
    const std::vector<Place>& places,
    int rank,
    CommType CommType,
69
    const std::vector<phi::DenseTensor>& inputs)
70 71 72 73 74 75 76 77 78 79 80 81 82 83
    : TaskStream(rank, inputs, CommType), places_(places) {
  control_events_.resize(places.size());
  ncclComms_.resize(places.size());
}

ProcessGroupNCCL::NCCLTask::NCCLTask(
    const std::vector<Place>& places,
    int rank,
    CommType comm_type,
    const std::vector<phi::DenseTensor>& inputs,
    bool sync_op,
    bool use_calc_stream)
    : TaskStream(rank, inputs, comm_type, sync_op, use_calc_stream),
      places_(places) {
84 85 86 87 88 89 90
  control_events_.resize(places.size());
  ncclComms_.resize(places.size());
}

ProcessGroupNCCL::NCCLTask::~NCCLTask() {}

void ProcessGroupNCCL::NCCLTask::SetOutputs(
91 92
    std::vector<phi::DenseTensor>& outputs) {  // NOLINT
  outputs_ = std::make_shared<std::vector<phi::DenseTensor>>(outputs);
93 94 95 96
}

void ProcessGroupNCCL::NCCLTask::SynchronizeStreams() {
  for (size_t i = 0; i < places_.size(); ++i) {
L
Leo Chen 已提交
97
    auto* default_ctx = static_cast<phi::GPUContext*>(
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
        platform::DeviceContextPool::Instance().Get(places_[i]));
    default_ctx->WaitEvent(control_events_[i].GetRawCudaEvent());
  }
}

bool ProcessGroupNCCL::NCCLTask::IsCompleted() {
  for (size_t i = 0; i < places_.size(); ++i) {
    if (!control_events_[i].Query()) {
      return false;
    }
  }

  return true;
}

113 114 115 116 117
void ProcessGroupNCCL::NCCLTask::UpdateWaitChain(
    const phi::DeviceContext& ctx) {
  control_events_[0].Record(*static_cast<const phi::GPUContext*>(&ctx));
}

118
void ProcessGroupNCCL::CheckSplitSizes(std::vector<int64_t>* split_sizes,
119
                                       std::vector<int64_t> tensor_shape) {
120
  int64_t len_size = (*split_sizes).size();
121 122 123 124 125 126
  if (len_size == 0) {
    PADDLE_ENFORCE_EQ(tensor_shape[0] % size_ == 0,
                      true,
                      platform::errors::InvalidArgument(
                          "Tensor's dim[0] must be divisible by group size "
                          "when split_sizes not given."));
127 128 129 130
    (*split_sizes)
        .insert((*split_sizes).end(),
                size_,
                static_cast<int64_t>(tensor_shape[0] / size_));
131 132 133 134 135 136 137
  } else {
    PADDLE_ENFORCE_EQ(
        len_size == size_,
        true,
        platform::errors::InvalidArgument(
            "The length of split_sizes must be equal to group size."));
    auto sum_size = std::accumulate(
138
        (*split_sizes).begin(), (*split_sizes).end(), static_cast<int64_t>(0));
139 140 141 142 143 144 145 146
    PADDLE_ENFORCE_EQ(
        sum_size == tensor_shape[0],
        true,
        platform::errors::InvalidArgument(
            "The sum of split_sizes must be equal to tensor's dim[0]."));
  }
}

147 148
// TODO(sheniang03): Add timeout for wait, now timeout unused
bool ProcessGroupNCCL::NCCLTask::Wait(std::chrono::milliseconds timeout) {
149 150 151 152 153 154 155
  // Warning here when use calc stream but also invoke waiting explicitly.
  if (UseCalcStream()) {
    VLOG(3) << "Warning: The communication is on calc stream, wait here is "
               "useless.";
    return true;
  }

156 157 158 159 160 161 162
  SynchronizeStreams();
  if (FLAGS_nccl_blocking_wait) {
    // NOTE(shenliang03): It will block host for sync
    while (!IsCompleted()) {
      std::this_thread::sleep_for(std::chrono::milliseconds(kWaitBlockTImeout));
    }
  }
B
Baibaifan 已提交
163 164 165 166 167

  if (!barrierTensors_.empty()) {
    // If we use the work to do barrier, we should block cpu
    for (auto& place : places_) {
      platform::CUDADeviceGuard gpuGuard(place);
S
ShenLiang 已提交
168
#ifdef PADDLE_WITH_CUDA
B
Baibaifan 已提交
169
      PADDLE_ENFORCE_GPU_SUCCESS(cudaDeviceSynchronize());
S
ShenLiang 已提交
170 171 172
#else
      PADDLE_ENFORCE_GPU_SUCCESS(hipDeviceSynchronize());
#endif
B
Baibaifan 已提交
173 174
    }
  }
175 176 177 178 179 180
  return true;
}

// Same as Wait
void ProcessGroupNCCL::NCCLTask::Synchronize() { Wait(kWaitTimeout); }

