config_parser.py 144.0 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
'''
The following functions are available in the config file:

Bias: define bias. To be used as value of bias argument in Layer().

Data: define data provider.

Input: define input layer for a layer. To be used as element of inputs argument
       in Layer().

Conv: define a convolution operation for an input of a layer.

Norm: define a normalization operation for an input of a layer.

Pool: define a pooling operation for an input of a layer.

Layer: define a layer.

Parameter: define a parameter.

Import: import another config file. If the imported config file name is
        a relative path, then it will be searched under the directory of the
        current config file.

Inputs(layer_names...):
    Define the name of the input layers of the NeuralNetwork.
    The type of these layers must be "data".
    These layers will be provided with the DataBatch obtained
    from DataProvider. The data streams from DataProvider must
    have the same order.

Outputs(layer_names...):
    Define the name of the output layers of the NeuralNetwork.
    Usually the output is simply the cost layer.
    You can specify other layers as outputs and  calculate the
    cost (and its derivative) yourself.


default_initial_std(val)
default_initial_mean(val)
default_momentum(val):
default_decay_rate(val): Set the default value for these parameters


get_config_arg(name, type, default): Get the value for a config parameter.


*** customized extension to config_parser ***
The functionality of the config_parser can be extended.
If the config_arg_str for parse_config() contains
extension_module_name=[MODULE_NAME], then config_parser will call
MODULE_NAME.get_config_funcs(g_config)
MODULE_NAME.get_config_funcs() should return a dictionary of name to functions,
those functions will be available in the config file.
See trainer/tests/config_parser_test.py for example

To use this from paddle_trainer, paddle_trainer should be called with
--config_args=extension_module_name=[MODULE_NAME]

'''
import copy
import logging
import os
import sys
import traceback
import math
import shutil

try:
    from paddle.proto.DataConfig_pb2 import DataConfig
    from paddle.proto.ModelConfig_pb2 import ModelConfig
    from paddle.proto.ModelConfig_pb2 import LayerConfig
    from paddle.proto.ModelConfig_pb2 import LayerInputConfig
    from paddle.proto.ModelConfig_pb2 import ProjectionConfig
    from paddle.proto.ModelConfig_pb2 import OperatorConfig
    from paddle.proto.ModelConfig_pb2 import GeneratorConfig
    from paddle.proto.ModelConfig_pb2 import LinkConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterUpdaterHookConfig
    from paddle.proto.TrainerConfig_pb2 import TrainerConfig

except Exception as e:
    traceback.print_exc()
    raise

logging.basicConfig(
Q
qijun 已提交
102
    format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s', )
Z
zhangjinchao01 已提交
103 104 105
logger = logging.getLogger('paddle')
logger.setLevel(logging.INFO)
__real_print__ = print
Q
qijun 已提交
106
print = logger.info
Z
zhangjinchao01 已提交
107 108 109 110

# from layer type name to layer class
g_layer_type_map = {}

Q
qijun 已提交
111

Z
zhangjinchao01 已提交
112 113 114
# Initialize global variables. We use this function so that we can
# call parse_config() multiple times
def init_config_environment(
Q
qijun 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128
        g_default_momentum=None,
        g_default_decay_rate=None,
        g_default_initial_mean=0.,
        g_default_initial_std=0.01,
        g_default_num_batches_regularization=None,
        g_default_initial_strategy=0,
        g_default_initial_smart=False,
        g_default_gradient_clipping_threshold=None,
        g_default_device=None,
        g_default_update_hooks=None,
        g_default_compact_func=None,
        g_config=TrainerConfig(),
        g_layer_map={},
        g_parameter_map={},
X
xuwei06 已提交
129
        g_parameter_initializer_map={},
Q
qijun 已提交
130
        g_extended_config_funcs={},
Z
zhangjinchao01 已提交
131 132

        # store command args of paddle_trainer
Q
qijun 已提交
133
        g_command_config_args={},
Z
zhangjinchao01 已提交
134 135

        # Used for PyDataProvider to avoid duplicate module name
Q
qijun 已提交
136 137 138 139 140
        g_py_module_name_list=[],
        g_current_submodel=None,
        g_root_submodel=None,
        g_submodel_map={},
        g_submodel_stack=[],
141
        g_add_submodel_suffix=False, ):
Z
zhangjinchao01 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

    for k, v in locals().iteritems():
        globals()[k] = copy.deepcopy(v)


# Because type is widely used as a variable name in this code.
# we need a different function name for the builtin type()
def type_of(x):
    return type(x)


# Check a condition derived config file
def config_assert(b, msg):
    if not b:
        logger.fatal(msg)

Q
qijun 已提交
158

Z
zhangjinchao01 已提交
159 160
g_config_funcs = {}

Q
qijun 已提交
161

Z
zhangjinchao01 已提交
162 163 164 165 166
# decorator for indicating a function which can be used in config file
def config_func(func):
    g_config_funcs[func.func_name] = func
    return func

Q
qijun 已提交
167

Z
zhangjinchao01 已提交
168 169 170 171 172
# decorator for indicating a class which can be used in config file
def config_class(cls):
    g_config_funcs[cls.__name__] = cls
    return cls

Q
qijun 已提交
173

Z
zhangjinchao01 已提交
174 175 176 177 178 179
# decorator for indicating a class for a layer type
def config_layer(layer_type):
    def wrap(cls):
        g_config_funcs[cls.__name__] = cls
        g_layer_type_map[layer_type] = cls
        return cls
Q
qijun 已提交
180

Z
zhangjinchao01 已提交
181 182
    return wrap

Q
qijun 已提交
183

Z
zhangjinchao01 已提交
184 185 186
def gen_parameter_name(layer_name, input_index):
    return '_%s.w%d' % (layer_name, input_index)

Q
qijun 已提交
187

Z
zhangjinchao01 已提交
188 189 190
def gen_bias_parameter_name(layer_name):
    return '_%s.wbias' % layer_name

Q
qijun 已提交
191

Z
zhangjinchao01 已提交
192 193 194
def default(x, default_value):
    return default_value if x is None else x

Q
qijun 已提交
195

Z
zhangjinchao01 已提交
196 197 198 199 200 201
class Cfg(object):
    def add_keys(self, locals):
        for k, v in locals.iteritems():
            if not k.startswith('_'):
                self.__setattr__(k, v)

Q
qijun 已提交
202

Z
zhangjinchao01 已提交
203 204
# functions available in config file

Q
qijun 已提交
205

Z
zhangjinchao01 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
# Define the name of the input layers of the NeuralNetwork.
# The type of these layers must be "data".
# These layers will be provided with the DataBatch obtained
# from DataProvider. The data streams from DataProvider must
# have the same order.
@config_func
def Inputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Inputs in recurrent layer group")
        else:
            g_current_submodel.input_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.input_layer_names.append(name)

Q
qijun 已提交
224

225 226
@config_func
def HasInputsSet():
227
    return len(g_current_submodel.input_layer_names) != 0
228

Z
zhangjinchao01 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

# Define the name of the output layers of the NeuralNetwork.
# Usually the output is simply the cost layer.
# You can specify other layers as outputs and calculate the
# cost (and its derivative) yourself.
@config_func
def Outputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Outputs in recurrent layer group")
        else:
            g_current_submodel.output_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.output_layer_names.append(name)


@config_func
def SubModelBegin(name):
    global g_current_submodel, g_root_submodel, g_submodel_stack
    g_submodel_stack.append(g_current_submodel)

Q
qijun 已提交
253
    name = MakeLayerNameInParentSubmodel(name)  #rename in nested submodel
Z
zhangjinchao01 已提交
254 255 256 257 258 259 260 261 262

    config_assert(name not in g_submodel_map,
                  'Duplicated submodel name: %s' % name)

    sub_model = g_config.model_config.sub_models.add()
    sub_model.name = name
    g_submodel_map[name] = sub_model
    g_current_submodel = sub_model

Q
qijun 已提交
263

Z
zhangjinchao01 已提交
264
@config_func
Q
qijun 已提交
265
def SubModelEnd(name=None):
Z
zhangjinchao01 已提交
266
    global g_current_submodel, g_root_submodel, g_submodel_stack
Q
qijun 已提交
267 268
    config_assert(g_current_submodel is not g_root_submodel,
                  "submodel not begin")
Z
zhangjinchao01 已提交
269
    if name is not None:
Q
qijun 已提交
270 271 272
        config_assert(
            g_current_submodel.name == MakeLayerNameInParentSubmodel(name),
            "submodel name error")
Z
zhangjinchao01 已提交
273 274 275

    g_current_submodel = g_submodel_stack.pop()

Q
qijun 已提交
276

Z
zhangjinchao01 已提交
277 278
def MakeLayerNameInParentSubmodel(name):
    suffix = ""
279 280
    if len(g_submodel_stack) > 1:
        suffix = "@" + g_submodel_stack[-1].name
Z
zhangjinchao01 已提交
281 282
    return name + suffix

Q
qijun 已提交
283

Z
zhangjinchao01 已提交
284 285 286
def GetLayerBaseName(name):
    return name.split('@')[0]

Q
qijun 已提交
287 288

def MakeLayerNameInSubmodel(name, submodel_name=None):
Z
zhangjinchao01 已提交
289 290
    global g_current_submodel
    global g_add_submodel_suffix
Q
qijun 已提交
291 292
    if (submodel_name is None and not g_add_submodel_suffix and
            not g_current_submodel.is_recurrent_layer_group):
Z
zhangjinchao01 已提交
293 294 295 296 297
        return name
    if submodel_name is None:
        submodel_name = g_current_submodel.name
    return name + "@" + submodel_name

Q
qijun 已提交
298

Z
zhangjinchao01 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
# Define a recurrent layer group begin with RecurrentLayerGroupBegin
# and end with RecurrentLayerGroupEnd.
# A recurrent layer group forward/backward one frame after previous frame
# forward/backward through all layers in layer group.
# in_links are names of layer used as input layer in the layer group.
# out_links are names of layer in layer group used as outside layer's input.
#
# If generator is set, the layer group need one or more than one outlinks.
# The first outlink should always be the generated token ids.
# If generator.num_results_per_sample is not set, the output for one sample is
# a ids sequence. Else if num_results_per_sample is more than one,
# the output for one sample is up to #num_results_per_sample generated
# sequences, which are packed in one sequence in output ids vector. Each
# generated sequence has a generation probability. The probabilities for one
# sample are stored in one row of output value matrix.
# Packed generated sequences format, for each i:
#   seq_i_length: one interger, seq_i content length,
#   [seq_i content], length = seq_i_length
#   seq_i_end_mark: one interger, for format check, always -1
# You can use "seq_text_printer" to print the output of the generator.
@config_func
def RecurrentLayerGroupWithoutOutLinksBegin(name,
                                            in_links,
322 323
                                            seq_reversed=False,
                                            target_inlinkname=""):
Z
zhangjinchao01 已提交
324 325 326 327 328 329 330 331
    global g_current_submodel
    config_assert(g_config.model_config.type == "recurrent_nn",
                  "RecurrentLayerGroup should be used only in recurrent_nn")
    RecurrentLayerGroup(name=name)  # add to father model
    SubModelBegin(name)
    g_current_submodel.is_recurrent_layer_group = True
    g_current_submodel.reversed = seq_reversed
    in_links_count = 0
332
    for linkid, link in enumerate(in_links):
Z
zhangjinchao01 已提交
333 334 335 336
        if isinstance(link, basestring):
            name = link
        else:
            name = link.link_name
337

Z
zhangjinchao01 已提交
338 339 340
        in_links_count += 1
        layer_name = MakeLayerNameInParentSubmodel(name)
        layer = g_layer_map[layer_name]
341
        ScatterAgentLayer(name=name, size=layer.size)
342

Z
zhangjinchao01 已提交
343 344 345 346
        pair = g_current_submodel.in_links.add()
        pair.layer_name = layer_name
        pair.link_name = MakeLayerNameInSubmodel(name)

Q
qijun 已提交
347

Z
zhangjinchao01 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360
@config_func
def RecurrentLayerGroupSetOutLink(link):
    if isinstance(link, basestring):
        name = link
    else:
        name = link.link_name
    layer_name = MakeLayerNameInParentSubmodel(name)
    pair = g_current_submodel.out_links.add()
    pair.layer_name = MakeLayerNameInSubmodel(name)
    pair.link_name = layer_name


def RecurrentLayerGroupSetGenerator(generator=None):
Q
qijun 已提交
361
    generator.eos_layer_name = MakeLayerNameInSubmodel(generator.eos_layer_name)
Z
zhangjinchao01 已提交
362 363 364 365 366 367 368 369
    g_current_submodel.generator.CopyFrom(generator)


@config_func
def RecurrentLayerGroupBegin(name,
                             in_links,
                             out_links,
                             generator=None,
370
                             target_inlinkname="",
Z
zhangjinchao01 已提交
371
                             seq_reversed=False):
372
    RecurrentLayerGroupWithoutOutLinksBegin(name, in_links, seq_reversed)
Z
zhangjinchao01 已提交
373 374 375 376 377
    for link in out_links:
        RecurrentLayerGroupSetOutLink(link)

    if generator is not None:
        RecurrentLayerGroupSetGenerator(generator)
Q
qijun 已提交
378 379 380 381 382
        config_assert(
            len(in_links) == 0, "no in_links should be passed to generator")
        config_assert(
            len(out_links) >= 1,
            "one or more than one out_links should be passed to generator")
Z
zhangjinchao01 已提交
383 384 385 386 387 388 389


@config_func
def RecurrentLayerGroupEnd(name):
    global g_current_submodel
    config_assert(g_current_submodel.is_recurrent_layer_group,
                  "RecurrentLayerGroup not begin")
Q
qijun 已提交
390
    for pair in g_current_submodel.memories:  #check exist
Z
zhangjinchao01 已提交
391
        layer = g_layer_map[pair.layer_name]
Y
Yu Yang 已提交
392 393
        config_assert(layer is not None,
                      "memory declare wrong name:%s" % pair.layer_name)
Z
zhangjinchao01 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
        memory_link = g_layer_map[pair.link_name]
        config_assert(layer.size == memory_link.size,
                      "memory declare wrong size:%d" % memory_link.size)

    prev_submodel = g_current_submodel
    SubModelEnd(name)

    for pair in prev_submodel.out_links:
        layer = g_layer_map[pair.layer_name]
        # add out agent to father model
        agent_name = GetLayerBaseName(pair.link_name)
        if prev_submodel.HasField("generator"):
            DataLayer(name=agent_name, size=layer.size)
        else:
            GatherAgentLayer(name=agent_name, size=layer.size)

Q
qijun 已提交
410

Z
zhangjinchao01 已提交
411 412 413 414 415 416
# Define the model type
# currently, the paddle supports "nn", "recurrent_nn", "recursive_nn" and "multi_nn"
@config_func
def model_type(name):
    g_config.model_config.type = name

Q
qijun 已提交
417

Z
zhangjinchao01 已提交
418 419
@config_class
class Bias(Cfg):
X
xuwei06 已提交
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
    def __init__(self,
                 parameter_name=None,
                 learning_rate=None,
                 momentum=None,
                 decay_rate=None,
                 decay_rate_l1=None,
                 initial_mean=None,
                 initial_std=None,
                 initial_strategy=None,
                 initial_smart=None,
                 num_batches_regularization=None,
                 sparse_remote_update=None,
                 gradient_clipping_threshold=None,
                 is_static=None,
                 is_shared=None,
                 initializer=None):
Z
zhangjinchao01 已提交
436 437
        self.add_keys(locals())

Q
qijun 已提交
438

Z
zhangjinchao01 已提交
439 440 441 442 443 444 445
# Define one input for a layer
@config_class
class Input(Cfg):
    def __init__(
            self,
            input_layer_name,
            parameter_name=None,
X
xuwei06 已提交
446
            initializer=None,
Z
zhangjinchao01 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            conv=None,
L
liaogang 已提交
460
            bilinear_interp=None,
Z
zhangjinchao01 已提交
461 462 463 464
            norm=None,
            pool=None,
            image=None,
            block_expand=None,
465
            maxout=None,
Q
qijun 已提交
466
            spp=None,
D
dangqingqing 已提交
467
            pad=None,
Z
zhangjinchao01 已提交
468 469 470 471 472
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
473
            input_layer_argument=None,
D
dangqingqing 已提交
474 475 476 477 478
            make_layer_name_in_submodel=True, ):
        """
        @param make_layer_name_in_submodel True by defalut, you might need to
        set it carefully when adding Input in config_parser.py.
        """
Z
zhangjinchao01 已提交
479
        self.add_keys(locals())
D
dangqingqing 已提交
480 481 482
        self.input_layer_name = MakeLayerNameInSubmodel(
            input_layer_name
        ) if make_layer_name_in_submodel else input_layer_name
Z
zhangjinchao01 已提交
483

Q
qijun 已提交
484

Z
zhangjinchao01 已提交
485 486 487
# Define a projection for iexed layer
@config_class
class Projection(Input):
Q
qijun 已提交
488 489
    type = None  # subclass should set it correctly

Z
zhangjinchao01 已提交
490 491 492
    def __init__(
            self,
            input_layer_name,
Q
qijun 已提交
493
            size=0,  # projection output size
Z
zhangjinchao01 已提交
494 495 496 497 498 499 500 501 502
            parameter_name=None,
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
X
xuwei06 已提交
503
            initializer=None,
Z
zhangjinchao01 已提交
504 505 506 507 508 509 510 511 512 513
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            ptype=None,
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
Q
qijun 已提交
514
            input_layer_argument=None, ):
Z
zhangjinchao01 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527
        self.add_keys(locals())
        self.input_layer_name = MakeLayerNameInSubmodel(input_layer_name)

        self.proj_conf = ProjectionConfig()
        if ptype is not None:
            self.proj_conf.type = ptype
        else:
            self.proj_conf.type = self.type

    # calculate the output_size given input_size. return 0
    # to indicate using the size from Layer config
    def calc_output_size(self, input_layer_config):
        return self.size
Q
qijun 已提交
528

Z
zhangjinchao01 已提交
529 530
    def calc_parameter_size(self, input_size, output_size):
        raise NotimplementedError
Q
qijun 已提交
531

Z
zhangjinchao01 已提交
532 533 534 535 536 537 538 539 540 541
    def calc_parameter_dims(self, input_size, output_size):
        raise NotimplementedError


@config_class
class IdentityProjection(Projection):
    type = 'identity'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
Q
qijun 已提交
542

Z
zhangjinchao01 已提交
543 544
    def calc_parameter_size(self, input_size, output_size):
        return 0
Q
qijun 已提交
545

Z
zhangjinchao01 已提交
546 547 548
    def calc_parameter_dims(self, input_size, output_size):
        return []

Q
qijun 已提交
549

Z
zhangjinchao01 已提交
550 551 552 553 554 555
# Like IdentityProjection, but layer size may smaller than input size,
# the projection select dimesions [offset, offset+layer_size) from input
@config_class
class IdentityOffsetProjection(Projection):
    type = 'identity_offset'

Q
qijun 已提交
556 557 558
    def __init__(self, input_layer_name, offset, **xargs):
        super(IdentityOffsetProjection, self).__init__(input_layer_name,
                                                       **xargs)
Z
zhangjinchao01 已提交
559 560 561 562
        self.proj_conf.offset = offset

    def calc_parameter_size(self, input_size, output_size):
        return 0
Q
qijun 已提交
563

Z
zhangjinchao01 已提交
564 565 566
    def calc_parameter_dims(self, input_size, output_size):
        return []

Q
qijun 已提交
567

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
@config_class
class SliceProjection(Projection):
    type = 'slice'

    def __init__(self, input_layer_name, slices, **xargs):
        super(SliceProjection, self).__init__(input_layer_name, **xargs)
        input = g_layer_map[input_layer_name]
        if input.type in ["exconv", "cudnn_conv"]:
            # the slice operator is for the channel dimension
            assert input.num_filters is not None
            channels = input.num_filters
            image_size = input.size / channels
            assert slices[len(slices) - 1][1] <= channels
            for i in xrange(len(slices)):
                slice = self.proj_conf.slices.add()
                slice.start = slices[i][0] * image_size
                slice.end = slices[i][1] * image_size
                self.size += slice.end - slice.start
        else:
            config_assert(False,
                          'Currently the input should be convolution layer')

    def calc_parameter_size(self, input_size, output_size):
        return 0

    def calc_parameter_dims(self, input_size, output_size):
        return []


