config_parser.py 120.4 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
'''
The following functions are available in the config file:

Bias: define bias. To be used as value of bias argument in Layer().

Data: define data provider.

Input: define input layer for a layer. To be used as element of inputs argument
       in Layer().

Conv: define a convolution operation for an input of a layer.

Norm: define a normalization operation for an input of a layer.

Pool: define a pooling operation for an input of a layer.

Layer: define a layer.

Parameter: define a parameter.

Import: import another config file. If the imported config file name is
        a relative path, then it will be searched under the directory of the
        current config file.

Inputs(layer_names...):
    Define the name of the input layers of the NeuralNetwork.
    The type of these layers must be "data".
    These layers will be provided with the DataBatch obtained
    from DataProvider. The data streams from DataProvider must
    have the same order.

Outputs(layer_names...):
    Define the name of the output layers of the NeuralNetwork.
    Usually the output is simply the cost layer.
    You can specify other layers as outputs and  calculate the
    cost (and its derivative) yourself.


default_initial_std(val)
default_initial_mean(val)
default_momentum(val):
default_decay_rate(val): Set the default value for these parameters


get_config_arg(name, type, default): Get the value for a config parameter.


*** customized extension to config_parser ***
The functionality of the config_parser can be extended.
If the config_arg_str for parse_config() contains
extension_module_name=[MODULE_NAME], then config_parser will call
MODULE_NAME.get_config_funcs(g_config)
MODULE_NAME.get_config_funcs() should return a dictionary of name to functions,
those functions will be available in the config file.
See trainer/tests/config_parser_test.py for example

To use this from paddle_trainer, paddle_trainer should be called with
--config_args=extension_module_name=[MODULE_NAME]

'''

import copy
import logging
import os
import sys
import traceback
import math
import shutil

try:
    from paddle.proto.DataConfig_pb2 import DataConfig
    from paddle.proto.ModelConfig_pb2 import ModelConfig
    from paddle.proto.ModelConfig_pb2 import LayerConfig
    from paddle.proto.ModelConfig_pb2 import LayerInputConfig
    from paddle.proto.ModelConfig_pb2 import ProjectionConfig
    from paddle.proto.ModelConfig_pb2 import OperatorConfig
    from paddle.proto.ModelConfig_pb2 import GeneratorConfig
    from paddle.proto.ModelConfig_pb2 import LinkConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterUpdaterHookConfig
    from paddle.proto.TrainerConfig_pb2 import TrainerConfig

except Exception as e:
    traceback.print_exc()
    raise

logging.basicConfig(
Q
qijun 已提交
103
    format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s', )
Z
zhangjinchao01 已提交
104 105 106
logger = logging.getLogger('paddle')
logger.setLevel(logging.INFO)
__real_print__ = print
Q
qijun 已提交
107
print = logger.info
Z
zhangjinchao01 已提交
108 109 110 111

# from layer type name to layer class
g_layer_type_map = {}

Q
qijun 已提交
112

Z
zhangjinchao01 已提交
113 114 115
# Initialize global variables. We use this function so that we can
# call parse_config() multiple times
def init_config_environment(
Q
qijun 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
        g_default_momentum=None,
        g_default_decay_rate=None,
        g_default_initial_mean=0.,
        g_default_initial_std=0.01,
        g_default_num_batches_regularization=None,
        g_default_initial_strategy=0,
        g_default_initial_smart=False,
        g_default_gradient_clipping_threshold=None,
        g_default_device=None,
        g_default_update_hooks=None,
        g_default_compact_func=None,
        g_config=TrainerConfig(),
        g_layer_map={},
        g_parameter_map={},
        g_extended_config_funcs={},
Z
zhangjinchao01 已提交
131 132

        # store command args of paddle_trainer
Q
qijun 已提交
133
        g_command_config_args={},
Z
zhangjinchao01 已提交
134 135

        # Used for PyDataProvider to avoid duplicate module name
Q
qijun 已提交
136 137 138 139 140 141
        g_py_module_name_list=[],
        g_current_submodel=None,
        g_root_submodel=None,
        g_submodel_map={},
        g_submodel_stack=[],
        g_add_submodel_suffix=False, ):
Z
zhangjinchao01 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

    for k, v in locals().iteritems():
        globals()[k] = copy.deepcopy(v)