181
ProcessGroupNCCL::ProcessGroupNCCL(const std::shared_ptr<Store>& store,
182 183 184 185
                                   int rank,
                                   int size,
                                   const platform::Place& place,
                                   int gid)
186
    : ProcessGroupStream(rank, size, place, gid), store_(store) {
187 188
  platform::SetDeviceId(place_.device);
}
189 190 191

void ProcessGroupNCCL::BroadcastUniqueNCCLID(
    std::vector<ncclUniqueId>& nccl_ids) {  // NOLINT
192 193
  if (rank_ == 0) {
    for (size_t i = 0; i < nccl_ids.size(); i++) {
194 195
      auto key = "ProcessGroupNCCL/nccl_ids/" + std::to_string(gid_) + "/" +
                 std::to_string(i);
196 197 198 199 200 201 202
      auto nccl_id = std::vector<uint8_t>(
          reinterpret_cast<uint8_t*>(&nccl_ids[i]),
          reinterpret_cast<uint8_t*>(&nccl_ids[i]) + NCCL_UNIQUE_ID_BYTES);
      store_->set(key, nccl_id);
    }
  } else {
    for (size_t i = 0; i < nccl_ids.size(); i++) {
203 204
      auto key = "ProcessGroupNCCL/nccl_ids/" + std::to_string(gid_) + "/" +
                 std::to_string(i);
205 206 207
      auto ret = store_->get(key);
      std::memcpy(&nccl_ids[i], ret.data(), ret.size());
    }
208 209 210 211 212 213
  }
}

// create NCCLManager cache for places_key
void ProcessGroupNCCL::CreateNCCLManagerCache(
    const std::string& places_key, const std::vector<Place>& places) {
214 215
  PADDLE_ENFORCE_EQ(places_key.empty(),
                    false,
216 217 218 219 220 221 222 223 224 225 226 227
                    platform::errors::PreconditionNotMet(
                        "Not able to create/get the NCCL Communicator since "
                        "the GPU place are not known"));

  std::vector<std::shared_ptr<NCCLCommManager>> nccl_comms;
  nccl_comms.resize(places.size());

  // using vector just for broadcast
  std::vector<ncclUniqueId> nccl_ids;
  nccl_ids.resize(1);
  auto& nccl_id = nccl_ids.front();

B
Baibaifan 已提交
228 229 230 231
  for (auto& place : places) {
    used_place_ids_.insert(place.GetDeviceId());
  }

232 233 234 235 236
  if (rank_ == 0) {
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetUniqueId(&nccl_id));
  }
  BroadcastUniqueNCCLID(nccl_ids);

237 238
  VLOG(3) << "init nccl rank: " << rank_ << ", nranks: " << size_
          << ", place: " << places_key
239 240
          << ", nccl uniqueid: " << SerializeNCCLUniqueId(nccl_id);

L
Leo Chen 已提交
241
  std::vector<std::unique_ptr<phi::GPUContext>> dev_ctx;
242 243 244 245 246 247 248
  dev_ctx.resize(places.size());

  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());

  for (size_t i = 0; i < places.size(); ++i) {
    platform::CUDADeviceGuard guard(places[i]);
    nccl_comms[i] = NCCLCommManager::Create(GetSize(), GetRank(), nccl_id);
L
Leo Chen 已提交
249
    dev_ctx[i].reset(new phi::GPUContext(places[i]));
250 251 252 253 254 255 256 257 258 259 260 261 262
  }

  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());

  std::vector<EventManager> events;
  events.resize(places.size());

  // These caches will be useful to process sync/wait/communicate
  places_to_events_.emplace(places_key, std::move(events));
  places_to_ncclcomm_.emplace(places_key, std::move(nccl_comms));
  places_to_ctx_.emplace(places_key, std::move(dev_ctx));
}

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
    std::vector<phi::DenseTensor>& inputs,
    std::vector<phi::DenseTensor>& outputs,
    Fn fn,
    CommType comm_type,
    bool sync_op,
    bool use_calc_stream) {
  const auto& places = GetPlaceList(inputs);
  const auto& key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) {
      CreateNCCLManagerCache(key, places);
    }
  }

  auto& nccl_comms = places_to_ncclcomm_[key];

283 284 285
  if (!use_calc_stream) {
    SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);
  }
286

287 288
  auto task =
      CreateTask(places, rank_, comm_type, inputs, sync_op, use_calc_stream);
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339

  platform::CUDADeviceGuard cuda_guard;

  {
    platform::NCCLGroupGuard nccl_guard;
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);

      gpuStream_t nccl_stream;
      if (use_calc_stream) {
        nccl_stream =
            static_cast<phi::GPUContext*>(
                platform::DeviceContextPool::Instance().Get(places[i]))
                ->stream();
      } else {
        nccl_stream = places_to_ctx_[key][i]->stream();
      }

      fn(inputs[i], outputs[i], nccl_comms[i]->GetNcclComm(), nccl_stream);
    }
  }

  if (FLAGS_use_stream_safe_cuda_allocator) {
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);

      gpuStream_t nccl_stream;
      if (use_calc_stream) {
        nccl_stream =
            static_cast<phi::GPUContext*>(
                platform::DeviceContextPool::Instance().Get(places[i]))
                ->stream();
      } else {
        nccl_stream = places_to_ctx_[key][i]->stream();
      }

      memory::RecordStream(inputs[i].Holder(), nccl_stream);
    }
  }

  // Adding stream event dependency only when use comm stream
  if (!use_calc_stream) {
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
      task->control_events_[i].Record(*places_to_ctx_[key][i]);
    }
  }

  return task;
}

340 341
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
342
    std::vector<phi::DenseTensor>& inputs,
343 344 345
    std::vector<phi::DenseTensor>& outputs,
    Fn fn,
    CommType op_type) {
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
  const auto places = GetPlaceList(inputs);
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) {
      CreateNCCLManagerCache(key, places);
    }
  }

  auto& nccl_comms = places_to_ncclcomm_[key];

  SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);

  auto task = CreateTask(places, rank_, op_type, inputs);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

S
ShenLiang 已提交
365 366
  {
    platform::NCCLGroupGuard nccl_guard;
367 368
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
S
ShenLiang 已提交
369 370
      const auto& nccl_stream = places_to_ctx_[key][i]->stream();
      fn(inputs[i], outputs[i], nccl_comms[i]->GetNcclComm(), nccl_stream);
371 372 373
    }
  }

S
ShenLiang 已提交
374
  if (FLAGS_use_stream_safe_cuda_allocator) {
375 376
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
S
ShenLiang 已提交
377 378
      memory::RecordStream(inputs[i].Holder(),
                           places_to_ctx_[key][i]->stream());
379 380 381 382 383 384 385 386 387 388
    }
  }

  for (size_t i = 0; i < inputs.size(); ++i) {
    cuda_guard.SetDevice(places[i]);
    task->control_events_[i].Record(*places_to_ctx_[key][i]);
  }
  return task;
}

389 390
template <typename Fn>
void ProcessGroupNCCL::Collective(const phi::DenseTensor* in,
391 392
                                  phi::DenseTensor* out,
                                  Fn fn,
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
                                  CommType op_type) {
  std::vector<Place> places;
  places.push_back(in->place());
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) {
      CreateNCCLManagerCache(key, places);
    }
  }

  auto& nccl_comms = places_to_ncclcomm_[key];

  SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

  if (FLAGS_use_stream_safe_cuda_allocator) {
    cuda_guard.SetDevice(places[0]);
    memory::RecordStream(in->Holder(), places_to_ctx_[key][0]->stream());
  }

  {
    platform::NCCLGroupGuard nccl_guard;
    cuda_guard.SetDevice(places[0]);
    const auto& nccl_stream = places_to_ctx_[key][0]->stream();
    fn(in, out, nccl_comms[0]->GetNcclComm(), nccl_stream);
  }

  cuda_guard.SetDevice(places[0]);
}

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::PointToPoint(
    std::vector<phi::DenseTensor>& tensors,
    Fn fn,
    int dst_rank,
    CommType op_type,
    bool sync_op,
    bool use_calc_stream) {
  const auto& places = GetPlaceList(tensors);
  const auto& key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) {
      CreateNCCLManagerCache(key, places);
    }
  }

  auto& nccl_comms = places_to_ncclcomm_[key];

  if (!use_calc_stream) {
    SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);
  }

  auto task =
      CreateTask(places, rank_, op_type, tensors, sync_op, use_calc_stream);

  platform::CUDADeviceGuard cuda_guard;

456 457
  {
    platform::NCCLGroupGuard nccl_guard;
458 459 460 461 462 463 464 465 466 467 468
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
      gpuStream_t nccl_stream;
      if (use_calc_stream) {
        nccl_stream =
            static_cast<phi::GPUContext*>(
                platform::DeviceContextPool::Instance().Get(places[i]))
                ->stream();
      } else {
        nccl_stream = places_to_ctx_[key][i]->stream();
      }
469
      fn(tensors[i], nccl_comms[i]->GetNcclComm(), nccl_stream, dst_rank);
470 471 472
    }
  }

473
  if (FLAGS_use_stream_safe_cuda_allocator) {
474 475 476 477 478 479 480 481 482 483 484
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
      gpuStream_t nccl_stream;
      if (use_calc_stream) {
        nccl_stream =
            static_cast<phi::GPUContext*>(
                platform::DeviceContextPool::Instance().Get(places[i]))
                ->stream();
      } else {
        nccl_stream = places_to_ctx_[key][i]->stream();
      }
485
      memory::RecordStream(tensors[i].Holder(), nccl_stream);
486 487 488 489 490 491 492 493 494 495 496 497 498
    }
  }

  if (!use_calc_stream) {
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
      task->control_events_[i].Record(*places_to_ctx_[key][i]);
    }
  }

  return task;
}

B
Baibaifan 已提交
499 500
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::PointToPoint(
501 502 503
    std::vector<phi::DenseTensor>& tensors,
    Fn fn,
    int dst_rank,
504
    CommType op_type) {
B
Baibaifan 已提交
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
  const auto places = GetPlaceList(tensors);
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) {
      CreateNCCLManagerCache(key, places);
    }
  }

  auto& nccl_comms = places_to_ncclcomm_[key];

  SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);

  auto task = CreateTask(places, rank_, op_type, tensors);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