Z
zhangjinchao01 已提交
597 598 599 600 601 602 603
# DotMulProjection performs element-wise multiplication with weight
@config_class
class DotMulProjection(Projection):
    type = 'dot_mul'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
Q
qijun 已提交
604

Z
zhangjinchao01 已提交
605 606
    def calc_parameter_size(self, input_size, output_size):
        return output_size
Q
qijun 已提交
607

Z
zhangjinchao01 已提交
608 609 610
    def calc_parameter_dims(self, input_size, output_size):
        return [1, output_size]

L
Luo Tao 已提交
611

X
xuwei06 已提交
612 613 614 615 616 617 618 619 620 621 622 623 624 625
# ScalingProjection
@config_class
class ScalingProjection(Projection):
    type = 'scaling'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size

    def calc_parameter_size(self, input_size, output_size):
        return 1

    def calc_parameter_dims(self, input_size, output_size):
        return [1, 1]

Q
qijun 已提交
626

Z
zhangjinchao01 已提交
627 628 629 630 631 632
@config_class
class TableProjection(Projection):
    type = 'table'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
633

Z
zhangjinchao01 已提交
634 635 636
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

Q
qijun 已提交
637

Z
zhangjinchao01 已提交
638 639 640 641 642 643
@config_class
class FullMatrixProjection(Projection):
    type = 'fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
644

Z
zhangjinchao01 已提交
645 646 647
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

Q
qijun 已提交
648

Z
zhangjinchao01 已提交
649 650 651 652 653 654
@config_class
class TransposedFullMatrixProjection(Projection):
    type = 'trans_fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
655

Z
zhangjinchao01 已提交
656 657 658
    def calc_parameter_dims(self, input_size, output_size):
        return [output_size, input_size]

Q
qijun 已提交
659

Z
zhangjinchao01 已提交
660 661 662 663
@config_class
class ContextProjection(Projection):
    type = 'context'

Q
qijun 已提交
664 665
    def __init__(self, input_layer_name, context_start, context_length,
                 trainable_padding, **xargs):
Z
zhangjinchao01 已提交
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
        super(ContextProjection, self).__init__(input_layer_name, **xargs)
        self.proj_conf.context_start = context_start
        self.proj_conf.context_length = context_length
        self.proj_conf.trainable_padding = trainable_padding
        self._total_pad = max(0, -self.proj_conf.context_start) \
                          + max(0, self.proj_conf.context_start \
                                + self.proj_conf.context_length - 1)

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size * self.proj_conf.context_length

    def calc_parameter_size(self, input_size, output_size):
        if self.proj_conf.trainable_padding == False:
            return 0
        else:
            return input_size * self._total_pad

    def calc_parameter_dims(self, input_size, output_size):
        return [self._total_pad, input_size]

    _total_pad = 0


689
@config_class
690
class ConvBaseProjection(Projection):
Q
qijun 已提交
691 692 693 694 695
    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
696
        super(ConvBaseProjection, self).__init__(input_layer_name, **xargs)
697 698 699 700 701 702 703 704 705 706 707 708

        if num_filters is not None:
            self.proj_conf.num_filters = num_filters

    def calc_output_size(self, input_layer_config):
        return self.proj_conf.output_size

    def calc_parameter_size(self, input_size, output_size):
        co = self.proj_conf.num_filters
        ci = self.proj_conf.conv_conf.channels
        fh = self.proj_conf.conv_conf.filter_size
        fw = self.proj_conf.conv_conf.filter_size_y
709 710
        gr = self.proj_conf.conv_conf.groups
        return co * ci * fh * fw / gr
711 712 713 714 715 716 717

    def calc_bias_size(self):
        return self.proj_conf.num_filters

    def calc_parameter_dims(self, input_size, output_size):
        return None

Q
qijun 已提交
718

719 720 721 722 723 724 725 726 727
@config_class
class ConvProjection(ConvBaseProjection):
    type = 'conv'

    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
728 729
        super(ConvProjection, self).__init__(input_layer_name, num_filters,
                                             conv_conf, **xargs)
730

731
        parse_conv(conv_conf, self.input_layer_name, self.proj_conf.conv_conf,
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
                   num_filters)
        self.proj_conf.output_size = self.proj_conf.conv_conf.output_x * \
                                     self.proj_conf.conv_conf.output_y * \
                                     num_filters


@config_class
class ConvTransProjection(ConvBaseProjection):
    type = 'convt'

    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
747 748
        super(ConvTransProjection, self).__init__(input_layer_name, num_filters,
                                                  conv_conf, **xargs)
749 750 751

        parse_conv(
            conv_conf,
752
            self.input_layer_name,
753 754 755 756 757 758 759 760
            self.proj_conf.conv_conf,
            num_filters,
            trans=True)
        self.proj_conf.output_size = self.proj_conf.conv_conf.img_size_y * \
                                     self.proj_conf.conv_conf.img_size * \
                                     num_filters


Z
zhangjinchao01 已提交
761 762 763
# Define a operator for mixed layer
@config_class
class Operator(Cfg):
Q
qijun 已提交
764 765
    type = None  # subclass should set it correctly

Z
zhangjinchao01 已提交
766 767
    def __init__(
            self,
Q
qijun 已提交
768
            input_layer_names, ):
Z
zhangjinchao01 已提交
769 770 771 772 773 774 775 776 777 778
        self.add_keys(locals())
        self.operator_conf = OperatorConfig()
        self.operator_conf.type = self.type

    def check_dims(self):
        pass

    def calc_output_size(self, input_sizes):
        return 0

Q
qijun 已提交
779

Z
zhangjinchao01 已提交
780 781 782
@config_class
class DotMulOperator(Operator):
    type = 'dot_mul'
Q
qijun 已提交
783 784 785

    def __init__(self, input_layer_names, scale=None, **xargs):
        super(DotMulOperator, self).__init__(input_layer_names, **xargs)
Z
zhangjinchao01 已提交
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
        if scale is not None:
            self.operator_conf.dotmul_scale = scale

        config_assert(len(input_layer_names) == 2, "DotMul is binary operator")

    def check_dims(self):
        for i in range(2):
            config_assert(self.operator_conf.input_sizes[i] ==
                          self.operator_conf.output_size,
                          "DotMul input_size != output_size")

    def calc_output_size(self, input_sizes):
        return input_sizes[0]


@config_class
class ConvOperator(Operator):
    type = 'conv'
Q
qijun 已提交
804 805 806 807 808 809 810

    def __init__(self,
                 input_layer_names,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
        super(ConvOperator, self).__init__(input_layer_names, **xargs)
Z
zhangjinchao01 已提交
811 812 813
        if num_filters is not None:
            self.operator_conf.num_filters = num_filters

814 815
        parse_conv(conv_conf,
                   MakeLayerNameInSubmodel(input_layer_names[0]),
Q
qijun 已提交
816
                   self.operator_conf.conv_conf, num_filters)
L
Luo Tao 已提交
817 818 819
        self.operator_conf.output_size = self.operator_conf.conv_conf.output_x * \
                                         self.operator_conf.conv_conf.output_y * \
                                         num_filters
Z
zhangjinchao01 已提交
820 821 822

        config_assert(len(input_layer_names) == 2, "Conv is binary operator")

823 824
    def calc_output_size(self, input_sizes):
        return self.operator_conf.output_size
Z
zhangjinchao01 已提交
825 826


827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
@config_class
class ConvTransOperator(Operator):
    type = 'convt'

    def __init__(self,
                 input_layer_names,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
        super(ConvTransOperator, self).__init__(input_layer_names, **xargs)
        if num_filters is not None:
            self.operator_conf.num_filters = num_filters

        parse_conv(
            conv_conf,
            MakeLayerNameInSubmodel(input_layer_names[0]),
            self.operator_conf.conv_conf,
            num_filters,
            trans=True)
        self.operator_conf.output_size = \
            self.operator_conf.conv_conf.img_size * \
            self.operator_conf.conv_conf.img_size_y * \
            num_filters

        config_assert(len(input_layer_names) == 2, "Conv is binary operator")

    def calc_output_size(self, input_sizes):
        return self.operator_conf.output_size


Z
zhangjinchao01 已提交
857 858 859
# please refer to the comments in proto/ModelConfig.proto
@config_class
class Conv(Cfg):
Q
qijun 已提交
860 861 862 863 864 865 866 867 868 869 870 871 872
    def __init__(self,
                 filter_size,
                 channels,
                 padding=None,
                 stride=None,
                 groups=None,
                 filter_channels=None,
                 output_x=None,
                 img_size=None,
                 caffe_mode=True,
                 filter_size_y=None,
                 padding_y=None,
                 stride_y=None):
Z
zhangjinchao01 已提交
873 874
        self.add_keys(locals())
        if filter_size_y is None:
Q
qijun 已提交
875
            self.filter_size_y = filter_size
Z
zhangjinchao01 已提交
876
        if padding_y is None:
Q
qijun 已提交
877
            self.padding_y = padding
Z
zhangjinchao01 已提交
878
        if stride_y is None:
Q
qijun 已提交
879
            self.stride_y = stride
Z
zhangjinchao01 已提交
880
        if output_x is not None:
Q
qijun 已提交
881 882
            config_assert(output_x <= 0)

Z
zhangjinchao01 已提交
883

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
# please refer to the comments in proto/ModelConfig.proto
@config_class
class Conv3D(Cfg):
    def __init__(self,
                 filter_size,
                 channels,
                 padding=None,
                 stride=None,
                 groups=None,
                 filter_channels=None,
                 output_x=None,
                 img_size=None,
                 caffe_mode=True,
                 filter_size_y=None,
                 padding_y=None,
                 stride_y=None,
                 filter_size_z=None,
                 padding_z=None,
                 stride_z=None):
        self.add_keys(locals())
        if filter_size_y is None:
            self.filter_size_y = filter_size
        if padding_y is None:
            self.padding_y = padding
        if stride_y is None:
            self.stride_y = stride
        if output_x is not None:
            config_assert(output_x <= 0)
        if filter_size_z is None:
            self.filter_size_z = filter_size
        if padding_z is None:
            self.padding_z = padding
        if stride_z is None:
            self.stride_z = stride


L
liaogang 已提交
920 921
@config_class
class BilinearInterp(Cfg):
L
Luo Tao 已提交
922
    def __init__(self, out_size_x=None, out_size_y=None, channels=None):
L
liaogang 已提交
923 924
        self.add_keys(locals())

Q
qijun 已提交
925

Z
zhangjinchao01 已提交
926 927
@config_class
class Pool(Cfg):
D
dangqingqing 已提交
928 929 930 931 932 933 934 935 936 937 938
    def __init__(
            self,
            pool_type,
            channels,
            size_x,
            size_y=None,
            start=None,
            stride=None,  # 1 by defalut in protobuf
            stride_y=None,
            padding=None,  # 0 by defalut in protobuf
            padding_y=None):
Z
zhangjinchao01 已提交
939
        self.add_keys(locals())
Q
qijun 已提交
940 941


Q
qijun 已提交
942
@config_class
Q
qijun 已提交
943
class SpatialPyramidPool(Cfg):
L
Luo Tao 已提交
944
    def __init__(self, pool_type, pyramid_height, channels):
Q
qijun 已提交
945
        self.add_keys(locals())
Z
zhangjinchao01 已提交
946

Q
qijun 已提交
947

D
dangqingqing 已提交
948 949 950 951 952 953
@config_class
class Pad(Cfg):
    def __init__(self, channels, pad_c, pad_h, pad_w):
        self.add_keys(locals())


Z
zhangjinchao01 已提交
954 955
@config_class
class Norm(Cfg):
Q
qijun 已提交
956 957 958 959 960 961 962 963 964
    def __init__(self,
                 norm_type,
                 channels,
                 size,
                 scale,
                 pow,
                 output_x=None,
                 img_size=None,
                 blocked=None):
Z
zhangjinchao01 已提交
965 966
        self.add_keys(locals())

Q
qijun 已提交
967

Z
zhangjinchao01 已提交
968 969
@config_class
class Image(Cfg):
Q
qijun 已提交
970
    def __init__(self, channels, img_size=None):
Z
zhangjinchao01 已提交
971 972
        self.add_keys(locals())

Q
qijun 已提交
973

Z
zhangjinchao01 已提交
974 975
@config_class
class BlockExpand(Cfg):
Q
qijun 已提交
976 977 978 979 980 981 982 983 984 985 986 987
    def __init__(self,
                 channels,
                 padding_x=0,
                 padding_y=0,
                 stride_x=0,
                 stride_y=0,
                 block_x=0,
                 block_y=0,
                 img_size_x=0,
                 img_size_y=0,
                 output_x=0,
                 output_y=0):
Z
zhangjinchao01 已提交
988 989
        self.add_keys(locals())

Q
qijun 已提交
990

991 992
@config_class
class MaxOut(Cfg):
Q
qijun 已提交
993
    def __init__(self, channels, groups, img_size_x=0, img_size_y=0):
994 995
        self.add_keys(locals())

Q
qijun 已提交
996

997
def create_data_config_proto(async_load_data=False,
998
                             constant_slots=None,
王益 已提交
999 1000 1001
                             data_ratio=1,
                             is_main_data=True,
                             usage_ratio=None):
Z
zhangjinchao01 已提交
1002 1003 1004 1005 1006 1007 1008 1009
    # default: all sub dataproviders are treat as "main data".
    # see proto/DataConfig.proto for is_main_data
    data_config = DataConfig()

    data_config.async_load_data = async_load_data

    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
Q
qijun 已提交
1010 1011
    data_config.data_ratio = data_ratio
    data_config.is_main_data = is_main_data
Z
zhangjinchao01 已提交
1012

Q
qijun 已提交
1013
    usage_ratio = default(usage_ratio, settings_deprecated["usage_ratio"])
Z
zhangjinchao01 已提交
1014 1015 1016 1017 1018 1019
    config_assert(usage_ratio >= 0 and usage_ratio <= 1,
                  "The range of usage_ratio is [0, 1]")
    data_config.usage_ratio = usage_ratio

    return data_config

Q
qijun 已提交
1020

Z
zhangjinchao01 已提交
1021
@config_func
Q
qijun 已提交
1022 1023 1024 1025 1026
def SimpleData(files=None,
               feat_dim=None,
               context_len=None,
               buffer_capacity=None,
               **xargs):
1027
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1028 1029 1030 1031 1032 1033 1034 1035 1036
    data_config.type = 'simple'
    data_config.files = files
    data_config.feat_dim = feat_dim
    if context_len is not None:
        data_config.context_len = context_len
    if buffer_capacity:
        data_config.buffer_capacity = buffer_capacity
    return data_config

Q
qijun 已提交
1037

Z
zhangjinchao01 已提交
1038
@config_func
Q
qijun 已提交
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
def PyData(files=None,
           type=None,
           file_group_queue_capacity=None,
           load_data_module=None,
           load_data_object=None,
           load_data_args="",
           load_file_count=None,
           constant_slots=None,
           load_thread_num=None,
           **xargs):
1049
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1050 1051
    data_config.type = 'py'
    if load_data_module in g_py_module_name_list:
Q
qijun 已提交
1052

Z
zhangjinchao01 已提交
1053 1054 1055
        def get_path(module):
            m = __import__(load_data_module)
            return os.path.split(os.path.realpath(m.__file__))[0]
Q
qijun 已提交
1056

Z
zhangjinchao01 已提交
1057 1058 1059
        # python C-api is not thread safe, one module can only be import once,
        # so here we nedd to copy the module with different names if it has to be
        # imported several times.
Q
qijun 已提交
1060 1061
        module_new_name = "%s_copy_%d" % (load_data_module,
                                          len(g_py_module_name_list))
Z
zhangjinchao01 已提交
1062
        g_py_module_name_list.append(module_new_name)
Q
qijun 已提交
1063 1064 1065 1066
        module_path = "%s/%s.py" % (get_path(load_data_module),
                                    load_data_module)
        new_module_path = "%s/%s.py" % (get_path(load_data_module),
                                        module_new_name)
Z
zhangjinchao01 已提交
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
        if os.path.isfile(module_path) == False:
            raise Exception("File %s is not exist." % module_path)
        shutil.copy2(module_path, new_module_path)
        load_data_module = module_new_name
    else:
        g_py_module_name_list.append(load_data_module)
    if load_data_module is not None and load_data_object is not None:
        data_config.load_data_module = load_data_module
        data_config.load_data_object = load_data_object
    else:
        raise ValueError('load_data_module, load_data_object is not defined.')
    data_config.load_data_args = load_data_args

    data_config.files = files or ''
    if file_group_queue_capacity is not None:
        data_config.file_group_conf.queue_capacity = file_group_queue_capacity
    if load_file_count is not None:
        data_config.file_group_conf.load_file_count = load_file_count
    if load_thread_num is not None:
        data_config.file_group_conf.load_thread_num = load_thread_num
    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    return data_config

Q
qijun 已提交
1091

Z
zhangjinchao01 已提交
1092
@config_func
Q
qijun 已提交
1093 1094 1095 1096 1097 1098 1099
def ProtoData(files=None,
              type=None,
              file_group_queue_capacity=None,
              load_file_count=None,
              constant_slots=None,
              load_thread_num=None,
              **xargs):
1100
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
    if type is None:
        data_config.type = 'proto'
    else:
        data_config.type = type
    data_config.files = files

    # When type="proto_group", one data provider contains at most
    # load_file_count files, and there are at most
    # (queue_capacity + load_thread_num + 1) data providers in memory
    if file_group_queue_capacity is not None:
        data_config.file_group_conf.queue_capacity = file_group_queue_capacity
    if load_file_count is not None:
        data_config.file_group_conf.load_file_count = load_file_count
    if load_thread_num is not None:
        data_config.file_group_conf.load_thread_num = load_thread_num
    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    return data_config

Q
qijun 已提交
1120

Z
zhangjinchao01 已提交
1121 1122
#real data for training is actually provided by "sub_data" data providers.
@config_func
Q
qijun 已提交
1123
def MultiData(sub_data=[]):
Z
zhangjinchao01 已提交
1124 1125 1126 1127 1128
    data_config = DataConfig()
    data_config.type = 'multi'
    data_config.sub_data_configs.extend(sub_data)
    return data_config

Q
qijun 已提交
1129

Z
zhangjinchao01 已提交
1130
@config_func
Q
qijun 已提交
1131 1132 1133 1134 1135 1136 1137
def Data(type,
         files=None,
         feat_dim=None,
         slot_dims=None,
         context_len=None,
         buffer_capacity=None,
         **xargs):
Z
zhangjinchao01 已提交
1138

1139
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
    data_config.type = type
    data_config.files = files
    data_config.feat_dim = feat_dim
    data_config.slot_dims.extend(slot_dims)
    if context_len is not None:
        data_config.context_len = context_len
    data_config.buffer_capacity = buffer_capacity
    return data_config


@config_func
def TrainData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('data_config'),
                  'Only one TrainData definition is allowed')
    g_config.data_config.CopyFrom(data_config)
    g_config.data_config.for_test = False
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.data_config.async_load_data = async_load_data


@config_func
def TestData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('test_data_config'),
                  'Only one TestData definition is allowed')
    g_config.test_data_config.CopyFrom(data_config)
    g_config.test_data_config.for_test = True
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.test_data_config.async_load_data = async_load_data

Q
qijun 已提交
1173

L
Luo Tao 已提交
1174 1175
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
1176 1177 1178 1179 1180 1181 1182
def cnn_output_size(img_size, filter_size, padding, stride, caffe_mode):
    output = (2 * padding + img_size - filter_size) / float(stride)
    if caffe_mode:
        return 1 + int(math.floor(output))
    else:
        return 1 + int(math.ceil(output))