# Because type is widely used as a variable name in this code.
# we need a different function name for the builtin type()
def type_of(x):
    return type(x)


# Check a condition derived config file
def config_assert(b, msg):
    if not b:
        logger.fatal(msg)

Q
qijun 已提交
158

Z
zhangjinchao01 已提交
159 160
g_config_funcs = {}

Q
qijun 已提交
161

Z
zhangjinchao01 已提交
162 163 164 165 166
# decorator for indicating a function which can be used in config file
def config_func(func):
    g_config_funcs[func.func_name] = func
    return func

Q
qijun 已提交
167

Z
zhangjinchao01 已提交
168 169 170 171 172
# decorator for indicating a class which can be used in config file
def config_class(cls):
    g_config_funcs[cls.__name__] = cls
    return cls

Q
qijun 已提交
173

Z
zhangjinchao01 已提交
174 175 176 177 178 179
# decorator for indicating a class for a layer type
def config_layer(layer_type):
    def wrap(cls):
        g_config_funcs[cls.__name__] = cls
        g_layer_type_map[layer_type] = cls
        return cls
Q
qijun 已提交
180

Z
zhangjinchao01 已提交
181 182
    return wrap

Q
qijun 已提交
183

Z
zhangjinchao01 已提交
184 185 186
def gen_parameter_name(layer_name, input_index):
    return '_%s.w%d' % (layer_name, input_index)

Q
qijun 已提交
187

Z
zhangjinchao01 已提交
188 189 190
def gen_bias_parameter_name(layer_name):
    return '_%s.wbias' % layer_name

Q
qijun 已提交
191

Z
zhangjinchao01 已提交
192 193 194
def default(x, default_value):
    return default_value if x is None else x

Q
qijun 已提交
195

Z
zhangjinchao01 已提交
196 197 198 199 200 201
class Cfg(object):
    def add_keys(self, locals):
        for k, v in locals.iteritems():
            if not k.startswith('_'):
                self.__setattr__(k, v)

Q
qijun 已提交
202

Z
zhangjinchao01 已提交
203 204
# functions available in config file

Q
qijun 已提交
205

Z
zhangjinchao01 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
# Define the name of the input layers of the NeuralNetwork.
# The type of these layers must be "data".
# These layers will be provided with the DataBatch obtained
# from DataProvider. The data streams from DataProvider must
# have the same order.
@config_func
def Inputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Inputs in recurrent layer group")
        else:
            g_current_submodel.input_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.input_layer_names.append(name)

Q
qijun 已提交
224

225 226
@config_func
def HasInputsSet():
227
    return len(g_current_submodel.input_layer_names) != 0
228

Z
zhangjinchao01 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

# Define the name of the output layers of the NeuralNetwork.
# Usually the output is simply the cost layer.
# You can specify other layers as outputs and calculate the
# cost (and its derivative) yourself.
@config_func
def Outputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Outputs in recurrent layer group")
        else:
            g_current_submodel.output_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.output_layer_names.append(name)


@config_func
def SubModelBegin(name):
    global g_current_submodel, g_root_submodel, g_submodel_stack
    g_submodel_stack.append(g_current_submodel)

Q
qijun 已提交
253
    name = MakeLayerNameInParentSubmodel(name)  #rename in nested submodel
Z
zhangjinchao01 已提交
254 255 256 257 258 259 260 261 262

    config_assert(name not in g_submodel_map,
                  'Duplicated submodel name: %s' % name)

    sub_model = g_config.model_config.sub_models.add()
    sub_model.name = name
    g_submodel_map[name] = sub_model
    g_current_submodel = sub_model