524 525
  {
    platform::NCCLGroupGuard nccl_guard;
B
Baibaifan 已提交
526 527
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
528 529
      const auto& nccl_stream = places_to_ctx_[key][i]->stream();
      fn(tensors[i], nccl_comms[i]->GetNcclComm(), nccl_stream, dst_rank);
B
Baibaifan 已提交
530 531 532
    }
  }

533
  if (FLAGS_use_stream_safe_cuda_allocator) {
B
Baibaifan 已提交
534 535
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
536 537
      memory::RecordStream(tensors[i].Holder(),
                           places_to_ctx_[key][i]->stream());
B
Baibaifan 已提交
538 539 540 541 542 543 544 545 546 547
    }
  }

  for (size_t i = 0; i < tensors.size(); ++i) {
    cuda_guard.SetDevice(places[i]);
    task->control_events_[i].Record(*places_to_ctx_[key][i]);
  }
  return task;
}

548
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllReduce(
549
    std::vector<phi::DenseTensor>& in_tensors,
550 551
    std::vector<phi::DenseTensor>& out_tensors,
    const AllreduceOptions& opts) {
552
  PADDLE_ENFORCE_EQ(
553 554
      CheckTensorsInCudaPlace(in_tensors),
      true,
555
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
556
  return Collective(
557 558 559 560 561 562
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
563
        return platform::dynload::ncclAllReduce(
564 565 566
            input.data(),
            output.data(),
            input.numel(),
567
            platform::ToNCCLDataType(input.type()),
568 569 570
            ToNCCLRedType(opts.reduce_op),
            comm,
            stream);
571 572
      },
      CommType::ALLREDUCE);
573 574
}

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllReduce(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    const AllreduceOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        return platform::dynload::ncclAllReduce(
            input.data(),
            output.data(),
            input.numel(),
            platform::ToNCCLDataType(input.type()),
            ToNCCLRedType(opts.reduce_op),
            comm,
            stream);
      },
      CommType::ALLREDUCE,
      sync_op,
      use_calc_stream);
}

606
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Broadcast(
607
    std::vector<phi::DenseTensor>& in_tensors,
608 609
    std::vector<phi::DenseTensor>& out_tensors,
    const BroadcastOptions& opts) {
610
  PADDLE_ENFORCE_EQ(
611 612
      CheckTensorsInCudaPlace(in_tensors),
      true,
613 614
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));

615
  return Collective(
616 617 618 619 620
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
621 622 623 624
          const gpuStream_t& stream) {
        const auto root =
            opts.source_rank * in_tensors.size() + opts.source_root;
        return platform::dynload::ncclBroadcast(
625 626 627 628 629 630 631
            input.data(),
            output.data(),
            input.numel(),
            platform::ToNCCLDataType(input.type()),
            root,
            comm,
            stream);
632 633
      },
      CommType::BROADCAST);
634 635
}

636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Broadcast(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    const BroadcastOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));

  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        const auto root =
            opts.source_rank * in_tensors.size() + opts.source_root;
        return platform::dynload::ncclBroadcast(
            input.data(),
            output.data(),
            input.numel(),
            platform::ToNCCLDataType(input.type()),
            root,
            comm,
            stream);
      },
      CommType::BROADCAST,
      sync_op,
      use_calc_stream);
}

B
Baibaifan 已提交
670 671
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Barrier(
    const BarrierOptions& opts) {
B
Baibaifan 已提交
672 673
  // Only support single card single process
  std::vector<phi::GPUPlace> places = {place_};
B
Baibaifan 已提交
674

675
  std::vector<phi::DenseTensor> barrierTensors;
B
Baibaifan 已提交
676 677 678 679 680
  barrierTensors.reserve(places.size());

  platform::CUDADeviceGuard gpuGuard;
  for (auto& place : places) {
    gpuGuard.SetDeviceIndex(place.GetDeviceId());
L
LiYuRio 已提交
681 682 683 684
    phi::DenseTensorMeta meta(phi::DataType::FLOAT32, phi::DDim({1}));
    auto allocator = std::unique_ptr<phi::Allocator>(
        new paddle::experimental::DefaultAllocator(place));
    barrierTensors.emplace_back(allocator.get(), meta);
B
Baibaifan 已提交
685
  }
686 687
  auto task = ProcessGroupNCCL::AllReduce(
      barrierTensors, barrierTensors, AllreduceOptions());
B
Baibaifan 已提交
688 689 690 691 692
  auto nccl_task = dynamic_cast<ProcessGroupNCCL::NCCLTask*>(task.get());
  nccl_task->barrierTensors_ = std::move(barrierTensors);
  return task;
}

693 694
void CheckTensorsInDifferentDevices(
    const std::vector<phi::DenseTensor>& tensors, const size_t num_devices) {
B
Baibaifan 已提交
695
  PADDLE_ENFORCE_EQ(
696 697
      tensors.size() == 0,
      false,
B
Baibaifan 已提交
698 699
      platform::errors::InvalidArgument("Tensor list must be nonempty."));
  PADDLE_ENFORCE_LE(
700 701
      tensors.size(),
      num_devices,
B
Baibaifan 已提交
702 703 704 705 706 707
      platform::errors::InvalidArgument(
          "Tensor list mustn't be larger than the number of available GPUs."));

  std::set<Place> used_devices;

  for (const auto& t : tensors) {
708 709
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(t.place()),
                      true,
B
Baibaifan 已提交
710 711 712
                      platform::errors::InvalidArgument(
                          "Tensors must be CUDA and dense tensor."));