Q
qijun 已提交
1183

1184
#calcualte image_size based on output_size for de-convolution (ConvTransLayer).
L
Luo Tao 已提交
1185
#It is the reverse function of cnn_output_size
1186
def cnn_image_size(output_size, filter_size, padding, stride, caffe_mode):
L
Luo Tao 已提交
1187 1188 1189
    img_size = (output_size - 1) * stride + filter_size - 2 * padding
    if not caffe_mode:
        img_size = img_size + 1
1190 1191
    return img_size

Q
qijun 已提交
1192

L
Luo Tao 已提交
1193
def get_img_size(input_layer_name, channels):
L
Luo Tao 已提交
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
    input = g_layer_map[input_layer_name]
    img_pixels = input.size / channels
    img_size = input.width if input.width > 0 else int(img_pixels**0.5)
    img_size_y = input.height if input.height > 0 else int(img_pixels /
                                                           img_size)
    config_assert(
        img_size * img_size_y == img_pixels,
        "Input layer %s: Incorrect input image size %d * %d for input image pixels %d"
        % (input_layer_name, img_size, img_size_y, img_pixels))
    return img_size, img_size_y


1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
def get_img3d_size(input_layer_name, channels):
    input = g_layer_map[input_layer_name]
    img_pixels = input.size / channels
    img_size = input.width if input.width > 0 else int(img_pixels**0.5)
    img_size_y = input.height if input.height > 0 else int(img_pixels /
                                                           img_size)
    img_size_z = input.depth if input.depth > 1 else 1
    config_assert(
        img_size * img_size_y * img_size_z == img_pixels,
        "Input layer %s: Incorrect input image size %d * %d * %d for input image pixels %d"
        % (input_layer_name, img_size, img_size_y, img_size_z, img_pixels))
    return img_size, img_size_y, img_size_z


L
Luo Tao 已提交
1220 1221 1222 1223 1224 1225
def parse_bilinear(bilinear, input_layer_name, bilinear_conf):
    parse_image(bilinear, input_layer_name, bilinear_conf.image_conf)
    bilinear_conf.out_size_x = bilinear.out_size_x
    bilinear_conf.out_size_y = bilinear.out_size_y


1226
def parse_pool(pool, input_layer_name, pool_conf, ceil_mode):
Z
zhangjinchao01 已提交
1227
    pool_conf.pool_type = pool.pool_type
Q
qijun 已提交
1228 1229 1230
    config_assert(pool.pool_type in [
        'max-projection', 'avg-projection', 'cudnn-max-pool', 'cudnn-avg-pool'
    ], "pool-type %s is not in "
Z
zhangjinchao01 已提交
1231
                  "['max-projection', 'avg-projection', "
Q
qijun 已提交
1232
                  "'cudnn-max-pool', 'cudnn-avg-pool']" % pool.pool_type)
Z
zhangjinchao01 已提交
1233 1234 1235 1236 1237 1238

    pool_conf.channels = pool.channels
    pool_conf.size_x = pool.size_x
    pool_conf.stride = pool.stride

    pool_conf.size_y = default(pool.size_y, pool_conf.size_x)
Q
qijun 已提交
1239
    pool_conf.stride_y = default(pool.stride_y, pool_conf.stride)
Z
zhangjinchao01 已提交
1240

L
Luo Tao 已提交
1241
    pool_conf.img_size, pool_conf.img_size_y = \
L
Luo Tao 已提交
1242
        get_img_size(input_layer_name, pool.channels)
Z
zhangjinchao01 已提交
1243

1244
    config_assert(not pool.start, "start is deprecated in pooling.")
Z
zhangjinchao01 已提交
1245

1246
    if pool.padding is not None:
Z
zhangjinchao01 已提交
1247
        pool_conf.padding = pool.padding
1248
    pool_conf.padding_y = default(pool.padding_y, pool_conf.padding)
D
dangqingqing 已提交
1249 1250
    pool_conf.output_x = cnn_output_size(pool_conf.img_size, pool_conf.size_x,
                                         pool_conf.padding, pool_conf.stride,
1251
                                         not ceil_mode)
D
dangqingqing 已提交
1252 1253
    pool_conf.output_y = cnn_output_size(pool_conf.img_size_y, pool_conf.size_y,
                                         pool_conf.padding_y,
1254
                                         pool_conf.stride_y, not ceil_mode)
Q
qijun 已提交
1255

Z
zhangjinchao01 已提交
1256

Q
qijun 已提交
1257
def parse_spp(spp, input_layer_name, spp_conf):
L
Luo Tao 已提交
1258
    parse_image(spp, input_layer_name, spp_conf.image_conf)
Q
qijun 已提交
1259 1260
    spp_conf.pool_type = spp.pool_type
    config_assert(spp.pool_type in ['max-projection', 'avg-projection'],
Q
qijun 已提交
1261 1262
                  "pool-type %s is not in "
                  "['max-projection', 'avg-projection']" % spp.pool_type)
Q
qijun 已提交
1263
    spp_conf.pyramid_height = spp.pyramid_height
Q
qijun 已提交
1264

Q
qijun 已提交
1265

Z
zhangjinchao01 已提交
1266 1267
def parse_image(image, input_layer_name, image_conf):
    image_conf.channels = image.channels
L
Luo Tao 已提交
1268
    image_conf.img_size, image_conf.img_size_y = \
L
Luo Tao 已提交
1269
        get_img_size(input_layer_name, image_conf.channels)
Q
qijun 已提交
1270

Z
zhangjinchao01 已提交
1271 1272 1273

def parse_norm(norm, input_layer_name, norm_conf):
    norm_conf.norm_type = norm.norm_type
1274 1275 1276 1277 1278
    config_assert(
        norm.norm_type in
        ['rnorm', 'cmrnorm-projection', 'cross-channel-norm'],
        "norm-type %s is not in [rnorm, cmrnorm-projection, cross-channel-norm]"
        % norm.norm_type)
Z
zhangjinchao01 已提交
1279 1280 1281 1282 1283 1284
    norm_conf.channels = norm.channels
    norm_conf.size = norm.size
    norm_conf.scale = norm.scale
    norm_conf.pow = norm.pow
    norm_conf.blocked = norm.blocked

L
Luo Tao 已提交
1285
    norm_conf.img_size, norm_conf.img_size_y = \
L
Luo Tao 已提交
1286
        get_img_size(input_layer_name, norm.channels)
Z
zhangjinchao01 已提交
1287
    norm_conf.output_x = norm_conf.img_size
L
Luo Tao 已提交
1288
    norm_conf.output_y = norm_conf.img_size_y
Z
zhangjinchao01 已提交
1289 1290 1291
    if norm.norm_type in ['cmrnorm-projection']:
        norm_conf.scale /= norm.size
    else:
Q
qijun 已提交
1292 1293
        norm_conf.scale /= norm.size**2

1294

L
Luo Tao 已提交
1295 1296
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
1297
def parse_conv(conv, input_layer_name, conv_conf, num_filters, trans=False):
Z
zhangjinchao01 已提交
1298 1299 1300 1301 1302 1303 1304 1305 1306
    conv_conf.filter_size = conv.filter_size
    conv_conf.filter_size_y = conv.filter_size_y
    conv_conf.channels = conv.channels
    conv_conf.padding = conv.padding
    conv_conf.padding_y = conv.padding_y
    conv_conf.stride = conv.stride
    conv_conf.stride_y = conv.stride_y
    conv_conf.groups = conv.groups
    conv_conf.caffe_mode = conv.caffe_mode
Q
qijun 已提交
1307

1308
    if not trans:
1309
        conv_conf.filter_channels = conv.channels / conv.groups
L
Luo Tao 已提交
1310
        conv_conf.img_size, conv_conf.img_size_y = \
L
Luo Tao 已提交
1311
            get_img_size(input_layer_name, conv.channels)
1312
        conv_conf.output_x = cnn_output_size(
Q
qijun 已提交
1313 1314
            conv_conf.img_size, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
L
Luo Tao 已提交
1315 1316 1317
        conv_conf.output_y = cnn_output_size(
            conv_conf.img_size_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
1318
    else:
1319
        conv_conf.filter_channels = num_filters / conv.groups
L
Luo Tao 已提交
1320
        conv_conf.output_x, conv_conf.output_y = \
L
Luo Tao 已提交
1321
            get_img_size(input_layer_name, conv.channels)
1322
        conv_conf.img_size = cnn_image_size(
Q
qijun 已提交
1323 1324
            conv_conf.output_x, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
L
Luo Tao 已提交
1325
        conv_conf.img_size_y = cnn_image_size(
L
Luo Tao 已提交
1326 1327
            conv_conf.output_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
Q
qijun 已提交
1328

1329

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
def parse_conv3d(conv, input_layer_name, conv_conf, num_filters, trans=False):
    conv_conf.filter_size = conv.filter_size
    conv_conf.filter_size_y = conv.filter_size_y
    conv_conf.filter_size_z = conv.filter_size_z
    conv_conf.channels = conv.channels
    conv_conf.padding = conv.padding
    conv_conf.padding_y = conv.padding_y
    conv_conf.padding_z = conv.padding_z
    conv_conf.stride = conv.stride
    conv_conf.stride_y = conv.stride_y
    conv_conf.stride_z = conv.stride_z
    conv_conf.groups = conv.groups
    conv_conf.caffe_mode = conv.caffe_mode

    if not trans:
        conv_conf.filter_channels = conv.channels / conv.groups
        conv_conf.img_size, conv_conf.img_size_y, conv_conf.img_size_z = \
            get_img3d_size(input_layer_name, conv.channels)
        conv_conf.output_x = cnn_output_size(
            conv_conf.img_size, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
        conv_conf.output_y = cnn_output_size(
            conv_conf.img_size_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
        conv_conf.output_z = cnn_output_size(
            conv_conf.img_size_z, conv_conf.filter_size_z, conv_conf.padding_z,
            conv_conf.stride_z, conv_conf.caffe_mode)
    else:
        conv_conf.filter_channels = num_filters / conv.groups
        conv_conf.output_x, conv_conf.output_y, conv_conf.output_z = \
            get_img3d_size(input_layer_name, conv.channels)
        conv_conf.img_size = cnn_image_size(
            conv_conf.output_x, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
        conv_conf.img_size_y = cnn_image_size(
            conv_conf.output_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
        conv_conf.img_size_z = cnn_image_size(
            conv_conf.output_z, conv_conf.filter_size_z, conv_conf.padding_z,
            conv_conf.stride_z, conv_conf.caffe_mode)


Z
zhangjinchao01 已提交
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
def parse_block_expand(block_expand, input_layer_name, block_expand_conf):
    block_expand_conf.channels = block_expand.channels
    block_expand_conf.stride_x = block_expand.stride_x
    block_expand_conf.stride_y = block_expand.stride_y
    block_expand_conf.padding_x = block_expand.padding_x
    block_expand_conf.padding_y = block_expand.padding_y
    block_expand_conf.block_x = block_expand.block_x
    block_expand_conf.block_y = block_expand.block_y
    block_expand_conf.img_size_x = block_expand.img_size_x
    block_expand_conf.img_size_y = block_expand.img_size_y
    if block_expand_conf.img_size_x == 0:
        block_expand_conf.output_x = 0
    else:
1387
        block_expand_conf.output_x = cnn_output_size(
1388
            block_expand.img_size_x, block_expand.block_x,
1389
            block_expand.padding_x, block_expand.stride_x, False)
Z
zhangjinchao01 已提交
1390 1391

    if block_expand_conf.img_size_y == 0:
1392
        block_expand_conf.output_y = 0
Z
zhangjinchao01 已提交
1393
    else:
1394
        block_expand_conf.output_y = cnn_output_size(
1395
            block_expand.img_size_y, block_expand.block_y,
1396
            block_expand.padding_y, block_expand.stride_y, False)
Z
zhangjinchao01 已提交
1397

Q
qijun 已提交
1398

1399
def parse_maxout(maxout, input_layer_name, maxout_conf):
L
Luo Tao 已提交
1400
    parse_image(maxout, input_layer_name, maxout_conf.image_conf)
1401
    maxout_conf.groups = maxout.groups
1402

Q
qijun 已提交
1403

Z
zhangjinchao01 已提交
1404 1405
# Define an evaluator
@config_func
Y
yangyaming 已提交
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
def Evaluator(name,
              type,
              inputs,
              chunk_scheme=None,
              num_chunk_types=None,
              classification_threshold=None,
              positive_label=None,
              dict_file=None,
              result_file=None,
              num_results=None,
              top_k=None,
              delimited=None,
              excluded_chunk_types=None,
              overlap_threshold=None,
              background_id=None,
              evaluate_difficult=None,
              ap_type=None):
Z
zhangjinchao01 已提交
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
    evaluator = g_config.model_config.evaluators.add()
    evaluator.type = type
    evaluator.name = MakeLayerNameInSubmodel(name)
    if type_of(inputs) == str:
        inputs = [inputs]

    evaluator.input_layers.extend(
        [MakeLayerNameInSubmodel(name) for name in inputs])

    if chunk_scheme is not None:
        evaluator.chunk_scheme = chunk_scheme
        evaluator.num_chunk_types = num_chunk_types
    g_current_submodel.evaluator_names.append(evaluator.name)

1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
    if classification_threshold is not None:
        evaluator.classification_threshold = classification_threshold
    if positive_label is not None:
        evaluator.positive_label = positive_label
    if dict_file is not None:
        evaluator.dict_file = dict_file

    if result_file is not None:
        evaluator.result_file = result_file
    if num_results is not None:
        evaluator.num_results = num_results
L
Liang Zhao 已提交
1448 1449
    if top_k is not None:
        evaluator.top_k = top_k
1450 1451
    if delimited is not None:
        evaluator.delimited = delimited
Z
zhangjinchao01 已提交
1452

1453 1454 1455
    if excluded_chunk_types:
        evaluator.excluded_chunk_types.extend(excluded_chunk_types)

Y
yangyaming 已提交
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
    if overlap_threshold is not None:
        evaluator.overlap_threshold = overlap_threshold

    if background_id is not None:
        evaluator.background_id = background_id

    if evaluate_difficult is not None:
        evaluator.evaluate_difficult = evaluate_difficult

    if ap_type is not None:
        evaluator.ap_type = ap_type

Q
qijun 已提交
1468

Z
zhangjinchao01 已提交
1469 1470 1471 1472 1473
class LayerBase(object):
    def __init__(
            self,
            name,
            type,
Q
qijun 已提交
1474
            size,  # size can be 0. In this case, subclass should set it.
Z
zhangjinchao01 已提交
1475 1476 1477 1478
            inputs,
            device=None,
            active_type="",
            drop_rate=0.,
C
caoying03 已提交
1479 1480
            coeff=None,
            error_clipping_threshold=None):
Z
zhangjinchao01 已提交
1481
        config_assert('@' not in name,
Q
qijun 已提交
1482
                      "layer name: %s contain special character @" % name)
Z
zhangjinchao01 已提交
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
        global g_current_submodel
        name = MakeLayerNameInSubmodel(name)

        config_assert(name not in g_layer_map,
                      'Duplicated layer name: %s' % name)

        self.inputs = copy.deepcopy(inputs)
        self.operators = []

        if self.inputs is None:
            self.inputs = []
        elif type_of(self.inputs) != list:
            self.inputs = [self.inputs]

        self.config = g_config.model_config.layers.add()
1498
        assert isinstance(self.config, LayerConfig)
Z
zhangjinchao01 已提交
1499 1500 1501
        self.config.name = name
        self.config.type = type
        self.config.active_type = active_type
1502 1503
        if coeff is not None:
            self.config.coeff = float(coeff)
Z
zhangjinchao01 已提交
1504 1505 1506 1507 1508 1509 1510
        if size != 0:
            self.config.size = size
        if drop_rate != 0:
            self.config.drop_rate = drop_rate

        if device is not None:
            self.config.device = device
1511
        elif g_default_device is not None:
Z
zhangjinchao01 已提交
1512 1513
            self.config.device = g_default_device

C
caoying03 已提交
1514 1515 1516
        if error_clipping_threshold is not None:
            self.config.error_clipping_threshold = error_clipping_threshold

Z
zhangjinchao01 已提交
1517 1518 1519 1520 1521 1522 1523
        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            input_config = None
            input_layer_name = ''
            if type_of(input) == str:
                input_layer_name = input
                input_config = Input(
Q
qijun 已提交
1524 1525
                    input_layer_name=input,
                    parameter_name=gen_parameter_name(name, input_index))
Z
zhangjinchao01 已提交
1526 1527 1528 1529 1530 1531 1532 1533
                input_layer_name = input_config.input_layer_name
            elif isinstance(input, Input):
                input_layer_name = input.input_layer_name
                input_config = input
                if input_config.parameter_name is None:
                    input_config.parameter_name = \
                        gen_parameter_name(name, input_index)
            elif isinstance(input, Operator):
Q
qijun 已提交
1534
                self.operators.append(input)
Z
zhangjinchao01 已提交
1535 1536 1537 1538
                input.operator_conf.input_indices.append(input_index)
                input_config = Input(input.input_layer_names[0])
                input_layer_name = input_config.input_layer_name
            else:
Q
qijun 已提交
1539
                raise ValueError('Wrong type for inputs: %s' % type_of(input))
Z
zhangjinchao01 已提交
1540
            config_assert(input_layer_name in g_layer_map,
Q
qijun 已提交
1541 1542
                          "Unknown input layer '%s' for layer %s" %
                          (input_layer_name, name))
Z
zhangjinchao01 已提交
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
            self.inputs[input_index] = input_config
            layer_input = self.config.inputs.add()
            layer_input.input_layer_name = input_config.input_layer_name
            if input_config.input_layer_argument is not None:
                layer_input.input_layer_argument = \
                    input_config.input_layer_argument

        g_layer_map[name] = self.config

        g_current_submodel.layer_names.append(self.config.name)

    def get_input_layer(self, input_index):
        return g_layer_map[self.config.inputs[input_index].input_layer_name]

    # will return the bias created if not *for_self*
    def create_bias_parameter(
            self,
Q
qijun 已提交
1560
            bias,  # True/False or BiasCfg
Z
zhangjinchao01 已提交
1561
            size,
Q
qijun 已提交
1562 1563 1564
            dims=None,
            for_self=True,  # whether create bias for layer self
    ):
Z
zhangjinchao01 已提交
1565 1566 1567 1568 1569 1570

        if size == 0:
            return
        if dims is None:
            dims = [1, size]

Q
qijun 已提交
1571 1572 1573
        config_assert(
            type_of(bias) == bool or type_of(bias) == Bias,
            'Incorrect type for bias: %s' % type_of(bias))
Z
zhangjinchao01 已提交
1574 1575 1576 1577 1578 1579 1580 1581 1582

        if type_of(bias) == bool:
            if bias:
                bias = Bias()

        if type_of(bias) == Bias:
            if bias.parameter_name is None:
                bias.parameter_name = gen_bias_parameter_name(self.config.name)
            if bias.parameter_name not in g_parameter_map:
1583 1584
                assert isinstance(self.config, LayerConfig)

Z
zhangjinchao01 已提交
1585 1586 1587
                Parameter(
                    bias.parameter_name,
                    size,
Q
qijun 已提交
1588 1589
                    self.config.device
                    if self.config.HasField('device') else None,
Z
zhangjinchao01 已提交
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
                    dims,
                    bias.learning_rate,
                    bias.momentum,
                    decay_rate=bias.decay_rate,
                    decay_rate_l1=bias.decay_rate_l1,
                    initial_mean=bias.initial_mean,
                    initial_std=bias.initial_std,
                    initial_strategy=bias.initial_strategy,
                    initial_smart=bias.initial_smart,
                    num_batches_regularization=bias.num_batches_regularization,
                    sparse_remote_update=bias.sparse_remote_update,
Q
qijun 已提交
1601 1602
                    gradient_clipping_threshold=bias.
                    gradient_clipping_threshold,
Z
zhangjinchao01 已提交
1603
                    is_static=bias.is_static,
X
xuwei06 已提交
1604 1605
                    is_shared=bias.is_shared,
                    initializer=bias.initializer)
Z
zhangjinchao01 已提交
1606 1607 1608 1609 1610
            if for_self:
                self.config.bias_parameter_name = bias.parameter_name
            else:
                return bias.parameter_name