Q
qijun 已提交
263

Z
zhangjinchao01 已提交
264
@config_func
Q
qijun 已提交
265
def SubModelEnd(name=None):
Z
zhangjinchao01 已提交
266
    global g_current_submodel, g_root_submodel, g_submodel_stack
Q
qijun 已提交
267 268
    config_assert(g_current_submodel is not g_root_submodel,
                  "submodel not begin")
Z
zhangjinchao01 已提交
269
    if name is not None:
Q
qijun 已提交
270 271 272
        config_assert(
            g_current_submodel.name == MakeLayerNameInParentSubmodel(name),
            "submodel name error")
Z
zhangjinchao01 已提交
273 274 275

    g_current_submodel = g_submodel_stack.pop()

Q
qijun 已提交
276

Z
zhangjinchao01 已提交
277 278
def MakeLayerNameInParentSubmodel(name):
    suffix = ""
279 280
    if len(g_submodel_stack) > 1:
        suffix = "@" + g_submodel_stack[-1].name
Z
zhangjinchao01 已提交
281 282
    return name + suffix

Q
qijun 已提交
283

Z
zhangjinchao01 已提交
284 285 286
def GetLayerBaseName(name):
    return name.split('@')[0]

Q
qijun 已提交
287 288

def MakeLayerNameInSubmodel(name, submodel_name=None):
Z
zhangjinchao01 已提交
289 290
    global g_current_submodel
    global g_add_submodel_suffix
Q
qijun 已提交
291 292
    if (submodel_name is None and not g_add_submodel_suffix and
            not g_current_submodel.is_recurrent_layer_group):
Z
zhangjinchao01 已提交
293 294 295 296 297
        return name
    if submodel_name is None:
        submodel_name = g_current_submodel.name
    return name + "@" + submodel_name

Q
qijun 已提交
298

Z
zhangjinchao01 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
# Define a recurrent layer group begin with RecurrentLayerGroupBegin
# and end with RecurrentLayerGroupEnd.
# A recurrent layer group forward/backward one frame after previous frame
# forward/backward through all layers in layer group.
# in_links are names of layer used as input layer in the layer group.
# out_links are names of layer in layer group used as outside layer's input.
#
# If generator is set, the layer group need one or more than one outlinks.
# The first outlink should always be the generated token ids.
# If generator.num_results_per_sample is not set, the output for one sample is
# a ids sequence. Else if num_results_per_sample is more than one,
# the output for one sample is up to #num_results_per_sample generated
# sequences, which are packed in one sequence in output ids vector. Each
# generated sequence has a generation probability. The probabilities for one
# sample are stored in one row of output value matrix.
# Packed generated sequences format, for each i:
#   seq_i_length: one interger, seq_i content length,
#   [seq_i content], length = seq_i_length
#   seq_i_end_mark: one interger, for format check, always -1
# You can use "seq_text_printer" to print the output of the generator.
@config_func
def RecurrentLayerGroupWithoutOutLinksBegin(name,
                                            in_links,
322 323
                                            seq_reversed=False,
                                            target_inlinkname=""):
Z
zhangjinchao01 已提交
324 325 326 327 328 329 330
    global g_current_submodel
    config_assert(g_config.model_config.type == "recurrent_nn",
                  "RecurrentLayerGroup should be used only in recurrent_nn")
    RecurrentLayerGroup(name=name)  # add to father model
    SubModelBegin(name)
    g_current_submodel.is_recurrent_layer_group = True
    g_current_submodel.reversed = seq_reversed
331
    g_current_submodel.target_inlinkid = -1
Z
zhangjinchao01 已提交
332
    in_links_count = 0
333
    for linkid, link in enumerate(in_links):
Z
zhangjinchao01 已提交
334 335 336 337 338 339
        if isinstance(link, basestring):
            name = link
            has_subseq = False
        else:
            name = link.link_name
            has_subseq = link.has_subseq
340 341 342 343
        # assign target_inlinkid according to target_inlinkname
        if target_inlinkname == name:
            g_current_submodel.target_inlinkid = linkid