713
    const auto inserted = used_devices.insert(t.place()).second;
714 715
    PADDLE_ENFORCE_EQ(inserted,
                      true,
B
Baibaifan 已提交
716 717 718 719 720 721
                      platform::errors::InvalidArgument(
                          "Tensors must be on distinct GPU devices."));
  }
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send(
722
    std::vector<phi::DenseTensor>& tensors, int dst_rank) {
B
Baibaifan 已提交
723 724
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

725 726
  auto task = PointToPoint(
      tensors,
727 728 729
      [&](phi::DenseTensor& input,
          ncclComm_t comm,
          const gpuStream_t& stream,
730 731
          int dst_rank) {
        return platform::dynload::ncclSend(
732 733 734 735 736 737
            input.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            dst_rank,
            comm,
            stream);
738
      },
739 740
      dst_rank,
      CommType::SEND);
B
Baibaifan 已提交
741 742 743
  return task;
}

744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send(
    std::vector<phi::DenseTensor>& tensors,
    int dst_rank,
    bool sync_op,
    bool use_calc_stream) {
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

  auto task = PointToPoint(
      tensors,
      [&](phi::DenseTensor& input,
          ncclComm_t comm,
          const gpuStream_t& stream,
          int dst_rank) {
        return platform::dynload::ncclSend(
            input.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            dst_rank,
            comm,
            stream);
      },
      dst_rank,
      CommType::SEND,
      sync_op,
      use_calc_stream);
  return task;
}

B
Baibaifan 已提交
772
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv(
773
    std::vector<phi::DenseTensor>& tensors, int src_rank) {
B
Baibaifan 已提交
774 775
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

776 777
  auto task = PointToPoint(
      tensors,
778 779 780
      [&](phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream,
781 782
          int src_rank) {
        return platform::dynload::ncclRecv(
783 784 785 786 787 788
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(output.dtype()),
            src_rank,
            comm,
            stream);
789
      },
790 791
      src_rank,
      CommType::RECV);
792 793 794
  return task;
}

795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv(
    std::vector<phi::DenseTensor>& tensors,
    int src_rank,
    bool sync_op,
    bool use_calc_stream) {
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

  auto task = PointToPoint(
      tensors,
      [&](phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream,
          int src_rank) {
        return platform::dynload::ncclRecv(
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(output.dtype()),
            src_rank,
            comm,
            stream);
      },
      src_rank,
      CommType::RECV,
      sync_op,
      use_calc_stream);
  return task;
}

823
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send_Partial(
824
    phi::DenseTensor& tensors, int dst_rank, int64_t offset, int64_t length) {
825 826 827 828 829
  // CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

  phi::DenseTensor flatten_tensor;
  flatten_tensor.ShareDataWith(tensors).Resize({tensors.numel()});

830 831
  std::vector<phi::DenseTensor> shared_tensors{
      flatten_tensor.Slice(offset, offset + length)};
832

833 834
  auto task = PointToPoint(
      shared_tensors,
835 836 837
      [&](phi::DenseTensor& input,
          ncclComm_t comm,
          const gpuStream_t& stream,
838 839
          int dst_rank) {
        return platform::dynload::ncclSend(
840 841 842 843 844 845
            input.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            dst_rank,
            comm,
            stream);
846
      },
847 848
      dst_rank,
      CommType::SEND);
849 850 851
  return task;
}

852 853 854
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send_Partial(
    phi::DenseTensor& tensors,
    int dst_rank,
855 856
    int64_t offset,
    int64_t length,
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
    bool sync_op,
    bool use_calc_stream) {
  phi::DenseTensor flatten_tensor;
  flatten_tensor.ShareDataWith(tensors).Resize({tensors.numel()});

  std::vector<phi::DenseTensor> shared_tensors{
      flatten_tensor.Slice(offset, offset + length)};

  auto task = PointToPoint(
      shared_tensors,
      [&](phi::DenseTensor& input,
          ncclComm_t comm,
          const gpuStream_t& stream,
          int dst_rank) {
        return platform::dynload::ncclSend(
            input.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            dst_rank,
            comm,
            stream);
      },
      dst_rank,
      CommType::SEND,
      sync_op,
      use_calc_stream);
  return task;
}

886
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv_Partial(
887
    phi::DenseTensor& tensors, int src_rank, int64_t offset, int64_t length) {
888 889 890 891 892
  // phi::DenseTensor shared_input = tensors.Slice(offset, offset+length);

  phi::DenseTensor flatten_tensor;
  flatten_tensor.ShareDataWith(tensors).Resize({tensors.numel()});

893 894
  std::vector<phi::DenseTensor> shared_tensors{
      flatten_tensor.Slice(offset, offset + length)};
895

896 897
  auto task = PointToPoint(
      shared_tensors,
898 899 900
      [&](phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream,
901 902
          int src_rank) {
        return platform::dynload::ncclRecv(
903 904 905 906 907 908
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(output.dtype()),
            src_rank,
            comm,
            stream);
909
      },
910 911
      src_rank,
      CommType::RECV);
B
Baibaifan 已提交
912 913 914
  return task;
}