Q
qijun 已提交
1611 1612 1613 1614 1615 1616
    def create_input_parameter(self,
                               input_index,
                               size,
                               dims=None,
                               sparse=None,
                               format=None):
Z
zhangjinchao01 已提交
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
        if dims is None:
            # TODO(yuyang18): print warning and callstack here!
            dims = list()

        if size == 0:
            return

        input_config = self.inputs[input_index]

        self.config.inputs[input_index].input_parameter_name = \
            input_config.parameter_name

        if input_config.parameter_name in g_parameter_map:
            para = g_parameter_map[input_config.parameter_name]
Q
qijun 已提交
1631 1632
            config_assert(size == para.size, (
                'Shared parameter "%s" does not ' + 'have same size: %s vs. %s')
Z
zhangjinchao01 已提交
1633 1634
                          % (input_config.parameter_name, para.size, size))

Q
qijun 已提交
1635 1636
            config_assert(dims == para.dims, (
                'Shared parameter "%s" does not ' + 'have same dims: %s vs. %s')
Z
zhangjinchao01 已提交
1637 1638 1639 1640 1641 1642
                          % (input_config.parameter_name, para.dims, dims))
            return

        Parameter(
            input_config.parameter_name,
            size,
1643
            self.config.device if self.config.HasField("device") else None,
Z
zhangjinchao01 已提交
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
            dims,
            input_config.learning_rate,
            input_config.momentum,
            decay_rate=input_config.decay_rate,
            decay_rate_l1=input_config.decay_rate_l1,
            initial_mean=input_config.initial_mean,
            initial_std=input_config.initial_std,
            initial_strategy=input_config.initial_strategy,
            initial_smart=input_config.initial_smart,
            num_batches_regularization=input_config.num_batches_regularization,
            sparse_remote_update=input_config.sparse_remote_update,
            sparse_update=input_config.sparse_update,
Q
qijun 已提交
1656 1657
            gradient_clipping_threshold=input_config.
            gradient_clipping_threshold,
Z
zhangjinchao01 已提交
1658 1659 1660 1661
            sparse=sparse,
            format=format,
            is_static=input_config.is_static,
            is_shared=input_config.is_shared,
X
xuwei06 已提交
1662 1663
            update_hooks=input_config.update_hooks,
            initializer=input_config.initializer)
Z
zhangjinchao01 已提交
1664 1665 1666 1667 1668 1669 1670 1671 1672

    def set_layer_size(self, size):
        if self.config.size == 0:
            self.config.size = size
        else:
            config_assert(self.config.size == size,
                          'Different inputs result in' +
                          'different layer size at layer %s' % self.config.name)

L
Luo Tao 已提交
1673 1674 1675 1676
    def set_layer_height_width(self, height, width):
        self.config.height = height
        self.config.width = width

1677 1678 1679
    def set_layer_depth(self, depth):
        self.config.depth = depth

L
Luo Tao 已提交
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
    def set_cnn_layer(self,
                      input_layer_name,
                      height,
                      width,
                      channels,
                      is_print=True):
        size = height * width * channels
        self.set_layer_size(size)
        self.set_layer_height_width(height, width)
        if is_print:
            print("output for %s: c = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, height, width, size))

Q
qijun 已提交
1693

Z
zhangjinchao01 已提交
1694 1695
@config_layer('multi_class_cross_entropy_with_selfnorm')
class MultiClassCrossEntropySelfNormCostLayer(LayerBase):
Q
qijun 已提交
1696 1697 1698
    def __init__(self, name, inputs, softmax_selfnorm_alpha=0.1, **xargs):
        super(MultiClassCrossEntropySelfNormCostLayer, self).__init__(
            name, 'multi_class_cross_entropy_with_selfnorm', 0, inputs, **xargs)
Z
zhangjinchao01 已提交
1699 1700
        self.config.softmax_selfnorm_alpha = softmax_selfnorm_alpha

Q
qijun 已提交
1701

Z
zhangjinchao01 已提交
1702 1703
@config_layer('fc')
class FCLayer(LayerBase):
L
lianxiaochen 已提交
1704 1705 1706 1707 1708 1709 1710
    def __init__(self,
                 name,
                 size,
                 inputs,
                 bias=True,
                 error_clipping_threshold=None,
                 **xargs):
Z
zhangjinchao01 已提交
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
        super(FCLayer, self).__init__(name, 'fc', size, inputs=inputs, **xargs)
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
            dims = [input_layer.size, self.config.size]
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"

            if sparse:
                psize = self.inputs[input_index].nnz
1721 1722
            else:
                sparse = None
Z
zhangjinchao01 已提交
1723

Q
qijun 已提交
1724 1725
            self.create_input_parameter(input_index, psize, dims, sparse,
                                        format)
Z
zhangjinchao01 已提交
1726
        self.create_bias_parameter(bias, self.config.size)
L
lianxiaochen 已提交
1727 1728
        if error_clipping_threshold is not None:
            self.config.error_clipping_threshold = error_clipping_threshold
Z
zhangjinchao01 已提交
1729

Q
qijun 已提交
1730

Z
zhangjinchao01 已提交
1731 1732
@config_layer('selective_fc')
class SelectiveFCLayer(LayerBase):
Q
qijun 已提交
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
    def __init__(self,
                 name,
                 size,
                 inputs,
                 bias=True,
                 selective_fc_pass_generation=False,
                 has_selected_colums=True,
                 selective_fc_full_mul_ratio=0.02,
                 selective_fc_parallel_plain_mul_thread_num=None,
                 **xargs):
Z
zhangjinchao01 已提交
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
        super(SelectiveFCLayer, self).__init__(
            name, 'selective_fc', size, inputs=inputs, **xargs)
        # user MUST know if selctive fc is used in training,
        # parameter matrices saved by this layer are automatically transposed,
        # BUT bias is not.

        # if selective_fc is used only in testing mode, and parameters for
        # this layer are trained by fully connected layers,
        # then TranposedFullMatrixProjectin MUST be used in training
        # to avoid manual transpose in testing.

        self.config.selective_fc_pass_generation = selective_fc_pass_generation
        self.config.has_selected_colums = has_selected_colums
        self.config.selective_fc_full_mul_ratio = selective_fc_full_mul_ratio
        if selective_fc_parallel_plain_mul_thread_num is not None:
            self.config.selective_fc_parallel_plain_mul_thread_num = selective_fc_parallel_plain_mul_thread_num

        input_num = len(self.inputs)
        if has_selected_colums:
            config_assert(input_num >= 2,
Q
qijun 已提交
1763 1764
                          ("if indices of selected columns are not specified, "
                           "selective_fc Layer has at least two inputs"))
Z
zhangjinchao01 已提交
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
            input_num -= 1

        for input_index in xrange(input_num):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
            dims = [input_layer.size, self.config.size]
            dims = dims[::-1]  # transpose the parameter
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"
            if sparse:
                psize = self.inputs[input_index].nnz

Q
qijun 已提交
1777 1778
            self.create_input_parameter(input_index, psize, dims, sparse,
                                        format)
Z
zhangjinchao01 已提交
1779 1780
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
1781

1782 1783
@config_layer('print')
class PrintLayer(LayerBase):
1784
    def __init__(self, name, inputs, format=None):
1785
        super(PrintLayer, self).__init__(name, 'print', 0, inputs)
1786 1787 1788 1789 1790 1791
        if format is None:
            format = "\n".join([
                "layer=" + input.input_layer_name + " %s"
                for input in self.inputs
            ])
        self.config.user_arg = format
1792

Q
qijun 已提交
1793

Y
yuan 已提交
1794 1795
@config_layer('priorbox')
class PriorBoxLayer(LayerBase):
G
gaoyuan 已提交
1796 1797
    def __init__(self, name, inputs, size, min_size, max_size, aspect_ratio,
                 variance):
Y
yuan 已提交
1798
        super(PriorBoxLayer, self).__init__(name, 'priorbox', 0, inputs)
G
gaoyuan 已提交
1799
        config_assert(len(inputs) == 2, 'PriorBoxLayer must have 2 inputs')
G
gaoyuan 已提交
1800 1801 1802 1803 1804 1805 1806
        input_layer = self.get_input_layer(1)
        config_assert(
            input_layer.type == 'data',
            'Expecting the second input layer of an priorbox layer to be '
            'a data layer')
        config_assert(input_layer.width > 0, 'The data layer must set width')
        config_assert(input_layer.height > 0, 'The data layer must set height')
G
gaoyuan 已提交
1807
        config_assert(len(variance) == 4, 'The variance must have 4 inputs')
Y
yuan 已提交
1808 1809 1810 1811 1812 1813
        self.config.inputs[0].priorbox_conf.min_size.extend(min_size)
        self.config.inputs[0].priorbox_conf.max_size.extend(max_size)
        self.config.inputs[0].priorbox_conf.aspect_ratio.extend(aspect_ratio)
        self.config.inputs[0].priorbox_conf.variance.extend(variance)
        self.config.size = size

Q
qijun 已提交
1814

1815 1816 1817
@config_layer('multibox_loss')
class MultiBoxLossLayer(LayerBase):
    def __init__(self, name, inputs, input_num, num_classes, overlap_threshold,
1818
                 neg_pos_ratio, neg_overlap, background_id, **xargs):
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
        super(MultiBoxLossLayer, self).__init__(name, 'multibox_loss', 0,
                                                inputs)
        config_assert(
            len(inputs) == (input_num * 2 + 2),
            'MultiBoxLossLayer does not have enough inputs')
        config_assert(num_classes > background_id,
                      'Classes number must greater than background ID')
        self.config.inputs[0].multibox_loss_conf.num_classes = num_classes
        self.config.inputs[
            0].multibox_loss_conf.overlap_threshold = overlap_threshold
        self.config.inputs[0].multibox_loss_conf.neg_pos_ratio = neg_pos_ratio
        self.config.inputs[0].multibox_loss_conf.neg_overlap = neg_overlap
        self.config.inputs[0].multibox_loss_conf.background_id = background_id
        self.config.inputs[0].multibox_loss_conf.input_num = input_num
        self.config.size = 1


@config_layer('detection_output')
class DetectionOutputLayer(LayerBase):
    def __init__(self, name, inputs, size, input_num, num_classes,
                 nms_threshold, nms_top_k, keep_top_k, confidence_threshold,
1840
                 background_id, **xargs):
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
        super(DetectionOutputLayer, self).__init__(name, 'detection_output', 0,
                                                   inputs)
        config_assert(
            len(inputs) == (input_num * 2 + 1),
            'DetectionOutputLayer does not have enough inputs')
        config_assert(num_classes > background_id,
                      'Classes number must greater than background ID')
        self.config.inputs[0].detection_output_conf.num_classes = num_classes
        self.config.inputs[
            0].detection_output_conf.nms_threshold = nms_threshold
        self.config.inputs[0].detection_output_conf.nms_top_k = nms_top_k
        self.config.inputs[0].detection_output_conf.keep_top_k = keep_top_k
        self.config.inputs[
            0].detection_output_conf.confidence_threshold = confidence_threshold
        self.config.inputs[
            0].detection_output_conf.background_id = background_id
        self.config.inputs[0].detection_output_conf.input_num = input_num
        self.config.size = size


Z
zhangjinchao01 已提交
1861 1862
@config_layer('data')
class DataLayer(LayerBase):
1863 1864 1865 1866 1867 1868 1869
    def __init__(self,
                 name,
                 size,
                 height=None,
                 width=None,
                 depth=None,
                 device=None):
Q
qijun 已提交
1870 1871
        super(DataLayer, self).__init__(
            name, 'data', size, inputs=[], device=device)
L
Luo Tao 已提交
1872 1873
        if height and width:
            self.set_layer_height_width(height, width)
1874 1875
        if depth:
            self.set_layer_depth(depth)
Q
qijun 已提交
1876

Z
zhangjinchao01 已提交
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903

'''
DataNormLayer: A layer for data normalization
Input: One and only one input layer is accepted. The input layer must
       be DataLayer with dense data type
Output: The normalization of the input data

Reference:
    LA Shalabi, Z Shaaban, B Kasasbeh. Data mining: A preprocessing engine

Example:
    Layer(
        name = "norm_input_layer",
        type = "data_norm",
        inputs = [Input("input_layer",
                        parameter_name = "_slot0.stats")],
        data_norm_strategy = "z-score",
    )

Note:
  (1) The parameter has been calculated in the preprocessing stage,
      and should be initialized by --init_model_path when training.
  (2) Three data normalization methoeds are considered
          z-score: y = (x-mean)/std
          min-max: y = (x-min)/(max-min)
          decimal-scaling: y = x/10^j, where j is the smallest integer such that max(|y|)<1
'''
Q
qijun 已提交
1904 1905


Z
zhangjinchao01 已提交
1906 1907
@config_layer('data_norm')
class DataNormLayer(LayerBase):
Q
qijun 已提交
1908
    def __init__(self, name, inputs, data_norm_strategy="z-score", device=None):
Z
zhangjinchao01 已提交
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
        super(DataNormLayer, self).__init__(
            name, 'data_norm', 0, inputs=inputs, device=device)
        self.config.data_norm_strategy = data_norm_strategy
        config_assert(len(inputs) == 1, 'DataNormLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
        para_size = 5 * input_layer.size
        para_dims = [5, input_layer.size]
        self.inputs[0].is_static = True
        self.create_input_parameter(0, para_size, para_dims)

Q
qijun 已提交
1920

Z
zhangjinchao01 已提交
1921 1922 1923
@config_layer('prelu')
class ParameterReluLayer(LayerBase):
    layer_type = 'prelu'
Q
qijun 已提交
1924 1925

    def __init__(self, name, inputs, partial_sum=1, **args):
Z
zhangjinchao01 已提交
1926 1927 1928
        super(ParameterReluLayer, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **args)
        input_layer = self.get_input_layer(0)
1929 1930 1931
        config_assert(len(self.inputs) == 1, "prelu layer has only one input.")
        config_assert(input_layer.size % partial_sum == 0,
                      "a wrong setting for partial_sum")
Z
zhangjinchao01 已提交
1932 1933 1934
        self.set_layer_size(input_layer.size)
        self.create_input_parameter(0, input_layer.size / partial_sum)

Q
qijun 已提交
1935

Z
zhangjinchao01 已提交
1936 1937 1938
@config_layer('conv')
class ConvLayerBase(LayerBase):
    layer_type = 'conv'
Q
qijun 已提交
1939 1940 1941 1942 1943 1944 1945 1946

    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
Z
zhangjinchao01 已提交
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
        super(ConvLayerBase, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

        # Automatically select cudnn_type for GPU and exconv for CPU
        # if set type=conv, but still reserve the way user specify
        # exconv or cudnn_conv manually.
        if self.layer_type == "cudnn_conv":
            config_assert(use_gpu, "cudnn_conv only support GPU")

        if (use_gpu == 1 and self.layer_type != "exconv" and
Q
qijun 已提交
1963
            (parallel_nn == 0 or self.config.device > -1)):
Z
zhangjinchao01 已提交
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
            self.layer_type = "cudnn_conv"
        else:
            self.layer_type = "exconv"
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            conv_conf = self.config.inputs[input_index].conv_conf
L
Luo Tao 已提交
1976 1977
            parse_conv(self.inputs[input_index].conv, input_layer.name,
                       conv_conf, num_filters)
Z
zhangjinchao01 已提交
1978 1979
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
L
Luo Tao 已提交
1980 1981
            self.set_cnn_layer(name, conv_conf.output_y, conv_conf.output_x,
                               self.config.num_filters)
Z
zhangjinchao01 已提交
1982 1983 1984 1985 1986 1987 1988 1989

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
        return self.config.num_filters * conv_conf.filter_channels \
1990
               * (conv_conf.filter_size * conv_conf.filter_size_y)
Z
zhangjinchao01 已提交
1991

Q
qijun 已提交
1992

Z
zhangjinchao01 已提交
1993 1994 1995 1996
@config_layer('exconv')
class ConvLayer(ConvLayerBase):
    layer_type = 'exconv'

Q
qijun 已提交
1997

Z
zhangjinchao01 已提交
1998 1999 2000 2001
@config_layer('cudnn_conv')
class ConvLayer(ConvLayerBase):
    layer_type = 'cudnn_conv'

2002

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
@config_layer('conv_3d')
class Conv3DLayerBase(LayerBase):
    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
        super(Conv3DLayerBase, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

        # Automatically select cudnn_type for GPU and exconv for CPU
        # if set type=conv, but still reserve the way user specify
        # exconv or cudnn_conv manually.
        if self.layer_type == "cudnn_conv3d":
            config_assert(use_gpu, "cudnn_conv3d only support GPU")

        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            conv_conf = self.config.inputs[input_index].conv_conf
            parse_conv3d(
                self.inputs[input_index].conv, input_layer.name, conv_conf,
                num_filters
            )  # for z-axis pad:0, strid:1, filter_size:1, img_size:1
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
            self.set_cnn_layer(name, conv_conf.output_z, conv_conf.output_y,
                               conv_conf.output_x, self.config.num_filters)

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
        return self.config.num_filters * conv_conf.filter_channels \
               * (conv_conf.filter_size * conv_conf.filter_size_y \
                  * conv_conf.filter_size_z)

    def set_layer_height_width(self, depth, height, width):
        self.config.depth = depth
        self.config.height = height
        self.config.width = width

    def set_cnn_layer(self,
                      input_layer_name,
                      depth,
                      height,
                      width,
                      channels,
                      is_print=True):
        size = depth * height * width * channels
        self.set_layer_size(size)
        self.set_layer_height_width(depth, height, width)
        if is_print:
            print("output for %s: c = %d, d = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, depth, height, width, size))


@config_layer('conv3d')
class Conv3DLayer(Conv3DLayerBase):
    layer_type = 'conv3d'


@config_layer('convt_3d')
class Conv3DTransLayerBase(LayerBase):
    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
        super(Conv3DTransLayerBase, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

        # Automatically select cudnn_type for GPU and exconv for CPU
        # if set type=conv, but still reserve the way user specify
        # exconv or cudnn_conv manually.
        if self.layer_type == "cudnn_deconv3d":
            config_assert(use_gpu, "cudnn_conv3d only support GPU")

        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            conv_conf = self.config.inputs[input_index].conv_conf
            parse_conv3d(
                self.inputs[input_index].conv,
                input_layer.name,
                conv_conf,
                num_filters,
                trans=True
            )  # for z-axis pad:0, strid:1, filter_size:1, img_size:1
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
            self.set_cnn_layer(name, conv_conf.img_size_z, conv_conf.img_size_y,
                               conv_conf.img_size, self.config.num_filters)

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
        return self.config.num_filters * conv_conf.filter_channels \
               * (conv_conf.filter_size * conv_conf.filter_size_y \
                  * conv_conf.filter_size_z)

    def set_layer_height_width(self, depth, height, width):
        self.config.depth = depth
        self.config.height = height
        self.config.width = width

    def set_cnn_layer(self,
                      input_layer_name,
                      depth,
                      height,
                      width,
                      channels,
                      is_print=True):
        size = depth * height * width * channels
        self.set_layer_size(size)
        self.set_layer_height_width(depth, height, width)
        if is_print:
            print("output for %s: c = %d, d = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, depth, height, width, size))


@config_layer('deconv3d')
class DeConv3DLayer(Conv3DTransLayerBase):
    layer_type = 'deconv3d'


2160 2161 2162
@config_layer('convt')
class ConvTransLayerBase(LayerBase):
    layer_type = 'convt'
Q
qijun 已提交
2163 2164 2165 2166 2167 2168 2169 2170

    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
2171
        super(ConvTransLayerBase, self).__init__(
2172 2173 2174 2175 2176 2177 2178 2179
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
        # Automatically select cudnn_type for GPU and exconvt for CPU
        # if set type=exconvt, but still reserve the way user specify
        # exconvt or cudnn_convt manually.
        if self.layer_type == "cudnn_convt":
            config_assert(use_gpu, "cudnn_convt only support GPU")

        if (use_gpu == 1 and self.layer_type != "exconvt" and
            (parallel_nn == 0 or self.config.device > -1)):
            self.layer_type = "cudnn_convt"
        else:
            self.layer_type = "exconvt"
2191 2192 2193 2194 2195 2196 2197 2198
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
2199
            parse_conv(
2200 2201
                self.inputs[input_index].conv,
                input_layer.name,
2202
                self.config.inputs[input_index].conv_conf,
2203
                num_filters,
2204
                trans=True)
2205 2206 2207
            conv_conf = self.config.inputs[input_index].conv_conf
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
2208 2209
            self.set_cnn_layer(name, conv_conf.img_size_y, conv_conf.img_size,
                               self.config.num_filters)
2210 2211 2212 2213 2214 2215 2216