Z
zhangjinchao01 已提交
344 345 346
        if in_links_count == 0:
            in_links_has_subseq = has_subseq
        else:
Q
qijun 已提交
347 348 349 350
            config_assert(
                in_links_has_subseq == has_subseq,
                "The sequence type of in_links should be the same in RecurrentLayerGroup"
            )
Z
zhangjinchao01 已提交
351 352 353 354 355 356 357
        in_links_count += 1
        layer_name = MakeLayerNameInParentSubmodel(name)
        layer = g_layer_map[layer_name]
        if has_subseq:
            SequenceScatterAgentLayer(name=name, size=layer.size)
        else:
            ScatterAgentLayer(name=name, size=layer.size)
358

Z
zhangjinchao01 已提交
359 360 361 362 363
        pair = g_current_submodel.in_links.add()
        pair.layer_name = layer_name
        pair.link_name = MakeLayerNameInSubmodel(name)
        pair.has_subseq = has_subseq

Q
qijun 已提交
364

Z
zhangjinchao01 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
@config_func
def RecurrentLayerGroupSetOutLink(link):
    if isinstance(link, basestring):
        name = link
        has_subseq = False
    else:
        name = link.link_name
        has_subseq = link.has_subseq
    layer_name = MakeLayerNameInParentSubmodel(name)
    pair = g_current_submodel.out_links.add()
    pair.layer_name = MakeLayerNameInSubmodel(name)
    pair.link_name = layer_name
    pair.has_subseq = has_subseq


def RecurrentLayerGroupSetGenerator(generator=None):
Q
qijun 已提交
381
    generator.eos_layer_name = MakeLayerNameInSubmodel(generator.eos_layer_name)
Z
zhangjinchao01 已提交
382 383 384 385 386 387 388 389
    g_current_submodel.generator.CopyFrom(generator)


@config_func
def RecurrentLayerGroupBegin(name,
                             in_links,
                             out_links,
                             generator=None,
390
                             target_inlinkname="",
Z
zhangjinchao01 已提交
391
                             seq_reversed=False):
Q
qijun 已提交
392
    RecurrentLayerGroupWithoutOutLinksBegin(name, in_links, seq_reversed,
393
                                            target_inlinkname)
Z
zhangjinchao01 已提交
394 395 396 397 398
    for link in out_links:
        RecurrentLayerGroupSetOutLink(link)

    if generator is not None:
        RecurrentLayerGroupSetGenerator(generator)
Q
qijun 已提交
399 400 401 402 403
        config_assert(
            len(in_links) == 0, "no in_links should be passed to generator")
        config_assert(
            len(out_links) >= 1,
            "one or more than one out_links should be passed to generator")
Z
zhangjinchao01 已提交
404 405 406 407 408 409 410


@config_func
def RecurrentLayerGroupEnd(name):
    global g_current_submodel
    config_assert(g_current_submodel.is_recurrent_layer_group,
                  "RecurrentLayerGroup not begin")
Q
qijun 已提交
411
    for pair in g_current_submodel.memories:  #check exist
Z
zhangjinchao01 已提交
412
        layer = g_layer_map[pair.layer_name]
Y
Yu Yang 已提交
413 414
        config_assert(layer is not None,
                      "memory declare wrong name:%s" % pair.layer_name)
Z
zhangjinchao01 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
        memory_link = g_layer_map[pair.link_name]
        config_assert(layer.size == memory_link.size,
                      "memory declare wrong size:%d" % memory_link.size)

    prev_submodel = g_current_submodel
    SubModelEnd(name)

    for pair in prev_submodel.out_links:
        layer = g_layer_map[pair.layer_name]
        # add out agent to father model
        agent_name = GetLayerBaseName(pair.link_name)
        if prev_submodel.HasField("generator"):
            DataLayer(name=agent_name, size=layer.size)
        elif pair.has_subseq:
            SequenceGatherAgentLayer(name=agent_name, size=layer.size)
        else:
            GatherAgentLayer(name=agent_name, size=layer.size)

Q
qijun 已提交
433

Z
zhangjinchao01 已提交
434 435 436 437 438 439
# Define the model type
# currently, the paddle supports "nn", "recurrent_nn", "recursive_nn" and "multi_nn"
@config_func
def model_type(name):
    g_config.model_config.type = name