915 916 917
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv_Partial(
    phi::DenseTensor& tensors,
    int src_rank,
918 919
    int64_t offset,
    int64_t length,
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
    bool sync_op,
    bool use_calc_stream) {
  phi::DenseTensor flatten_tensor;
  flatten_tensor.ShareDataWith(tensors).Resize({tensors.numel()});

  std::vector<phi::DenseTensor> shared_tensors{
      flatten_tensor.Slice(offset, offset + length)};

  auto task = PointToPoint(
      shared_tensors,
      [&](phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream,
          int src_rank) {
        return platform::dynload::ncclRecv(
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(output.dtype()),
            src_rank,
            comm,
            stream);
      },
      src_rank,
      CommType::RECV,
      sync_op,
      use_calc_stream);
  return task;
}

949
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather(
950 951
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors) {
952
  PADDLE_ENFORCE_EQ(
953 954
      CheckTensorsInCudaPlace(in_tensors),
      true,
955 956
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
957 958
      CheckTensorsInCudaPlace(out_tensors),
      true,
959
      platform::errors::InvalidArgument("All outputs should be in CudaPlace."));
960
  return Collective(
961 962 963 964 965 966
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
967
        return platform::dynload::ncclAllGather(
968 969 970 971 972 973
            input.data(),
            output.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            comm,
            stream);
974 975
      },
      CommType::ALLGATHER);
976 977
}

978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    bool sync_op,
    bool use_calc_stream) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All outputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        return platform::dynload::ncclAllGather(
            input.data(),
            output.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            comm,
            stream);
      },
      CommType::ALLGATHER,
      sync_op,
      use_calc_stream);
}

1011 1012
void* GetPointerByOffset(void* raw_pointer,
                         size_t offset,
1013 1014 1015 1016 1017 1018 1019
                         experimental::DataType type) {
  if (type == experimental::DataType::FLOAT32) {
    return reinterpret_cast<void*>(reinterpret_cast<float*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::FLOAT64) {
    return reinterpret_cast<void*>(reinterpret_cast<double*>(raw_pointer) +
                                   offset);
1020 1021 1022
  } else if (type == experimental::DataType::FLOAT16) {
    return reinterpret_cast<void*>(reinterpret_cast<int16_t*>(raw_pointer) +
                                   offset);
1023 1024 1025 1026 1027 1028
  } else if (type == experimental::DataType::INT32) {
    return reinterpret_cast<void*>(reinterpret_cast<int32_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::INT64) {
    return reinterpret_cast<void*>(reinterpret_cast<int64_t*>(raw_pointer) +
                                   offset);
1029 1030 1031 1032 1033 1034 1035 1036
  } else if (type == experimental::DataType::INT8) {
    return reinterpret_cast<void*>(reinterpret_cast<int8_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::UINT8) {
    return reinterpret_cast<void*>(reinterpret_cast<uint8_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::BOOL) {
    return reinterpret_cast<void*>(reinterpret_cast<bool*>(raw_pointer) +
1037
                                   offset);
1038 1039 1040
  } else if (type == experimental::DataType::BFLOAT16) {
    return reinterpret_cast<void*>(reinterpret_cast<uint16_t*>(raw_pointer) +
                                   offset);
1041 1042 1043 1044
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "This datatype in nccl is not supported."));
  }
1045
  return nullptr;
1046 1047
}

1048 1049 1050
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather_Partial(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
1051 1052
    int64_t offset,
    int64_t length) {
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All outputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        return platform::dynload::ncclAllGather(
            GetPointerByOffset(input.data(), offset, input.dtype()),
            output.data(),
            length,
            platform::ToNCCLDataType(input.dtype()),
            comm,
            stream);
      },
      CommType::ALLGATHER);
}

1079 1080 1081
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather_Partial(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
1082 1083
    int64_t offset,
    int64_t length,
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
    bool sync_op,
    bool use_calc_stream) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All outputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        return platform::dynload::ncclAllGather(
            GetPointerByOffset(input.data(), offset, input.dtype()),
            output.data(),
            length,
            platform::ToNCCLDataType(input.dtype()),
            comm,
            stream);
      },
      CommType::ALLGATHER,
      sync_op,
      use_calc_stream);
}

1114
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll(
1115 1116
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors) {
1117
  PADDLE_ENFORCE_EQ(
1118 1119
      CheckTensorsInCudaPlace(in_tensors),
      true,
1120 1121
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
1122 1123
      CheckTensorsInCudaPlace(out_tensors),
      true,
1124 1125
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
1126 1127 1128 1129 1130
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
1131 1132 1133 1134 1135
          const gpuStream_t& stream) {
        size_t offset = 0;
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
        for (auto i = 0; i < size_; i++) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
1136
              GetPointerByOffset(input.data(), offset, input.dtype()),
1137 1138 1139 1140 1141
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
1142
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
1143
              GetPointerByOffset(output.data(), offset, input.dtype()),
1144 1145 1146 1147 1148
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
1149
          offset += input.numel() / size_;
1150 1151 1152
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
      },
1153 1154 1155
      CommType::ALLTOALL);
}