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
2217
        return conv_conf.channels * conv_conf.filter_channels \
2218 2219
                    * (conv_conf.filter_size * conv_conf.filter_size_y)

Q
qijun 已提交
2220

2221 2222 2223 2224
@config_layer('exconvt')
class ConvTransLayer(ConvTransLayerBase):
    layer_type = 'exconvt'

Q
qijun 已提交
2225

2226 2227 2228 2229 2230
@config_layer('cudnn_convt')
class ConvTransLayer(ConvTransLayerBase):
    layer_type = 'cudnn_convt'


Z
zhangjinchao01 已提交
2231 2232
@config_layer('norm')
class NormLayer(LayerBase):
2233 2234
    def __init__(self, name, inputs, **xargs):
        super(NormLayer, self).__init__(name, 'norm', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2235 2236 2237
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            norm_conf = self.config.inputs[input_index].norm_conf
L
Luo Tao 已提交
2238 2239 2240 2241
            parse_norm(self.inputs[input_index].norm, input_layer.name,
                       norm_conf)
            self.set_cnn_layer(name, norm_conf.output_y, norm_conf.output_x,
                               norm_conf.channels, False)
2242 2243 2244
            if norm_conf.norm_type == "cross-channel-norm":
                self.create_input_parameter(0, norm_conf.channels,
                                            [norm_conf.channels, 1])
Q
qijun 已提交
2245

Z
zhangjinchao01 已提交
2246 2247 2248

@config_layer('pool')
class PoolLayer(LayerBase):
2249 2250
    def __init__(self, name, inputs, ceil_mode=True, **xargs):
        super(PoolLayer, self).__init__(name, 'pool', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2251 2252 2253
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            pool_conf = self.config.inputs[input_index].pool_conf
L
Luo Tao 已提交
2254
            parse_pool(self.inputs[input_index].pool, input_layer.name,
2255
                       pool_conf, ceil_mode)
L
Luo Tao 已提交
2256 2257
            self.set_cnn_layer(name, pool_conf.output_y, pool_conf.output_x,
                               pool_conf.channels)
Q
qijun 已提交
2258

Z
zhangjinchao01 已提交
2259

Q
qijun 已提交
2260 2261
@config_layer('spp')
class SpatialPyramidPoolLayer(LayerBase):
2262
    def __init__(self, name, inputs, **xargs):
Q
qijun 已提交
2263
        super(SpatialPyramidPoolLayer, self).__init__(
2264
            name, 'spp', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2265 2266 2267
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            spp_conf = self.config.inputs[input_index].spp_conf
L
Luo Tao 已提交
2268 2269 2270
            parse_spp(self.inputs[input_index].spp, input_layer.name, spp_conf)
            output_x = (pow(4, spp_conf.pyramid_height) - 1) / (4 - 1)
            self.set_cnn_layer(name, 1, output_x, spp_conf.image_conf.channels)
Q
qijun 已提交
2271

Q
qijun 已提交
2272

D
dangqingqing 已提交
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
@config_layer('pad')
class PadLayer(LayerBase):
    def __init__(self, name, inputs, **xargs):
        super(PadLayer, self).__init__(name, 'pad', 0, inputs=inputs, **xargs)
        pad = self.inputs[0].pad
        self.config.inputs[0].pad_conf.pad_c.extend(pad.pad_c)
        self.config.inputs[0].pad_conf.pad_h.extend(pad.pad_h)
        self.config.inputs[0].pad_conf.pad_w.extend(pad.pad_w)

        input_layer = self.get_input_layer(0)
        image_conf = self.config.inputs[0].pad_conf.image_conf
        parse_image(pad, input_layer.name, image_conf)
        out_ch = pad.channels + pad.pad_c[0] + pad.pad_c[1]
        out_h = image_conf.img_size_y + pad.pad_h[0] + pad.pad_h[1]
        out_w = image_conf.img_size + pad.pad_w[0] + pad.pad_w[1]
        self.set_cnn_layer(name, out_h, out_w, out_ch)
        self.config.size = out_ch * out_h * out_w


2292 2293
@config_layer('crop')
class CropLayer(LayerBase):
2294
    def __init__(self, name, inputs, axis, offset, shape, **xargs):
2295
        super(CropLayer, self).__init__(name, 'crop', 0, inputs=inputs, **xargs)
2296 2297 2298
        self.config.axis = axis
        self.config.offset.extend(offset)
        self.config.shape.extend(shape)
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308

        # get channel, width and height from input_0 layer
        input_layer = self.get_input_layer(0)
        image_conf = self.config.inputs[0].image_conf
        image_conf.img_size = input_layer.width
        image_conf.img_size_y = input_layer.height
        image_conf.channels = input_layer.size / (input_layer.width *
                                                  input_layer.height)


Z
zhangjinchao01 已提交
2309 2310 2311
@config_layer('batch_norm')
class BatchNormLayer(LayerBase):
    layer_type = 'batch_norm'
Q
qijun 已提交
2312 2313 2314 2315 2316 2317 2318 2319 2320

    def __init__(self,
                 name,
                 inputs,
                 bias=True,
                 use_global_stats=True,
                 moving_average_fraction=0.9,
                 batch_norm_type=None,
                 **xargs):
Z
zhangjinchao01 已提交
2321 2322 2323 2324
        if inputs is None:
            inputs = []
        elif not isinstance(inputs, list):
            inputs = [inputs]
Q
qijun 已提交
2325 2326
        config_assert(
            len(inputs) == 1, "BatchNormLayer must have one and only one input")
Z
zhangjinchao01 已提交
2327 2328 2329 2330 2331 2332 2333 2334
        # Create Input for moving mean and std,
        # in batch normalization layer.
        # These paras no need to update, so set is_static is true.
        # If not use is_static, even set learning_rate = 0, decay_rate = 0,
        # these paras will change if set average_window in configure.
        use_gpu = bool(int(g_command_config_args.get("use_gpu", 0)))
        is_shared = True if not use_gpu else False
        for i in xrange(2):
Q
qijun 已提交
2335 2336 2337 2338 2339 2340
            inputs.append(
                Input(
                    inputs[0].input_layer_name,
                    initial_std=0.0,
                    initial_mean=0.0,
                    is_static=True,
2341
                    is_shared=is_shared,
D
dangqingqing 已提交
2342
                    make_layer_name_in_submodel=False, ))
Z
zhangjinchao01 已提交
2343 2344 2345 2346 2347 2348

        parallel_nn = bool(int(g_command_config_args.get("parallel_nn", 0)))
        cudnn_version = int(g_command_config_args.get("cudnn_version", 0))
        # Automatically select cudnn_batch_norm for GPU and batch_norm for CPU.
        # Also based on cudnn version.
        use_cudnn = use_gpu and batch_norm_type != "batch_norm" and \
2349
                ((not parallel_nn) or self.config.device > -1)
Z
zhangjinchao01 已提交
2350
        self.layer_type = "cudnn_batch_norm" if use_cudnn else "batch_norm"
Q
qijun 已提交
2351
        super(BatchNormLayer, self).__init__(
X
xuwei06 已提交
2352
            name, self.layer_type, 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2353 2354 2355 2356 2357 2358

        if use_global_stats is not None:
            self.config.use_global_stats = use_global_stats
        if moving_average_fraction is not None:
            self.config.moving_average_fraction = moving_average_fraction

Q
qijun 已提交
2359
        input_layer = self.get_input_layer(0)
Z
zhangjinchao01 已提交
2360
        image_conf = self.config.inputs[0].image_conf
L
Luo Tao 已提交
2361
        parse_image(self.inputs[0].image, input_layer.name, image_conf)
2362

2363 2364
        # Only pass the width and height of input to batch_norm layer
        # when either of it is non-zero.
2365 2366
        if input_layer.width != 0 or input_layer.height != 0:
            self.set_cnn_layer(name, image_conf.img_size_y, image_conf.img_size,
D
dangqingqing 已提交
2367
                               image_conf.channels, False)
2368 2369
        else:
            self.set_layer_size(input_layer.size)
Z
zhangjinchao01 已提交
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381

        psize = self.calc_parameter_size(image_conf)
        dims = [1, psize]
        self.create_input_parameter(0, psize)
        self.create_input_parameter(1, psize, dims)
        self.create_input_parameter(2, psize, dims)

        self.create_bias_parameter(bias, psize)

    def calc_parameter_size(self, image_conf):
        return image_conf.channels

Q
qijun 已提交
2382

Z
zhangjinchao01 已提交
2383 2384
@config_layer('trans')
class TransLayer(LayerBase):
2385
    def __init__(self, name, inputs, **xargs):
Q
qijun 已提交
2386
        super(TransLayer, self).__init__(
2387
            name, 'trans', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2388 2389 2390
        config_assert(
            len(self.inputs) == 1,
            'TransLayer must have one and only one input')
Z
zhangjinchao01 已提交
2391 2392
        self.set_layer_size(self.get_input_layer(0).size)

Q
qijun 已提交
2393

Z
zhangjinchao01 已提交
2394 2395
@config_layer('resize')
class ResizeLayer(LayerBase):
2396
    def __init__(self, name, size, inputs, **xargs):
Q
qijun 已提交
2397
        super(ResizeLayer, self).__init__(
2398
            name, 'resize', size=size, inputs=inputs, **xargs)
Q
qijun 已提交
2399 2400 2401 2402
        config_assert(
            len(self.inputs) == 1,
            'ResizeLayer must have one and only one input')

Z
zhangjinchao01 已提交
2403

2404 2405
@config_layer('rotate')
class RotateLayer(LayerBase):
H
Haonan 已提交
2406
    def __init__(self, name, inputs, height, width, device=None):
2407 2408 2409 2410 2411
        super(RotateLayer, self).__init__(
            name, 'rotate', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1,
            'RotateLayer must have one and only one input')
H
Haonan 已提交
2412
        self.set_layer_height_width(height, width)
2413 2414 2415
        self.set_layer_size(self.get_input_layer(0).size)


Z
zhangjinchao01 已提交
2416 2417
@config_layer('blockexpand')
class BlockExpandLayer(LayerBase):
2418
    def __init__(self, name, inputs, **xargs):
Q
qijun 已提交
2419
        super(BlockExpandLayer, self).__init__(
2420
            name, 'blockexpand', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2421 2422
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
Q
qijun 已提交
2423 2424
            parse_block_expand(
                self.inputs[input_index].block_expand, input_layer.name,
Z
zhangjinchao01 已提交
2425
                self.config.inputs[input_index].block_expand_conf)
Q
qijun 已提交
2426 2427 2428 2429 2430 2431
            block_expand_conf = self.config.inputs[
                input_index].block_expand_conf
            self.set_layer_size(block_expand_conf.block_x *
                                block_expand_conf.block_y *
                                block_expand_conf.channels)

Z
zhangjinchao01 已提交
2432

2433 2434
@config_layer('maxout')
class MaxOutLayer(LayerBase):
Q
qijun 已提交
2435 2436 2437
    def __init__(self, name, inputs, **xargs):
        super(MaxOutLayer, self).__init__(
            name, 'maxout', 0, inputs=inputs, **xargs)
2438 2439
        input_layer = self.get_input_layer(0)
        maxout_conf = self.config.inputs[0].maxout_conf
L
Luo Tao 已提交
2440
        parse_maxout(self.inputs[0].maxout, input_layer.name, maxout_conf)
L
Luo Tao 已提交
2441 2442 2443
        out_channels = maxout_conf.image_conf.channels / maxout_conf.groups
        self.set_cnn_layer(name, g_layer_map[input_layer.name].height,
                           g_layer_map[input_layer.name].width, out_channels)
Q
qijun 已提交
2444

2445

D
dangqingqing 已提交
2446 2447 2448 2449
@config_layer('row_conv')
class RowConvLayer(LayerBase):
    def __init__(self, name, inputs, context_length, **xargs):
        super(RowConvLayer, self).__init__(
2450
            name, 'row_conv', 0, inputs=inputs, **xargs)
D
dangqingqing 已提交
2451 2452
        config_assert(
            len(self.inputs) == 1,
2453
            'row convolution layer must have one and only one input.')
D
dangqingqing 已提交
2454 2455 2456 2457 2458 2459 2460 2461 2462
        input_layer = self.get_input_layer(0)
        row_conv_conf = self.config.inputs[0].row_conv_conf
        row_conv_conf.context_length = context_length
        self.set_layer_size(input_layer.size)
        psize = context_length * input_layer.size
        dims = [context_length, input_layer.size]
        self.create_input_parameter(0, psize, dims)


G
guosheng 已提交
2463 2464
@config_layer('clip')
class ClipLayer(LayerBase):
2465 2466
    def __init__(self, name, inputs, min, max, **xargs):
        super(ClipLayer, self).__init__(name, 'clip', 0, inputs=inputs, **xargs)
G
guosheng 已提交
2467 2468
        config_assert(
            len(self.inputs) == 1,
2469 2470
            'ClipLayer must have one and only one input.')
        config_assert(min < max, 'min must be less than max.')
G
guosheng 已提交
2471 2472
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
2473 2474
        self.config.inputs[0].clip_conf.min = min
        self.config.inputs[0].clip_conf.max = max
G
guosheng 已提交
2475 2476


Z
zhangjinchao01 已提交
2477 2478 2479 2480
# key: cost type
# value: cost class
g_cost_map = {}

Q
qijun 已提交
2481

Z
zhangjinchao01 已提交
2482 2483 2484
# define a cost layer without any parameters
def define_cost(class_name, cost_type):
    def init(cls, name, inputs, device=None, coeff=1.):
Q
qijun 已提交
2485 2486
        super(type(cls), cls).__init__(
            name, cost_type, 1, inputs, device=device, coeff=coeff)
Z
zhangjinchao01 已提交
2487

Q
qijun 已提交
2488
    cls = type(class_name, (LayerBase, ), dict(__init__=init))
Z
zhangjinchao01 已提交
2489 2490 2491
    global g_cost_map
    g_cost_map[cost_type] = cls

Q
qijun 已提交
2492

Z
zhangjinchao01 已提交
2493 2494 2495 2496 2497 2498 2499 2500
define_cost('MultiClassCrossEntropy', 'multi-class-cross-entropy')
define_cost('RankingCost', 'rank-cost')
define_cost('AucValidation', 'auc-validation')
define_cost('PnpairValidation', 'pnpair-validation')
define_cost('SumOfSquaresCostLayer', 'square_error')
define_cost('MultiBinaryLabelCrossEntropy', 'multi_binary_label_cross_entropy')
define_cost('SoftBinaryClassCrossEntropy', 'soft_binary_class_cross_entropy')
define_cost('HuberTwoClass', 'huber')
X
xuwei06 已提交
2501
define_cost('SumCost', 'sum_cost')
D
dangqingqing 已提交
2502
define_cost('SmoothL1Cost', 'smooth_l1')
Z
zhangjinchao01 已提交
2503

Q
qijun 已提交
2504

Z
zhangjinchao01 已提交
2505 2506
@config_layer('hsigmoid')
class HierarchicalSigmoidLayer(LayerBase):
Q
qijun 已提交
2507
    def __init__(self, name, num_classes, inputs, device=None, bias=True):
Z
zhangjinchao01 已提交
2508 2509
        super(HierarchicalSigmoidLayer, self).__init__(
            name, 'hsigmoid', 1, inputs=inputs, device=device)
Q
qijun 已提交
2510 2511 2512
        config_assert(
            len(self.inputs) >= 2,
            'HierarchicalSigmoidLayer must have at least 2 inputs')
Z
zhangjinchao01 已提交
2513 2514 2515 2516 2517 2518 2519 2520
        self.config.num_classes = num_classes
        for input_index in xrange(len(self.inputs) - 1):
            input_layer = self.get_input_layer(input_index)
            psize = (num_classes - 1) * input_layer.size
            dims = [num_classes - 1, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes - 1)

Q
qijun 已提交
2521

Z
zhangjinchao01 已提交
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
'''
lambdaCost for lambdaRank LTR approach

Usage:
  Example: Layer(name = "cost", type = "lambda_cost", NDCG_num = 8,
             max_sort_size = -1, inputs = ["output", "score"])

  Input data: Samples of the same query should be loaded as a sequence,
          by ProtoDataProvider or PyDataProvider etc.. User should provide
          scores for each sample. The score slot should be the 2nd
          input of lambdaRank layer.

  NDCG_num = the size of NDCG, e.g., 5 for NDCG@5.
    Note: NDCG_num must be less than or equal to the minimum
          size of lists.

  max_sort_size = the size of partial sorting in calculating gradient.
    Note: If max_sort_size = -1, then for each list, the algorithm will
          sort the entire list to get gradient.
          In other cases, max_sort_size must be greater than or equal
          to NDCG_num.
          max_sort_size can be greater than the size of a list, in which
          case the algorithm will sort the entire list to get gradient.
'''
Q
qijun 已提交
2546 2547


Z
zhangjinchao01 已提交
2548 2549
@config_layer('lambda_cost')
class LambdaCost(LayerBase):
Q
qijun 已提交
2550
    def __init__(self, name, inputs, NDCG_num=5, max_sort_size=-1, device=None):
Z
zhangjinchao01 已提交
2551 2552
        super(LambdaCost, self).__init__(
            name, 'lambda_cost', 1, inputs=inputs, device=device)
Q
qijun 已提交
2553
        config_assert(len(self.inputs) == 2, 'lambdaCost must have 2 inputs')
Z
zhangjinchao01 已提交
2554 2555
        self.config.NDCG_num = NDCG_num
        if max_sort_size != -1:
Q
qijun 已提交
2556 2557 2558
            config_assert(
                NDCG_num <= max_sort_size,
                'NDCG_num must be less than or equal to max_sort_size')
Z
zhangjinchao01 已提交
2559 2560
        self.config.max_sort_size = max_sort_size

Q
qijun 已提交
2561

Z
zhangjinchao01 已提交
2562 2563
@config_layer('nce')
class NCELayer(LayerBase):
Q
qijun 已提交
2564 2565 2566 2567 2568 2569 2570 2571
    def __init__(self,
                 name,
                 num_classes,
                 inputs,
                 num_neg_samples=10,
                 neg_sampling_dist=None,
                 bias=True,
                 **xargs):
Z
zhangjinchao01 已提交
2572
        super(NCELayer, self).__init__(name, 'nce', 1, inputs=inputs, **xargs)
Q
qijun 已提交
2573 2574
        config_assert(
            len(self.inputs) >= 2, 'NCELayer must have at least 2 inputs')
Z
zhangjinchao01 已提交
2575 2576
        self.config.num_classes = num_classes
        if neg_sampling_dist is not None:
Q
qijun 已提交
2577 2578 2579 2580
            config_assert(
                len(neg_sampling_dist) == num_classes,
                'len(neg_sampling_dist)(%s) is not same as num_classes (%s)' %
                (len(neg_sampling_dist), num_classes))
Z
zhangjinchao01 已提交
2581
            s = sum(neg_sampling_dist)
Q
qijun 已提交
2582 2583 2584
            config_assert(
                abs(s - 1) < 1e-5,
                'The sum of neg_sampling_dist (%s) is not 1' % s)
Z
zhangjinchao01 已提交
2585 2586 2587 2588 2589

            self.config.neg_sampling_dist.extend(neg_sampling_dist)

        self.config.num_neg_samples = num_neg_samples
        num_real_inputs = len(self.inputs) - 1
Q
qijun 已提交
2590
        input_layer = self.get_input_layer(num_real_inputs)
Z
zhangjinchao01 已提交
2591 2592 2593 2594
        config_assert(input_layer.type == 'data',
                      'Expecting the last input layer of an nce layer to be '
                      'a data layer')

Q
qijun 已提交
2595 2596
        if (num_real_inputs > 1 and input_layer.size == 1 and
                self.get_input_layer(num_real_inputs - 1).type == 'data'):
Z
zhangjinchao01 已提交
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
            # This input layer is assumed to be a sample weight layer
            num_real_inputs -= 1

        for input_index in xrange(num_real_inputs):
            input_layer = self.get_input_layer(input_index)
            psize = num_classes * input_layer.size
            dims = [num_classes, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes)


@config_layer('addto')
class AddToLayer(LayerBase):
Q
qijun 已提交
2610
    def __init__(self, name, inputs, bias=True, **xargs):
Z
zhangjinchao01 已提交
2611 2612
        super(AddToLayer, self).__init__(
            name, 'addto', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2613
        config_assert(len(inputs) > 0, 'inputs cannot be empty for AddToLayer')
Z
zhangjinchao01 已提交
2614 2615 2616 2617 2618
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2619

Z
zhangjinchao01 已提交
2620 2621
@config_layer('agent')
class AgentLayer(LayerBase):
Q
qijun 已提交
2622 2623 2624 2625
    def __init__(self, name, size, device=None):
        super(AgentLayer, self).__init__(
            name, 'agent', size, inputs=[], device=device)

Z
zhangjinchao01 已提交
2626 2627 2628

@config_layer('gather_agent')
class GatherAgentLayer(LayerBase):
Q
qijun 已提交
2629
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2630 2631 2632
        super(GatherAgentLayer, self).__init__(
            name, 'gather_agent', size, inputs=[], device=device)

Q
qijun 已提交
2633

Z
zhangjinchao01 已提交
2634 2635
@config_layer('scatter_agent')
class ScatterAgentLayer(LayerBase):
Q
qijun 已提交
2636
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2637 2638 2639
        super(ScatterAgentLayer, self).__init__(
            name, 'scatter_agent', size, inputs=[], device=device)

Q
qijun 已提交
2640

Z
zhangjinchao01 已提交
2641 2642
@config_layer('multiplex')
class MultiplexLayer(LayerBase):
Q
qijun 已提交
2643 2644 2645 2646 2647
    def __init__(self, name, inputs, size, device=None):
        super(MultiplexLayer, self).__init__(
            name, 'multiplex', size, inputs=inputs, device=device)
        config_assert(
            len(inputs) > 2, 'MultiplexLayer should have more than 2 inputs.')
Z
zhangjinchao01 已提交
2648
        for i in range(1, len(inputs)):
Q
qijun 已提交
2649 2650 2651 2652 2653
            config_assert(
                self.get_input_layer(i).size == size,
                "All the input layers except the first one should"
                "have the same size as the MultiplexLayer.")

Z
zhangjinchao01 已提交
2654 2655

@config_func
2656 2657 2658 2659
def Link(name, has_subseq=False):
    """
    Still keeping has_subseq for backward compatibility
    """
Z
zhangjinchao01 已提交
2660 2661 2662 2663
    link_config = LinkConfig()
    link_config.link_name = name
    return link_config

Q
qijun 已提交
2664

Z
zhangjinchao01 已提交
2665 2666
# memory for recurrent layer group.
# *name* and *size* are actual layer's name and size.
2667 2668 2669 2670
# If *name* is None, need to provide *memory_name* and need to use
# SetMemoryInput() later to specify the layer which this memory remembers.
#
# return the name of the memory,
Z
zhangjinchao01 已提交
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
# use this name if you assign the memory as other layer's input
#
# boot frame of memory is zeroed by default,
# or initialize by boot layer output if *boot_layer* set,
# or initialize by trainable bias if *boot_bias* set,
# or initialize by a constant id if *boot_with_const_id* set
#
# Memory can be a sequence if *is_sequence* set, this type of memory
# can only be initailized by a *boot_layer* which is a sequence.
#
@config_func
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
def Memory(name,
           size,
           is_sequence=False,
           boot_layer=None,
           boot_bias=False,
           boot_bias_active_type="",
           boot_with_const_id=None,
           memory_name=None):
    if not memory_name:
        config_assert(name is not None, "name needs cannot be None")
        memory_name = name + "+delay1"
    agent_name = memory_name
2694
    agent_layer = AgentLayer(agent_name, size)
Z
zhangjinchao01 已提交
2695
    config_assert(g_current_submodel.is_recurrent_layer_group,
Q
qijun 已提交
2696
                  'Memory should be used in recurrent layer group only')
Z
zhangjinchao01 已提交
2697
    memory = g_current_submodel.memories.add()
2698 2699
    if name is not None:
        memory.layer_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
2700
    memory.link_name = MakeLayerNameInSubmodel(agent_name)
Q
qijun 已提交
2701
    options = sum((boot_layer is not None, bool(boot_bias),
Z
zhangjinchao01 已提交
2702
                   boot_with_const_id is not None))
Q
qijun 已提交
2703 2704 2705 2706
    config_assert(
        options <= 1,
        'take one option at most from boot_layer, boot_bias, or boot_with_const_id'
    )
Z
zhangjinchao01 已提交
2707 2708 2709
    if boot_layer is not None:
        boot_layer = MakeLayerNameInParentSubmodel(boot_layer)
        config_assert(boot_layer in g_layer_map,
Q
qijun 已提交
2710 2711
                      'boot_layer "%s" does not correspond to a layer name' %
                      boot_layer)
Z
zhangjinchao01 已提交
2712 2713 2714
        memory.boot_layer_name = boot_layer
    elif boot_bias:
        memory.boot_bias_parameter_name = agent_layer.create_bias_parameter(
Q
qijun 已提交
2715
            boot_bias, size, for_self=False)
Z
zhangjinchao01 已提交
2716 2717 2718 2719 2720
        memory.boot_bias_active_type = boot_bias_active_type
    elif boot_with_const_id is not None:
        memory.boot_with_const_id = boot_with_const_id
    return agent_name

Q
qijun 已提交
2721

2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
@config_func
def SetMemoryInput(memory_name, layer_name):
    memory_name = MakeLayerNameInSubmodel(memory_name)
    layer_name = MakeLayerNameInSubmodel(layer_name)
    for mem in g_current_submodel.memories:
        if mem.link_name == memory_name:
            mem.layer_name = layer_name
            return
    logger.fatal("Nonexistent memory name: " + memory_name)


Z
zhangjinchao01 已提交
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
# Generator for recurrent layer group, to use it:
#  1. define a id layer as output of layer group
#  2. define a memory of this id layer, and assign a boot id(begin of sequence)
#  3. define a eos check layer and fill its name in generator's *eos_layer_name*
# Sequence generation will stop when eos check return 1 or *max_num_frames* reached.
# If *beam_size* is greater than one, generator will use beam search.
#   in beam search, if *num_results_per_sample* set, one sample sequence can output
#   multiple results each with a probility.
@config_func
def Generator(
        max_num_frames,
Q
qijun 已提交
2744 2745 2746 2747
        eos_layer_name="eos_check",
        num_results_per_sample=1,
        beam_size=1,
        log_prob=None, ):
Z
zhangjinchao01 已提交
2748 2749 2750 2751 2752 2753 2754 2755 2756
    generator_config = GeneratorConfig()
    generator_config.max_num_frames = max_num_frames
    generator_config.eos_layer_name = eos_layer_name
    generator_config.num_results_per_sample = num_results_per_sample
    generator_config.beam_size = beam_size
    if log_prob is not None:
        generator_config.log_prob = log_prob
    return generator_config

Q
qijun 已提交
2757

Z
zhangjinchao01 已提交
2758 2759
@config_layer('expand')
class ExpandLayer(LayerBase):
2760
    def __init__(self, name, inputs, trans_type='non-seq', bias=False, **xargs):
Q
qijun 已提交
2761
        super(ExpandLayer, self).__init__(
2762
            name, 'expand', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2763 2764 2765 2766 2767 2768 2769 2770
        config_assert(
            len(self.inputs) == 2, 'ExpandLayer takes 2 and only 2 inputs')
        self.config.trans_type = trans_type
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
        self.set_layer_size(self.get_input_layer(0).size)
        self.create_bias_parameter(bias, self.config.size)

Z
zhangjinchao01 已提交
2771 2772 2773

@config_layer('featmap_expand')
class FeatMapExpandLayer(LayerBase):
X
xuwei06 已提交
2774 2775 2776 2777 2778
    def __init__(self,
                 name,
                 inputs,
                 num_filters=None,
                 as_row_vector=True,
X
xuwei06 已提交
2779 2780
                 bias=False,
                 **xargs):
Q
qijun 已提交
2781
        super(FeatMapExpandLayer, self).__init__(
X
xuwei06 已提交
2782
            name, 'featmap_expand', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2783 2784 2785
        config_assert(
            len(self.inputs) == 1, 'ExpandLayer takes 1 and only 1 inputs')
        if num_filters is not None:
Z
zhangjinchao01 已提交
2786
            self.config.num_filters = num_filters
Q
qijun 已提交
2787
        else:
Z
zhangjinchao01 已提交
2788
            logger.fatal("FeatMapExpandLayer must specify num_filters.")
X
xuwei06 已提交
2789 2790
        if not as_row_vector:
            self.config.user_arg = "as_col_vec"
Q
qijun 已提交
2791
        self.set_layer_size(self.get_input_layer(0).size * num_filters)
Z
zhangjinchao01 已提交
2792 2793 2794 2795


@config_layer('max')
class MaxLayer(LayerBase):
Q
qijun 已提交
2796 2797 2798 2799 2800
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
                 bias=False,
2801
                 output_max_index=None,
2802
                 stride=-1,
2803
                 **xargs):
2804
        super(MaxLayer, self).__init__(name, 'max', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2805
        config_assert(len(self.inputs) == 1, 'MaxLayer must have 1 input')
2806 2807
        if trans_type == 'seq':
            config_assert(stride == -1, 'subseq does not support stride window')
Q
qijun 已提交
2808
        self.config.trans_type = trans_type
2809
        self.config.seq_pool_stride = stride
Z
zhangjinchao01 已提交
2810 2811 2812 2813
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)
2814 2815
        if output_max_index is not None:
            self.config.output_max_index = output_max_index
Z
zhangjinchao01 已提交
2816 2817 2818 2819


@config_layer('maxid')
class MaxIdLayer(LayerBase):
Q
qijun 已提交
2820
    def __init__(self, name, inputs, beam_size=None, device=None):
Z
zhangjinchao01 已提交
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
        super(MaxIdLayer, self).__init__(
            name, 'maxid', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'MaxIdLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)

        if beam_size is None:
            global g_current_submodel
            if g_current_submodel.HasField("generator"):
                self.config.beam_size = g_current_submodel.generator.beam_size
        else:
            self.config.beam_size = beam_size


@config_layer('eos_id')
class EosIdLayer(LayerBase):
Q
qijun 已提交
2838
    def __init__(self, name, inputs, eos_id, device=None):
Z
zhangjinchao01 已提交
2839 2840 2841
        super(EosIdLayer, self).__init__(
            name, 'eos_id', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'EosIdLayer must have 1 input')
Q
qijun 已提交
2842
        self.set_layer_size(2)  # boolean output
Z
zhangjinchao01 已提交
2843 2844
        self.config.eos_id = eos_id

Q
qijun 已提交
2845

Z
zhangjinchao01 已提交
2846 2847
@config_layer('seqlastins')
class SequenceLastInstanceLayer(LayerBase):
Q
qijun 已提交
2848 2849 2850 2851
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
2852
                 bias=False,
2853
                 stride=-1,
2854
                 **xargs):
Q
qijun 已提交
2855
        super(SequenceLastInstanceLayer, self).__init__(
X
xuwei06 已提交
2856
            name, 'seqlastins', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2857 2858
        config_assert(
            len(inputs) == 1, 'SequenceLastInstanceLayer must have 1 input')
2859
        if trans_type == 'seq':
L
Luo Tao 已提交
2860
            config_assert(stride == -1, 'subseq does not support stride window')
Q
qijun 已提交
2861
        self.config.trans_type = trans_type
2862 2863
        self.config.seq_pool_stride = stride
        self.set_layer_size(self.get_input_layer(0).size)
Z
zhangjinchao01 已提交
2864 2865
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2866

Z
zhangjinchao01 已提交
2867 2868
@config_layer('seqfirstins')
class SequenceFirstInstanceLayer(SequenceLastInstanceLayer):
2869 2870 2871 2872 2873
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
                 bias=False,
2874
                 stride=-1,
2875
                 **xargs):
Q
qijun 已提交
2876
        super(SequenceFirstInstanceLayer, self).__init__(
2877 2878 2879 2880 2881 2882
            name,
            inputs=inputs,
            trans_type=trans_type,
            bias=bias,
            stride=stride,
            **xargs)
Z
zhangjinchao01 已提交
2883 2884
        self.config.select_first = True

Q
qijun 已提交
2885

Z
zhangjinchao01 已提交
2886 2887
@config_layer('seqconcat')
class SequenceConcatLayer(LayerBase):
X
xuwei06 已提交
2888
    def __init__(self, name, inputs, bias=False, **xargs):
Q
qijun 已提交
2889
        super(SequenceConcatLayer, self).__init__(
X
xuwei06 已提交
2890
            name, 'seqconcat', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2891 2892
        config_assert(
            len(inputs) == 2, 'SequenceConcatLayer must have 2 inputs')
Z
zhangjinchao01 已提交
2893 2894 2895 2896 2897
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2898

Z
zhangjinchao01 已提交
2899 2900
@config_layer('seqreshape')
class SequenceReshapeLayer(LayerBase):
X
xuwei06 已提交
2901
    def __init__(self, name, size, inputs, bias=False, **xargs):
Q
qijun 已提交
2902
        super(SequenceReshapeLayer, self).__init__(
X
xuwei06 已提交
2903
            name, 'seqreshape', size, inputs=inputs, **xargs)
Q
qijun 已提交
2904 2905
        config_assert(
            len(inputs) == 1, 'SequenceReshapeLayer must have 1 inputs')
Z
zhangjinchao01 已提交
2906 2907 2908
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

Q
qijun 已提交
2909

Z
zhangjinchao01 已提交
2910 2911
@config_layer('subseq')
class SubSequenceLayer(LayerBase):
X
xuwei06 已提交
2912
    def __init__(self, name, inputs, bias=False, **xargs):
Q
qijun 已提交
2913
        super(SubSequenceLayer, self).__init__(
X
xuwei06 已提交
2914
            name, 'subseq', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2915 2916 2917 2918 2919 2920
        config_assert(len(inputs) == 3, 'SubSequenceLayer must have 3 inputs')
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

Q
qijun 已提交
2921

C
caoying03 已提交
2922 2923
@config_layer('sub_nested_seq')
class SubNestedSequenceLayer(LayerBase):
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
    def __init__(self, name, inputs, selected_indices, bias=False, **xargs):
        if isinstance(inputs, list):
            assert len(inputs) == 1, ('the first input of sub_nested_seq '
                                      'layer is a single nested sequence.')
            inputs = inputs[0]
        if isinstance(selected_indices, list):
            assert len(selected_indices) == 1, (
                'the second input of '
                'sub_nested_seq layer is a single layer which is a '
                'set of selected indices.')
            selected_indices = selected_indices[0]

C
caoying03 已提交
2936
        super(SubNestedSequenceLayer, self).__init__(
2937 2938 2939 2940 2941
            name,
            'sub_nested_seq',
            0,
            inputs=[inputs, selected_indices],
            **xargs)
C
caoying03 已提交
2942 2943 2944 2945 2946
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)


Z
zhangjinchao01 已提交
2947 2948
@config_layer('out_prod')
class OuterProdLayer(LayerBase):
Q
qijun 已提交
2949 2950 2951
    def __init__(self, name, inputs, device=None):
        super(OuterProdLayer, self).__init__(
            name, 'out_prod', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2952 2953 2954 2955 2956
        config_assert(len(inputs) == 2, 'OuterProdLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer0.size * input_layer1.size)

Q
qijun 已提交
2957

Z
zhangjinchao01 已提交
2958 2959
@config_layer('power')
class PowerLayer(LayerBase):
Q
qijun 已提交
2960 2961 2962
    def __init__(self, name, inputs, device=None):
        super(PowerLayer, self).__init__(
            name, 'power', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2963 2964 2965 2966
        config_assert(len(inputs) == 2, 'PowerLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
Q
qijun 已提交
2967 2968 2969
        config_assert(1 == input_layer0.size,
                      'The left input is the exponent and should be of size 1')

Z
zhangjinchao01 已提交
2970 2971 2972

@config_layer('slope_intercept')
class SlopeInterceptLayer(LayerBase):
Q
qijun 已提交
2973 2974 2975
    def __init__(self, name, inputs, slope=1.0, intercept=0.0, device=None):
        super(SlopeInterceptLayer, self).__init__(
            name, 'slope_intercept', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2976 2977 2978 2979 2980 2981
        self.config.slope = slope
        self.config.intercept = intercept
        config_assert(len(inputs) == 1, 'SlopeInterceptLayer must have 1 input')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
2982

Z
zhangjinchao01 已提交
2983 2984
@config_layer('scaling')
class ScalingLayer(LayerBase):
Q
qijun 已提交
2985 2986 2987
    def __init__(self, name, inputs, device=None):
        super(ScalingLayer, self).__init__(
            name, 'scaling', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2988 2989 2990 2991
        config_assert(len(inputs) == 2, 'ScalingLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
Q
qijun 已提交
2992 2993 2994
        config_assert(1 == input_layer0.size,
                      'The left input should be of size 1')

Z
zhangjinchao01 已提交
2995 2996 2997

@config_layer('conv_shift')
class ConvShiftLayer(LayerBase):
Q
qijun 已提交
2998 2999 3000
    def __init__(self, name, inputs, device=None):
        super(ConvShiftLayer, self).__init__(
            name, 'conv_shift', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
3001 3002 3003 3004
        config_assert(len(inputs) == 2, 'ConvShiftLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
3005

Z
zhangjinchao01 已提交
3006 3007
@config_layer('convex_comb')
class ConvexCombinationLayer(LayerBase):
Q
qijun 已提交
3008
    def __init__(self, name, size, inputs, device=None):
Z
zhangjinchao01 已提交
3009
        super(ConvexCombinationLayer, self).__init__(
Q
qijun 已提交
3010 3011 3012
            name, 'convex_comb', size, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 2, 'ConvexCombinationLayer must have 2 inputs')
3013 3014 3015
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
            'Wrong input size for ConvexCombinationLayer')
Z
zhangjinchao01 已提交
3016 3017
        self.set_layer_size(size)

Q
qijun 已提交
3018

Z
zhangjinchao01 已提交
3019 3020
@config_layer('interpolation')
class InterpolationLayer(LayerBase):
Q
qijun 已提交
3021
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
3022 3023
        super(InterpolationLayer, self).__init__(
            name, 'interpolation', 0, inputs=inputs, device=device)
Q
qijun 已提交
3024 3025
        config_assert(
            len(self.inputs) == 3, 'InterpolationLayer must have 3 inputs')
Z
zhangjinchao01 已提交
3026 3027 3028 3029 3030 3031 3032 3033
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        input_layer2 = self.get_input_layer(2)
        self.set_layer_size(input_layer1.size)
        config_assert(input_layer0.size == 1, 'weight should be of size 1')
        config_assert(input_layer1.size == input_layer2.size,
                      'the two vector inputs should be of the same size')

Q
qijun 已提交
3034

L
liaogang 已提交
3035 3036
@config_layer('bilinear_interp')
class BilinearInterpLayer(LayerBase):
Q
qijun 已提交
3037
    def __init__(self, name, inputs, **xargs):
L
liaogang 已提交
3038
        super(BilinearInterpLayer, self).__init__(
L
liaogang 已提交
3039
            name, 'bilinear_interp', 0, inputs=inputs, **xargs)
L
liaogang 已提交
3040
        input_layer = self.get_input_layer(0)
L
Luo Tao 已提交
3041 3042 3043 3044
        conf = self.config.inputs[0].bilinear_interp_conf
        parse_bilinear(self.inputs[0].bilinear_interp, input_layer.name, conf)
        self.set_cnn_layer(name, conf.out_size_y, conf.out_size_x,
                           conf.image_conf.channels)
Q
qijun 已提交
3045