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    bool sync_op,
    bool use_calc_stream) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        size_t offset = 0;
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
        for (auto i = 0; i < size_; i++) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
              GetPointerByOffset(input.data(), offset, input.dtype()),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
              GetPointerByOffset(output.data(), offset, input.dtype()),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          offset += input.numel() / size_;
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
      },
      CommType::ALLTOALL,
      sync_op,
      use_calc_stream);
}

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll_Single(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    std::vector<int64_t>& in_sizes,
    std::vector<int64_t>& out_sizes) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        PADDLE_ENFORCE_EQ(input.dtype() == output.dtype(),
                          true,
                          platform::errors::InvalidArgument(
                              "The dtypes of input and output must be equal."));

        std::vector<int64_t> in_dims = phi::vectorize(input.dims());
        std::vector<int64_t> out_dims = phi::vectorize(output.dims());
1229 1230
        CheckSplitSizes(&in_sizes, in_dims);
        CheckSplitSizes(&out_sizes, out_dims);
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261

        size_t in_offset = 0, out_offset = 0;
        size_t in_length = 0, out_length = 0;
        size_t in_row_size = input.numel() / in_dims[0];
        size_t out_row_size = output.numel() / out_dims[0];

        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
        for (auto i = 0; i < size_; i++) {
          in_length = in_sizes[i] * in_row_size;
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
              GetPointerByOffset(input.data(), in_offset, input.dtype()),
              in_length,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          in_offset += in_length;

          out_length = out_sizes[i] * out_row_size;
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
              GetPointerByOffset(output.data(), out_offset, input.dtype()),
              out_length,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          out_offset += out_length;
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
      },
      CommType::ALLTOALL_SINGLE);
1262 1263
}

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAllSingle(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    std::vector<int64_t>& in_sizes,
    std::vector<int64_t>& out_sizes,
    bool sync_op,
    bool use_calc_stream) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        PADDLE_ENFORCE_EQ(input.dtype() == output.dtype(),
                          true,
                          platform::errors::InvalidArgument(
                              "The dtypes of input and output must be equal."));

        std::vector<int64_t> in_dims = phi::vectorize(input.dims());
        std::vector<int64_t> out_dims = phi::vectorize(output.dims());
        CheckSplitSizes(&in_sizes, in_dims);
        CheckSplitSizes(&out_sizes, out_dims);

        size_t in_offset = 0, out_offset = 0;
        size_t in_length = 0, out_length = 0;
        size_t in_row_size = input.numel() / in_dims[0];
        size_t out_row_size = output.numel() / out_dims[0];

        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
        for (auto i = 0; i < size_; i++) {
          in_length = in_sizes[i] * in_row_size;
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
              GetPointerByOffset(input.data(), in_offset, input.dtype()),
              in_length,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          in_offset += in_length;

          out_length = out_sizes[i] * out_row_size;
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
              GetPointerByOffset(output.data(), out_offset, input.dtype()),
              out_length,
              platform::ToNCCLDataType(input.dtype()),
              i,
              comm,
              stream));
          out_offset += out_length;
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
      },
      CommType::ALLTOALL_SINGLE,
      sync_op,
      use_calc_stream);
}

1330
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Reduce(
1331
    std::vector<phi::DenseTensor>& in_tensors,
1332 1333
    std::vector<phi::DenseTensor>& out_tensors,
    const ReduceOptions& opts) {
1334
  PADDLE_ENFORCE_EQ(
1335 1336
      CheckTensorsInCudaPlace(in_tensors),
      true,
1337 1338
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
1339 1340 1341 1342 1343 1344
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
1345
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduce(
1346 1347 1348
            input.data(),
            output.data(),
            input.numel(),
1349
            platform::ToNCCLDataType(input.dtype()),
1350 1351 1352 1353
            ToNCCLRedType(opts.reduce_op),
            opts.root_rank,
            comm,
            stream));
1354 1355 1356 1357
      },
      CommType::REDUCE);
}

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Reduce(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    const ReduceOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](const phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduce(
            input.data(),
            output.data(),
            input.numel(),
            platform::ToNCCLDataType(input.dtype()),
            ToNCCLRedType(opts.reduce_op),
            opts.root_rank,
            comm,
            stream));
      },
      CommType::REDUCE,
      sync_op,
      use_calc_stream);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::ReduceScatter(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    const ReduceScatterOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        if (FLAGS_use_stream_safe_cuda_allocator) {
          platform::CUDADeviceGuard cuda_guard;
          cuda_guard.SetDevice(output.place());
          memory::RecordStream(output.Holder(), stream);
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduceScatter(
            input.data(),
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(input.dtype()),
            ToNCCLRedType(opts.reduce_op),
            comm,
            stream));
      },
      CommType::REDUCE_SCATTER,
      sync_op,
      use_calc_stream);
}

1422
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter(
1423
    std::vector<phi::DenseTensor>& in_tensors,
1424 1425
    std::vector<phi::DenseTensor>& out_tensors,
    const ScatterOptions& opts) {
1426
  PADDLE_ENFORCE_EQ(
1427 1428
      CheckTensorsInCudaPlace(in_tensors),
      true,
1429 1430
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
1431 1432
      CheckTensorsInCudaPlace(out_tensors),
      true,
1433 1434
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
1435 1436 1437 1438 1439
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
1440 1441 1442 1443 1444 1445
          const gpuStream_t& stream) {
        size_t offset = 0;
        if (rank_ == opts.root_rank) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
          for (auto i = 0; i < size_; i++) {
            PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
1446
                GetPointerByOffset(input.data(), offset, input.dtype()),
1447 1448 1449 1450 1451
                input.numel() / size_,
                platform::ToNCCLDataType(input.dtype()),
                i,
                comm,
                stream));
1452
            offset += input.numel() / size_;
1453 1454
          }
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
1455 1456 1457 1458 1459
              output.data(),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              opts.root_rank,
              comm,
1460 1461 1462 1463
              stream));
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
        } else {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
1464 1465 1466 1467 1468
              output.data(),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              opts.root_rank,
              comm,
1469 1470 1471 1472 1473 1474
              stream));
        }
      },
      CommType::SCATTER);
}

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter(
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors,
    const ScatterOptions& opts,
    bool sync_op,
    bool use_calc_stream) {
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors),
      true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors,
      out_tensors,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        PADDLE_ENFORCE_EQ(
            output.numel(),
            input.numel() / size_,
            platform::errors::InvalidArgument(
                "Input and output tensors should have the same shape."));
        size_t offset = 0;
        if (rank_ == opts.root_rank) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
          for (auto i = 0; i < size_; i++) {
            PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
                GetPointerByOffset(input.data(), offset, input.dtype()),
                input.numel() / size_,
                platform::ToNCCLDataType(input.dtype()),
                i,
                comm,
                stream));
            offset += input.numel() / size_;
          }
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
              output.data(),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              opts.root_rank,
              comm,
              stream));
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
        } else {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
              output.data(),
              input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()),
              opts.root_rank,
              comm,
              stream));
        }
      },
      CommType::SCATTER,
      sync_op,
      use_calc_stream);
}

1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::_ReduceScatterBase(
    phi::DenseTensor& out_tensor,
    phi::DenseTensor& in_tensor,
    const ReduceScatterOptions& opts) {
  // auto tensor = out_tensors.back();
  PADDLE_ENFORCE_EQ(
      out_tensor.dtype(),
      in_tensor.dtype(),
      platform::errors::InvalidArgument(
          "Input tensor and output tensor should be same dtype."));

  PADDLE_ENFORCE_EQ(
      out_tensor.numel() * size_,
      in_tensor.numel(),
      platform::errors::InvalidArgument("input tensor must be the same size as "
                                        "output tensor size times world_size"));

  auto inputs = std::vector<phi::DenseTensor>{in_tensor};
  auto outputs = std::vector<phi::DenseTensor>{out_tensor};

  return Collective(
      inputs,
      outputs,
      [&](phi::DenseTensor& input,
          phi::DenseTensor& output,
          ncclComm_t comm,
          const gpuStream_t& stream) {
        if (FLAGS_use_stream_safe_cuda_allocator) {
          platform::CUDADeviceGuard cuda_guard;
          cuda_guard.SetDevice(output.place());
          memory::RecordStream(output.Holder(), stream);
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduceScatter(
            input.data(),
            output.data(),
            output.numel(),
            platform::ToNCCLDataType(input.dtype()),
            ToNCCLRedType(opts.reduce_op),
            comm,
            stream));
      },
      CommType::REDUCE_SCATTER);
}

void ProcessGroupNCCL::GroupStart() {
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
}

void ProcessGroupNCCL::GroupEnd() {
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
}

L
LiYuRio 已提交
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
ncclComm_t ProcessGroupNCCL::NCCLComm(const Place& place) const {
  std::vector<Place> places = {place};
  const auto& iter = places_to_ncclcomm_.find(GetKeyFromPlaces(places));
  PADDLE_ENFORCE_NE(iter,
                    places_to_ncclcomm_.end(),
                    platform::errors::InvalidArgument(
                        "Cannot find nccl comm in process group."));
  return iter->second[0]->GetNcclComm();
}

1599
const phi::DeviceContext& ProcessGroupNCCL::GetDeviceContext(
L
LiYuRio 已提交
1600
    const Place& place) const {
1601 1602 1603
  return GetDeviceContext(place, /*use_calc_stream*/ false);
}

1604
const phi::DeviceContext& ProcessGroupNCCL::GetDeviceContext(
1605 1606
    const Place& place, bool use_calc_stream) const {
  if (use_calc_stream) {
1607
    return *platform::DeviceContextPool::Instance().Get(place);
1608 1609 1610 1611 1612 1613 1614
  } else {
    std::vector<Place> places = {place};
    const auto& iter = places_to_ctx_.find(GetKeyFromPlaces(places));
    PADDLE_ENFORCE_NE(iter,
                      places_to_ctx_.end(),
                      platform::errors::InvalidArgument(
                          "Cannot find device context in process group."));
1615
    return *iter->second[0];
1616
  }
L
LiYuRio 已提交
1617 1618
}

1619 1620
}  //  namespace distributed
}  //  namespace paddle