L
liaogang 已提交
3046

Z
zhangjinchao01 已提交
3047 3048
@config_layer('sum_to_one_norm')
class SumToOneNormLayer(LayerBase):
Q
qijun 已提交
3049
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
3050
        super(SumToOneNormLayer, self).__init__(
Q
qijun 已提交
3051 3052 3053
            name, 'sum_to_one_norm', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1, 'SumToOneNormLayer must have 1 input')
Z
zhangjinchao01 已提交
3054 3055 3056
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
3057

G
guosheng 已提交
3058 3059
@config_layer('row_l2_norm')
class RowL2NormLayer(LayerBase):
3060
    def __init__(self, name, inputs, **xargs):
G
guosheng 已提交
3061
        super(RowL2NormLayer, self).__init__(
3062
            name, 'row_l2_norm', 0, inputs=inputs, **xargs)
G
guosheng 已提交
3063
        config_assert(len(self.inputs) == 1, 'RowL2NormLayer must have 1 input')
3064 3065
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
G
guosheng 已提交
3066 3067


Z
zhangjinchao01 已提交
3068 3069
@config_layer('cos_vm')
class CosSimVecMatLayer(LayerBase):
Q
qijun 已提交
3070
    def __init__(self, name, size, inputs, cos_scale=1.0, device=None):
Z
zhangjinchao01 已提交
3071
        super(CosSimVecMatLayer, self).__init__(
Q
qijun 已提交
3072
            name, 'cos_vm', size, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
3073
        self.config.cos_scale = cos_scale
Q
qijun 已提交
3074 3075
        config_assert(
            len(self.inputs) == 2, 'CosSimVecMatLayer must have 2 inputs')
3076 3077 3078
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
            'Wrong input size for CosSimVecMatLayer')
Z
zhangjinchao01 已提交
3079

Q
qijun 已提交
3080

Z
zhangjinchao01 已提交
3081 3082
@config_layer('sampling_id')
class SamplingIdLayer(LayerBase):
Q
qijun 已提交
3083
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
3084 3085
        super(SamplingIdLayer, self).__init__(
            name, 'sampling_id', 0, inputs=inputs, device=device)
Q
qijun 已提交
3086 3087
        config_assert(
            len(self.inputs) == 1, 'SamplingIdLayer must have 1 input')
Z
zhangjinchao01 已提交
3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)


# AverageLayer: "average" for each sample within a sequence.
# average_stratrgy: set to one of the following:
# 'average': plain average.
# 'sum': sum each sample instead of average (which is divide by sample_num).
# 'squarerootn': sum each sample, but divide by sqrt(sample_num).
@config_layer('average')
class AverageLayer(LayerBase):
Q
qijun 已提交
3100 3101 3102 3103 3104
    def __init__(self,
                 name,
                 inputs,
                 average_strategy='average',
                 trans_type='non-seq',
3105
                 bias=False,
3106
                 stride=-1,
3107
                 **xargs):
Q
qijun 已提交
3108
        super(AverageLayer, self).__init__(
X
xuwei06 已提交
3109
            name, 'average', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
3110
        self.config.average_strategy = average_strategy
3111 3112
        if trans_type == 'seq':
            config_assert(stride == -1, 'subseq does not support stride window')
Q
qijun 已提交
3113
        self.config.trans_type = trans_type
3114
        self.config.seq_pool_stride = stride
Z
zhangjinchao01 已提交
3115 3116 3117 3118 3119 3120
        config_assert(len(inputs) == 1, 'AverageLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
3121

Z
zhangjinchao01 已提交
3122 3123
@config_layer('cos')
class CosSimLayer(LayerBase):
3124
    def __init__(self, name, inputs, cos_scale=1, device=None):
Z
zhangjinchao01 已提交
3125 3126 3127 3128 3129 3130
        super(CosSimLayer, self).__init__(
            name, 'cos', 1, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 2, 'CosSimLayer must have 2 inputs')
        config_assert(
            self.get_input_layer(0).size == self.get_input_layer(1).size,
            'inputs of CosSimLayer must have same dim')
3131
        self.config.cos_scale = cos_scale
Z
zhangjinchao01 已提交
3132 3133 3134 3135


@config_layer('tensor')
class TensorLayer(LayerBase):
3136
    def __init__(self, name, size, inputs, bias=True, **xargs):
Q
qijun 已提交
3137
        super(TensorLayer, self).__init__(
3138
            name, 'tensor', size, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
3139 3140
        config_assert(len(self.inputs) == 2, 'TensorLayer must have 2 inputs')
        config_assert(size > 0, 'size must be positive')
Q
qijun 已提交
3141 3142
        config_assert(inputs[1].parameter_name == None,
                      'second parameter should be None.')
Z
zhangjinchao01 已提交
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        psize = size * input_layer0.size * input_layer1.size
        dims = [input_layer0.size, input_layer1.size, size]
        self.create_input_parameter(0, psize, dims)
        self.create_bias_parameter(bias, size)


@config_layer('mixed')
class MixedLayer(LayerBase):
C
caoying03 已提交
3153
    def __init__(self, name, inputs, size=0, bias=True, **xargs):
Z
zhangjinchao01 已提交
3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
        config_assert(inputs, 'inputs cannot be empty')
        super(MixedLayer, self).__init__(
            name, 'mixed', size, inputs=inputs, **xargs)
        operator_input_index = []
        for operator in self.operators:
            operator_conf = operator.operator_conf
            for i in xrange(1, len(operator.input_layer_names)):
                input_index = len(self.config.inputs)
                operator_conf.input_indices.append(input_index)
                input_config = Input(operator.input_layer_names[i])
                self.inputs.append(input_config)
                layer_input = self.config.inputs.add()
                layer_input.input_layer_name = input_config.input_layer_name
            for input_index in operator_conf.input_indices:
                input_layer = self.get_input_layer(input_index)
                operator_conf.input_sizes.append(input_layer.size)
                operator_input_index.append(input_index)
3171
            if self.config.size == 0:
Z
zhangjinchao01 已提交
3172 3173 3174
                size = operator.calc_output_size(operator_conf.input_sizes)
                if size != 0:
                    self.set_layer_size(size)
3175
            else:
3176 3177
                sz = operator.calc_output_size(operator_conf.input_sizes)
                if sz != 0:
Q
qijun 已提交
3178 3179 3180 3181
                    config_assert(
                        sz == self.config.size,
                        "different inputs have different size: %s vs. %s" %
                        (sz, self.config.size))
Z
zhangjinchao01 已提交
3182 3183 3184 3185
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            if input_index not in operator_input_index:
Q
qijun 已提交
3186 3187 3188
                config_assert(
                    isinstance(input, Projection),
                    "input should be projection or operation")
3189
            if self.config.size == 0 and isinstance(input, Projection):
Z
zhangjinchao01 已提交
3190 3191 3192
                size = input.calc_output_size(input_layer)
                if size != 0:
                    self.set_layer_size(size)
3193
            elif isinstance(input, Projection):
Q
qijun 已提交
3194 3195 3196 3197 3198 3199
                sz = input.calc_output_size(input_layer)
                if sz != 0:
                    config_assert(
                        sz == self.config.size,
                        "different inputs have different size: %s vs. %s" %
                        (sz, self.config.size))
Z
zhangjinchao01 已提交
3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
        config_assert(size != 0, "size is not set")

        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            if isinstance(input, Projection):
                input_layer = self.get_input_layer(input_index)
                input.proj_conf.input_size = input_layer.size
                input.proj_conf.output_size = size

                input_config = self.config.inputs[input_index]
                input_config.proj_conf.CopyFrom(input.proj_conf)
Q
qijun 已提交
3211 3212
                input_config.proj_conf.name = gen_parameter_name(name,
                                                                 input_index)
Z
zhangjinchao01 已提交
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
                psize = input.calc_parameter_size(input_layer.size, size)
                dims = input.calc_parameter_dims(input_layer.size, size)
                self.create_input_parameter(input_index, psize, dims)

        for operator in self.operators:
            operator_conf = operator.operator_conf
            operator_conf.output_size = self.config.size
            operator.check_dims()
            record_operator_conf = self.config.operator_confs.add()
            record_operator_conf.CopyFrom(operator_conf)

3224 3225 3226 3227 3228 3229
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()
Z
zhangjinchao01 已提交
3230

3231 3232 3233
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
Z
zhangjinchao01 已提交
3234

Q
qijun 已提交
3235

Z
zhangjinchao01 已提交
3236 3237
# like MixedLayer, but no bias parameter
@config_func
Q
qijun 已提交
3238
def ExpressionLayer(name, inputs, **xargs):
Z
zhangjinchao01 已提交
3239 3240
    MixedLayer(name, inputs, bias=False, **xargs)

Q
qijun 已提交
3241

Z
zhangjinchao01 已提交
3242 3243
@config_layer('concat')
class ConcatenateLayer(LayerBase):
Q
qijun 已提交
3244
    def __init__(self, name, inputs, bias=False, **xargs):
Z
zhangjinchao01 已提交
3245
        config_assert(inputs, 'inputs cannot be empty')
3246
        config_assert(not bias, 'ConcatenateLayer cannot support bias.')
Z
zhangjinchao01 已提交
3247 3248 3249 3250 3251 3252
        super(ConcatenateLayer, self).__init__(
            name, 'concat', 0, inputs=inputs, **xargs)
        size = 0
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
Q
qijun 已提交
3253
            if self.config.size == 0:
Z
zhangjinchao01 已提交
3254 3255 3256 3257
                size += input_layer.size

        self.set_layer_size(size)

Q
qijun 已提交
3258

Z
zhangjinchao01 已提交
3259 3260 3261
# like concat layer, but each input layer was processed by a Projection.
@config_layer('concat2')
class ConcatenateLayer2(LayerBase):
Q
qijun 已提交
3262
    def __init__(self, name, inputs, bias=False, **xargs):
Z
zhangjinchao01 已提交
3263 3264 3265
        config_assert(inputs, 'inputs cannot be empty')
        super(ConcatenateLayer2, self).__init__(
            name, 'concat2', 0, inputs=inputs, **xargs)
3266 3267

        if isinstance(self.inputs[0], ConvProjection):
Q
qijun 已提交
3268 3269 3270 3271 3272 3273
            for input_index in xrange(len(self.inputs) - 1):
                input = self.inputs[input_index + 1]
                config_assert(
                    isinstance(input, ConvProjection),
                    "The first input of ConcatenateLayer2 is ConvProjection, "
                    "the other inputs should also be ConvProjection.")
3274

Z
zhangjinchao01 已提交
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
        size = 0
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            output_size = input.calc_output_size(input_layer)
            config_assert(output_size != 0, "proj output size is not set")
            size += output_size

        self.set_layer_size(size)

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            input.proj_conf.input_size = input_layer.size
            input.proj_conf.output_size = input.calc_output_size(input_layer)

            input_config = self.config.inputs[input_index]
            input_config.proj_conf.CopyFrom(input.proj_conf)
            input_config.proj_conf.name = gen_parameter_name(name, input_index)
            psize = input.calc_parameter_size(input.proj_conf.input_size,
Q
qijun 已提交
3295
                                              input.proj_conf.output_size)
Z
zhangjinchao01 已提交
3296
            dims = input.calc_parameter_dims(input.proj_conf.input_size,
Q
qijun 已提交
3297
                                             input.proj_conf.output_size)
Z
zhangjinchao01 已提交
3298 3299
            self.create_input_parameter(input_index, psize, dims)

3300 3301 3302 3303 3304 3305 3306
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()

3307 3308 3309
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
3310

Q
qijun 已提交
3311

Z
zhangjinchao01 已提交
3312 3313
@config_layer('recurrent')
class RecurrentLayer(LayerBase):
Q
qijun 已提交
3314
    def __init__(self, name, inputs, reversed=False, bias=True, **xargs):
Y
Yu Yang 已提交
3315 3316
        super(RecurrentLayer, self).__init__(name, 'recurrent', 0, inputs,
                                             **xargs)
Z
zhangjinchao01 已提交
3317 3318 3319 3320 3321 3322 3323 3324 3325
        config_assert(len(self.inputs) == 1, 'RecurrentLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        size = input_layer.size
        self.set_layer_size(size)
        self.config.reversed = reversed
        dims = [size, size]
        self.create_input_parameter(0, size * size, dims)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
3326

Z
zhangjinchao01 已提交
3327 3328
@config_layer('lstmemory')
class LstmLayer(LayerBase):
Q
qijun 已提交
3329 3330 3331 3332 3333 3334 3335 3336
    def __init__(self,
                 name,
                 inputs,
                 reversed=False,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
Z
zhangjinchao01 已提交
3337 3338 3339 3340 3341 3342 3343 3344
        super(LstmLayer, self).__init__(name, 'lstmemory', 0, inputs, **xargs)
        config_assert(len(self.inputs) == 1, 'LstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 4
        config_assert(input_layer.size % 4 == 0, "size % 4 should be 0!")
        size = input_layer.size / 4
        self.set_layer_size(size)
        self.config.reversed = reversed
Q
qijun 已提交
3345
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3346 3347 3348 3349 3350
        self.config.active_state_type = active_state_type
        self.create_input_parameter(0, size * size * 4, [size, size, 4])
        #bias includes 3 kinds of peephole, 4 + 3 = 7
        self.create_bias_parameter(bias, size * 7)

Q
qijun 已提交
3351

Z
zhangjinchao01 已提交
3352 3353
@config_layer('lstm_step')
class LstmStepLayer(LayerBase):
Q
qijun 已提交
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
        super(LstmStepLayer, self).__init__(name, 'lstm_step', size, inputs,
                                            **xargs)
Z
zhangjinchao01 已提交
3364 3365 3366
        config_assert(len(inputs) == 2, 'LstmStepLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
Q
qijun 已提交
3367 3368 3369 3370 3371
        config_assert(input_layer0.size == 4 * size,
                      'input_layer0.size != 4 * layer.size')
        config_assert(input_layer1.size == size,
                      'input_layer1.size != layer.size')
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3372 3373 3374
        self.config.active_state_type = active_state_type
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
3375

Z
zhangjinchao01 已提交
3376 3377 3378
# get the specific output from the input layer.
@config_layer('get_output')
class GetOutputLayer(LayerBase):
Q
qijun 已提交
3379 3380 3381 3382
    def __init__(self, name, size, inputs):
        super(GetOutputLayer, self).__init__(name, 'get_output', size, inputs)
        config_assert(
            len(self.inputs) == 1, 'GetOutputLayer must have 1 inputs')
Z
zhangjinchao01 已提交
3383 3384 3385 3386
        inputs = self.inputs[0]
        config_assert(inputs.input_layer_argument,
                      'input_layer_argument cannot be empty')

Q
qijun 已提交
3387

Z
zhangjinchao01 已提交
3388 3389
@config_layer('mdlstmemory')
class MDLstmLayer(LayerBase):
Q
qijun 已提交
3390 3391 3392 3393 3394 3395 3396 3397
    def __init__(self,
                 name,
                 inputs,
                 directions=True,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
Y
Yu Yang 已提交
3398 3399
        super(MDLstmLayer, self).__init__(name, 'mdlstmemory', 0, inputs,
                                          **xargs)
Z
zhangjinchao01 已提交
3400 3401 3402 3403
        config_assert(len(self.inputs) == 1, 'MDLstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        dim_num = len(directions)
        #check input_layer.size is divided by (3+dim_num)
Y
Yu Yang 已提交
3404 3405
        config_assert(input_layer.size % (3 + dim_num) == 0,
                      "size % (dim_num) should be 0!")
Q
qijun 已提交
3406
        size = input_layer.size / (3 + dim_num)
Z
zhangjinchao01 已提交
3407
        self.set_layer_size(size)
Q
qijun 已提交
3408
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3409 3410 3411
        self.config.active_state_type = active_state_type
        for i in xrange(len(directions)):
            self.config.directions.append(int(directions[i]))
Y
Yu Yang 已提交
3412 3413
        self.create_input_parameter(0, size * size * (3 + dim_num),
                                    [size, size, 3 + dim_num])
Z
zhangjinchao01 已提交
3414
        #bias includes 3 kinds of peephole, 3+dim_num+2+dim_num
Q
qijun 已提交
3415 3416
        self.create_bias_parameter(bias, size * (5 + 2 * dim_num))

Z
zhangjinchao01 已提交
3417 3418 3419

@config_layer('gated_recurrent')
class GatedRecurrentLayer(LayerBase):
Q
qijun 已提交
3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
    def __init__(self,
                 name,
                 inputs,
                 reversed=False,
                 active_gate_type="sigmoid",
                 bias=True,
                 **xargs):
        super(GatedRecurrentLayer, self).__init__(name, 'gated_recurrent', 0,
                                                  inputs, **xargs)
        config_assert(
            len(self.inputs) == 1, 'GatedRecurrentLayer must have 1 input')
Z
zhangjinchao01 已提交
3431 3432 3433 3434 3435 3436
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 3
        config_assert(input_layer.size % 3 == 0, "size % 3 should be 0!")
        size = input_layer.size / 3
        self.set_layer_size(size)
        self.config.reversed = reversed
Q
qijun 已提交
3437
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3438 3439 3440
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
3441

Z
zhangjinchao01 已提交
3442 3443
@config_layer('gru_step')
class GruStepLayer(LayerBase):
Q
qijun 已提交
3444 3445 3446 3447 3448 3449 3450
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_gate_type="sigmoid",
                 bias=True,
                 **xargs):
Y
Yu Yang 已提交
3451 3452
        super(GruStepLayer, self).__init__(name, 'gru_step', size, inputs,
                                           **xargs)
Z
zhangjinchao01 已提交
3453 3454 3455
        config_assert(len(self.inputs) == 2, 'GruStepLayer must have 2 input')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
Q
qijun 已提交
3456 3457 3458 3459 3460
        config_assert(input_layer0.size == 3 * size,
                      'input_layer0.size != 3 * layer.size')
        config_assert(input_layer1.size == size,
                      'input_layer1.size != layer.size')
        self.config.active_gate_type = active_gate_type
H
Haonan 已提交
3461
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
Z
zhangjinchao01 已提交
3462 3463
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
3464

Z
zhangjinchao01 已提交
3465 3466 3467 3468 3469 3470 3471
'''
 A layer for calculating the cost of sequential conditional random field model.
 Example: CRFLayer(name="crf_cost", size=label_num,
                   inputs=["output", "label", "weight"])
          where "weight" is optional, one weight for each sequence
 @param coeff: weight of the layer
'''
Q
qijun 已提交
3472 3473


Z
zhangjinchao01 已提交
3474 3475
@config_layer('crf')
class CRFLayer(LayerBase):
Q
qijun 已提交
3476
    def __init__(self, name, size, inputs, coeff=1.0, device=None):
Z
zhangjinchao01 已提交
3477
        super(CRFLayer, self).__init__(name, 'crf', size, inputs, device=device)
Q
qijun 已提交
3478 3479
        config_assert(2 <= len(self.inputs) <= 3,
                      'CRFLayer must have 2 or 3 inputs')
3480
        self.create_input_parameter(0, size * (size + 2), [size + 2, size])
Z
zhangjinchao01 已提交
3481 3482
        self.config.coeff = coeff

Q
qijun 已提交
3483

Z
zhangjinchao01 已提交
3484 3485 3486 3487 3488 3489 3490 3491
'''
 A layer for calculating the decoding sequence of sequential conditional
 random field model.
 The decoding sequence is stored in output_.ids
 If a second input is provided, it is treated as the ground-truth label, and
 this layer will also calculate error, output_.value[i] is 1 for incorrect
 decoding or 0 for correct decoding
'''
Q
qijun 已提交
3492 3493


Z
zhangjinchao01 已提交
3494 3495
@config_layer('crf_decoding')
class CRFDecodingLayer(LayerBase):
Q
qijun 已提交
3496
    def __init__(self, name, size, inputs, device=None):
Z
zhangjinchao01 已提交
3497 3498 3499 3500 3501
        super(CRFDecodingLayer, self).__init__(
            name, 'crf_decoding', size, inputs, device=device)
        config_assert(
            len(self.inputs) <= 2,
            'CRFDecodingLayer cannot have more than 2 inputs')
3502
        self.create_input_parameter(0, size * (size + 2), [size + 2, size])
Z
zhangjinchao01 已提交
3503

Q
qijun 已提交
3504

Z
zhangjinchao01 已提交
3505 3506
@config_layer('ctc')
class CTCLayer(LayerBase):
Q
qijun 已提交
3507
    def __init__(self, name, size, inputs, norm_by_times=False, device=None):
Z
zhangjinchao01 已提交
3508 3509 3510 3511
        super(CTCLayer, self).__init__(name, 'ctc', size, inputs, device=device)
        self.config.norm_by_times = norm_by_times
        config_assert(len(self.inputs) == 2, 'CTCLayer must have 2 inputs')

Q
qijun 已提交
3512

3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
@config_layer('kmax_seq_score')
class KmaxSeqScoreLayer(LayerBase):
    def __init__(self, name, inputs, beam_size, **xargs):
        super(KmaxSeqScoreLayer, self).__init__(
            name, 'kmax_seq_score', 0, inputs=inputs, **xargs)
        config_assert(
            len(self.inputs) == 1, 'KmaxSeqScoreLayer has only one input.')
        self.config.beam_size = beam_size


3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
@config_layer('warp_ctc')
class WarpCTCLayer(LayerBase):
    def __init__(self,
                 name,
                 size,
                 inputs,
                 blank=0,
                 norm_by_times=False,
                 device=None):
        super(WarpCTCLayer, self).__init__(
            name, 'warp_ctc', size=size, inputs=inputs, device=device)
        self.config.blank = blank
        self.config.norm_by_times = norm_by_times
        config_assert(len(self.inputs) == 2, 'WarpCTCLayer must have 2 inputs')
        input_layer = self.get_input_layer(0)
        config_assert(
            (input_layer.active_type == '' or
             input_layer.active_type == 'linear'),
            "Expecting the active_type of input layer to be linear or null")


Z
zhangjinchao01 已提交
3544 3545
@config_layer('recurrent_layer_group')
class RecurrentLayerGroup(LayerBase):
Q
qijun 已提交
3546
    def __init__(self, name, device=None):
Z
zhangjinchao01 已提交
3547 3548 3549 3550 3551 3552
        super(RecurrentLayerGroup, self).__init__(
            name, 'recurrent_layer_group', 0, inputs=[], device=device)


# Deprecated, use a new layer specific class instead
@config_func
Q
qijun 已提交
3553
def Layer(name, type, **xargs):
Z
zhangjinchao01 已提交
3554 3555 3556 3557
    layers = {}
    layers.update(g_cost_map)
    layers.update(g_layer_type_map)
    layer_func = layers.get(type)
Q
qijun 已提交
3558
    config_assert(layer_func, "layer type '%s' not supported." % type)
X
xuwei06 已提交
3559
    return layer_func(name, **xargs)
Z
zhangjinchao01 已提交
3560

Q
qijun 已提交
3561

Z
zhangjinchao01 已提交
3562
@config_func
Q
qijun 已提交
3563
def ParameterHook(type, **kwargs):
3564
    if type == 'pruning':
Z
zhangjinchao01 已提交
3565 3566
        hook = ParameterUpdaterHookConfig()
        hook.type = type
X
xzl 已提交
3567
        sparsity_ratio = kwargs.get('sparsity_ratio', None)
X
xzl 已提交
3568 3569
        if sparsity_ratio is not None:
            hook.sparsity_ratio = sparsity_ratio
Z
zhangjinchao01 已提交
3570
        return hook
3571 3572 3573 3574
    elif type == 'dpruning':
        hook = ParameterUpdaterHookConfig()
        hook.type = type
        return hook
Z
zhangjinchao01 已提交
3575 3576 3577 3578 3579
    else:
        return None


@config_func
Q
qijun 已提交
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
def Parameter(name,
              size,
              device,
              dims,
              learning_rate=None,
              momentum=None,
              decay_rate=None,
              decay_rate_l1=None,
              initial_mean=None,
              initial_std=None,
              initial_strategy=None,
              initial_smart=None,
              num_batches_regularization=None,
              sparse_remote_update=None,
              sparse_update=None,
              gradient_clipping_threshold=None,
              sparse=None,
              format=None,
              need_compact=None,
              is_static=None,
              is_shared=None,
X
xuwei06 已提交
3601 3602
              update_hooks=None,
              initializer=None):
Z
zhangjinchao01 已提交
3603 3604 3605 3606 3607 3608 3609

    config_assert(name not in g_parameter_map,
                  'Duplicated parameter name: ' + name)

    para = g_config.model_config.parameters.add()
    para.name = name
    para.size = size
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620
    if device is not None:
        para.device = int(device)
    para.dims.extend(dims)

    if learning_rate is not None:
        para.learning_rate = float(learning_rate)

    momentum = default(momentum, g_default_momentum)
    if momentum is not None:
        para.momentum = float(momentum)

Z
zhangjinchao01 已提交
3621 3622
    config_assert(not momentum or not decay_rate_l1,
                  "momentum and decay_rate_l1 cannot both be non-zero")
3623 3624 3625 3626 3627

    decay_rate = default(decay_rate, g_default_decay_rate)
    if decay_rate is not None:
        para.decay_rate = decay_rate

Z
zhangjinchao01 已提交
3628 3629 3630 3631
    if decay_rate_l1 is not None:
        para.decay_rate_l1 = decay_rate_l1
    para.initial_std = default(initial_std, g_default_initial_std)
    para.initial_mean = default(initial_mean, g_default_initial_mean)
3632

Q
qijun 已提交
3633 3634
    num_batches_regularization = default(num_batches_regularization,
                                         g_default_num_batches_regularization)
3635 3636 3637
    if num_batches_regularization is not None:
        para.num_batches_regularization = int(num_batches_regularization)

Z
zhangjinchao01 已提交
3638 3639 3640 3641 3642 3643
    if sparse_remote_update is not None:
        para.sparse_remote_update = sparse_remote_update
        if sparse_remote_update:
            g_config.opt_config.use_sparse_remote_updater = True
    if sparse_update is not None:
        para.sparse_update = sparse_update
Q
qijun 已提交
3644 3645
    gradient_clipping_threshold = default(gradient_clipping_threshold,
                                          g_default_gradient_clipping_threshold)
3646 3647
    if gradient_clipping_threshold is not None:
        para.gradient_clipping_threshold = gradient_clipping_threshold
Q
qijun 已提交
3648 3649
    para.initial_strategy = default(initial_strategy,
                                    g_default_initial_strategy)
Z
zhangjinchao01 已提交
3650 3651 3652 3653 3654 3655
    para.initial_smart = default(initial_smart, g_default_initial_smart)
    if para.initial_smart:
        para.initial_mean = 0.
        if len(para.dims) != 0:
            para.initial_std = 1. / math.sqrt(para.dims[0])
        else:
Q
qijun 已提交
3656 3657 3658
            print(
                "Use initial_smart, but dims not set. Initial_smart may not be used in this layer"
            )
Z
zhangjinchao01 已提交
3659 3660 3661 3662
            traceback.print_exc()
            para.initial_std = 1. / math.sqrt(para.size)
    if g_default_compact_func is not None:
        sparse, format, need_compact = g_default_compact_func(para.name)
3663 3664 3665 3666 3667 3668 3669

    if sparse is not None:
        para.is_sparse = sparse
    if format is not None:
        para.format = format
    if need_compact is not None:
        para.need_compact = need_compact
Z
zhangjinchao01 已提交
3670 3671 3672 3673
    if is_static is not None:
        para.is_static = is_static
    config_assert(not para.sparse_remote_update or not para.is_static,
                  "sparse_remote_update and is_static cannot both be true")
3674 3675
    if is_shared is not None:
        para.is_shared = is_shared
Z
zhangjinchao01 已提交
3676 3677 3678 3679 3680

    update_hooks = default(update_hooks, g_default_update_hooks)

    if update_hooks is not None:
        if hasattr(update_hooks, '__call__'):
X
xzl 已提交
3681
            update_hooks = update_hooks()
Z
zhangjinchao01 已提交
3682 3683 3684 3685 3686

        if isinstance(update_hooks, list):
            for hook in update_hooks:
                para.update_hooks.extend([hook])
        else:
X
xzl 已提交
3687
            para.update_hooks.extend([update_hooks])
Z
zhangjinchao01 已提交
3688 3689

    g_parameter_map[name] = para
X
xuwei06 已提交
3690 3691 3692 3693 3694
    if initializer is not None:
        config_assert(
            callable(initializer),
            "parameter initializer should be a callable object")
        g_parameter_initializer_map[name] = initializer
Z
zhangjinchao01 已提交
3695 3696 3697 3698 3699 3700 3701


@config_func
def default_initial_std(val):
    global g_default_initial_std
    g_default_initial_std = val

Q
qijun 已提交
3702

Z
zhangjinchao01 已提交
3703 3704 3705 3706 3707
@config_func
def default_initial_mean(val):
    global g_default_initial_mean
    g_default_initial_mean = val

Q
qijun 已提交
3708

Z
zhangjinchao01 已提交
3709 3710 3711 3712 3713
@config_func
def default_initial_strategy(val):
    global g_default_initial_strategy
    g_default_initial_strategy = val

Q
qijun 已提交
3714

Z
zhangjinchao01 已提交
3715 3716 3717 3718 3719
@config_func
def default_initial_smart(val):
    global g_default_initial_smart
    g_default_initial_smart = val

Q
qijun 已提交
3720

Z
zhangjinchao01 已提交
3721 3722 3723 3724 3725
@config_func
def default_momentum(val):
    global g_default_momentum
    g_default_momentum = val

Q
qijun 已提交
3726

Z
zhangjinchao01 已提交
3727 3728 3729 3730 3731
@config_func
def default_decay_rate(val):
    global g_default_decay_rate
    g_default_decay_rate = val

Q
qijun 已提交
3732

Z
zhangjinchao01 已提交
3733 3734 3735 3736 3737
@config_func
def default_num_batches_regularization(val):
    global g_default_num_batches_regularization
    g_default_num_batches_regularization = val

Q
qijun 已提交
3738

Z
zhangjinchao01 已提交
3739 3740 3741 3742 3743
@config_func
def default_gradient_clipping_threshold(val):
    global g_default_gradient_clipping_threshold
    g_default_gradient_clipping_threshold = val

Q
qijun 已提交
3744

Z
zhangjinchao01 已提交
3745 3746 3747 3748 3749
@config_func
def default_device(val):
    global g_default_device
    g_default_device = val

Q
qijun 已提交
3750

Z
zhangjinchao01 已提交
3751 3752 3753 3754 3755
@config_func
def default_update_hooks(val):
    global g_default_update_hooks
    g_default_update_hooks = val

Q
qijun 已提交
3756

Z
zhangjinchao01 已提交
3757 3758 3759 3760 3761
@config_func
def default_compact_func(val):
    global g_default_compact_func
    g_default_compact_func = val

Q
qijun 已提交
3762

Z
zhangjinchao01 已提交
3763 3764 3765 3766 3767
def make_importer(config_dir, config_args):
    def Import(config_file, local_args={}):
        if not config_file.startswith('/'):
            config_file = config_dir + '/' + config_file
            g_config.config_files.append(config_file)
Q
qijun 已提交
3768 3769 3770
        execfile(config_file,
                 make_config_environment(config_file, config_args), local_args)

Z
zhangjinchao01 已提交
3771 3772
    return Import

Q
qijun 已提交
3773

X
xuwei06 已提交
3774
DEFAULT_SETTING = dict(
Z
zhangjinchao01 已提交
3775 3776 3777 3778 3779
    batch_size=None,
    mini_batch_size=None,
    algorithm='async_sgd',
    async_lagged_grad_discard_ratio=1.5,
    learning_method='momentum',
3780
    gradient_clipping_threshold=None,
Z
zhangjinchao01 已提交
3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802
    num_batches_per_send_parameter=None,
    num_batches_per_get_parameter=None,
    center_parameter_update_method=None,
    learning_rate=1.,
    learning_rate_decay_a=0.,
    learning_rate_decay_b=0.,
    learning_rate_schedule='poly',
    learning_rate_args='',
    l1weight=0.1,
    l2weight=0.,
    l2weight_zero_iter=0,
    c1=0.0001,
    backoff=0.5,
    owlqn_steps=10,
    max_backoff=5,
    average_window=0,
    do_average_in_cpu=False,
    max_average_window=None,
    ada_epsilon=1e-6,
    ada_rou=0.95,
    delta_add_rate=1.0,
    shrink_parameter_value=0,
Q
qijun 已提交
3803 3804 3805
    adam_beta1=0.9,
    adam_beta2=0.999,
    adam_epsilon=1e-8, )
Z
zhangjinchao01 已提交
3806

X
xuwei06 已提交
3807
settings = copy.deepcopy(DEFAULT_SETTING)
X
xuwei06 已提交
3808

Q
qijun 已提交
3809
settings_deprecated = dict(usage_ratio=1., )
Z
zhangjinchao01 已提交
3810 3811 3812 3813

trainer_settings = dict(
    save_dir="./output/model",
    init_model_path=None,
Q
qijun 已提交
3814 3815
    start_pass=0, )

Z
zhangjinchao01 已提交
3816 3817 3818 3819 3820

@config_func
def Settings(**args):
    for k, v in args.iteritems():
        if k == "usage_ratio":
Q
qijun 已提交
3821 3822
            logger.warning(
                "Deprecated: define usage_ratio in DataConfig instead")
Z
zhangjinchao01 已提交
3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
            if g_config.HasField("data_config"):
                g_config.data_config.__setattr__(k, v)
            settings_deprecated[k] = v
            continue
        elif k in settings:
            settings[k] = v
        elif k in trainer_settings:
            trainer_settings[k] = v
        else:
            logger.fatal('Unkown setting: %s' % k)

Q
qijun 已提交
3834

Z
zhangjinchao01 已提交
3835 3836 3837 3838
@config_func
def cluster_config(**args):
    pass

Q
qijun 已提交
3839

Z
zhangjinchao01 已提交
3840 3841 3842 3843 3844 3845 3846 3847 3848
@config_func
def EnableSubmodelSuffix(flag=True):
    """
    If enabled, the layer and evaluator names in submodel will be automatically
    appended with @submodel_name
    """
    global g_add_submodel_suffix
    g_add_submodel_suffix = flag

Q
qijun 已提交
3849

Z
zhangjinchao01 已提交
3850 3851 3852 3853
def make_config_environment(config_file, config_args):
    def make_setter(k):
        def setter(v):
            logger.fatal("Obsolete: use Settings(%s=%s, ...) instead" % (k, v))
Q
qijun 已提交
3854

Z
zhangjinchao01 已提交
3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
        return setter

    funcs = {}
    funcs.update(g_config_funcs)

    for k in settings.iterkeys():
        funcs[k] = make_setter(k)
    for k in settings_deprecated.iterkeys():
        funcs[k] = make_setter(k)
    config_dir = os.path.dirname(config_file)
    if not config_dir:
        config_dir = '.'

    funcs.update(
        Import=make_importer(config_dir, config_args),
Q
qijun 已提交
3870
        get_config_arg=make_get_config_arg(config_args), )
Z
zhangjinchao01 已提交
3871 3872 3873 3874 3875

    funcs.update(g_extended_config_funcs)

    return funcs

Q
qijun 已提交
3876

Z
zhangjinchao01 已提交
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892
def make_get_config_arg(config_args):
    def get_config_arg(name, type, default=None):
        if type == bool:
            s = config_args.get(name)
            if not s:
                return default
            if s == 'True' or s == '1' or s == 'true':
                return True
            if s == 'False' or s == '0' or s == 'false':
                return False
            raise ValueError('Value of config_arg %s is not boolean' % name)
        else:
            return type(config_args.get(name, default))

    return get_config_arg

Q
qijun 已提交
3893

Z
zhangjinchao01 已提交
3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
def importlib(name):
    __import__(name)
    return sys.modules[name]


def find_caller():
    stack = traceback.extract_stack()
    for s in stack[-4::-1]:
        if not s[0].endswith('config_parser.py'):
            return s[0], s[1], s[2]
    return "(unknown file)", 0, "(unknown function)"

Q
qijun 已提交
3906

Z
zhangjinchao01 已提交
3907 3908 3909 3910
def my_fatal(s):
    logger.critical(s)
    raise Exception()

Y
Yu Yang 已提交
3911

3912
_parse_config_hooks = set()
Y
Yu Yang 已提交
3913 3914


3915 3916 3917 3918 3919 3920 3921
def register_parse_config_hook(f):
    """
    Register a hook function for parse_config. parse_config will invoke the hook
    at the beginning of parse. This make it possible to reset global state for
    for constructing the model.
    """
    _parse_config_hooks.add(f)
Q
qijun 已提交
3922

Y
Yu Yang 已提交
3923

3924
def update_g_config():
Z
zhangjinchao01 已提交
3925
    '''
3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948
    Update g_config after execute config_file or config_functions.
    '''
    for k, v in settings.iteritems():
        if v is None:
            continue
        g_config.opt_config.__setattr__(k, v)

    for k, v in trainer_settings.iteritems():
        if v is None:
            continue
        g_config.__setattr__(k, v)

    for name in g_config.model_config.input_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
        assert (g_layer_map[name].type == "data" or g_layer_map[name].type == "data_trim"), \
            'The type of input layer "%s" is not "data"' % name
    for name in g_config.model_config.output_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
    return g_config


3949
def begin_parse():
Z
zhangjinchao01 已提交
3950
    init_config_environment()
3951 3952
    for hook in _parse_config_hooks:
        hook()
Z
zhangjinchao01 已提交
3953 3954 3955 3956 3957

    logger.findCaller = find_caller
    logger.fatal = my_fatal

    g_config.model_config.type = "nn"
X
xuwei06 已提交
3958 3959 3960 3961 3962 3963 3964 3965 3966

    global g_current_submodel, g_root_submodel
    g_root_submodel = g_config.model_config.sub_models.add()
    g_root_submodel.name = 'root'
    g_root_submodel.is_recurrent_layer_group = False
    g_current_submodel = g_root_submodel


def parse_config(trainer_config, config_arg_str):
3967 3968 3969 3970
    '''
    @param config_arg_str: a string of the form var1=val1,var2=val2. It will be
    passed to config script as a dictionary CONFIG_ARGS
    '''
X
xuwei06 已提交
3971

3972
    begin_parse()
X
xuwei06 已提交
3973 3974
    config_args = {}

Z
zhangjinchao01 已提交
3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
    if config_arg_str:
        config_args = dict([f.split('=') for f in config_arg_str.split(',')])

    global g_command_config_args
    g_command_config_args.update(config_args)

    extension_module_name = config_args.get('extension_module_name')
    if extension_module_name:
        global g_extended_config_funcs
        extension_module = importlib(extension_module_name)
        g_extended_config_funcs = extension_module.get_config_funcs(g_config)

3987 3988
    if hasattr(trainer_config, '__call__'):
        trainer_config.func_globals.update(
L
Luo Tao 已提交
3989
            make_config_environment("", config_args))
3990
        trainer_config()
H
hanchao 已提交
3991
    else:
3992 3993
        execfile(trainer_config,
                 make_config_environment(trainer_config, config_args))
Z
zhangjinchao01 已提交
3994

3995
    return update_g_config()
Z
zhangjinchao01 已提交
3996 3997


3998
def parse_config_and_serialize(trainer_config, config_arg_str):
Z
zhangjinchao01 已提交
3999
    try:
4000
        config = parse_config(trainer_config, config_arg_str)
Z
zhangjinchao01 已提交
4001 4002 4003 4004 4005 4006
        #logger.info(config)
        return config.SerializeToString()
    except:
        traceback.print_exc()
        raise

Q
qijun 已提交
4007

Z
zhangjinchao01 已提交
4008 4009 4010 4011 4012 4013 4014 4015
if __name__ == '__main__':
    try:
        config = parse_config(sys.argv[1], '')
        config.SerializeToString()
        __real_print__(str(config))
    except:
        traceback.print_exc()
        raise