Q
qijun 已提交
440

Z
zhangjinchao01 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
@config_class
class Bias(Cfg):
    def __init__(
            self,
            parameter_name=None,
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
            num_batches_regularization=None,
            sparse_remote_update=None,
            gradient_clipping_threshold=None,
            is_static=None,
Q
qijun 已提交
458
            is_shared=None, ):
Z
zhangjinchao01 已提交
459 460
        self.add_keys(locals())

Q
qijun 已提交
461

Z
zhangjinchao01 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
# Define one input for a layer
@config_class
class Input(Cfg):
    def __init__(
            self,
            input_layer_name,
            parameter_name=None,
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            conv=None,
L
liaogang 已提交
482
            bilinear_interp=None,
Z
zhangjinchao01 已提交
483 484 485 486
            norm=None,
            pool=None,
            image=None,
            block_expand=None,
487
            maxout=None,
Q
qijun 已提交
488
            spp=None,
Z
zhangjinchao01 已提交
489 490 491 492 493
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
Q
qijun 已提交
494
            input_layer_argument=None, ):
Z
zhangjinchao01 已提交
495 496 497
        self.add_keys(locals())
        self.input_layer_name = MakeLayerNameInSubmodel(input_layer_name)

Q
qijun 已提交
498

Z
zhangjinchao01 已提交
499 500 501
# Define a projection for iexed layer
@config_class
class Projection(Input):
Q
qijun 已提交
502 503
    type = None  # subclass should set it correctly

Z
zhangjinchao01 已提交
504 505 506
    def __init__(
            self,
            input_layer_name,
Q
qijun 已提交
507
            size=0,  # projection output size
Z
zhangjinchao01 已提交
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
            parameter_name=None,
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            ptype=None,
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
Q
qijun 已提交
527
            input_layer_argument=None, ):
Z
zhangjinchao01 已提交
528 529 530 531 532 533 534 535 536 537 538 539 540
        self.add_keys(locals())
        self.input_layer_name = MakeLayerNameInSubmodel(input_layer_name)

        self.proj_conf = ProjectionConfig()
        if ptype is not None:
            self.proj_conf.type = ptype
        else:
            self.proj_conf.type = self.type

    # calculate the output_size given input_size. return 0
    # to indicate using the size from Layer config
    def calc_output_size(self, input_layer_config):
        return self.size
Q
qijun 已提交
541

Z
zhangjinchao01 已提交
542 543
    def calc_parameter_size(self, input_size, output_size):
        raise NotimplementedError
Q
qijun 已提交
544

Z
zhangjinchao01 已提交
545 546 547 548 549 550 551 552 553 554
    def calc_parameter_dims(self, input_size, output_size):
        raise NotimplementedError


@config_class
class IdentityProjection(Projection):
    type = 'identity'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
Q
qijun 已提交
555

Z
zhangjinchao01 已提交
556 557
    def calc_parameter_size(self, input_size, output_size):
        return 0
Q
qijun 已提交
558

Z
zhangjinchao01 已提交
559 560 561
    def calc_parameter_dims(self, input_size, output_size):
        return []

Q
qijun 已提交
562

Z
zhangjinchao01 已提交
563 564 565 566 567 568
# Like IdentityProjection, but layer size may smaller than input size,
# the projection select dimesions [offset, offset+layer_size) from input
@config_class
class IdentityOffsetProjection(Projection):
    type = 'identity_offset'

Q
qijun 已提交
569 570 571
    def __init__(self, input_layer_name, offset, **xargs):
        super(IdentityOffsetProjection, self).__init__(input_layer_name,
                                                       **xargs)
Z
zhangjinchao01 已提交
572 573 574 575
        self.proj_conf.offset = offset

    def calc_parameter_size(self, input_size, output_size):
        return 0
Q
qijun 已提交
576

Z
zhangjinchao01 已提交
577 578 579
    def calc_parameter_dims(self, input_size, output_size):
        return []

Q
qijun 已提交
580

Z
zhangjinchao01 已提交
581 582 583 584 585 586 587
# DotMulProjection performs element-wise multiplication with weight
@config_class
class DotMulProjection(Projection):
    type = 'dot_mul'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
Q
qijun 已提交
588

Z
zhangjinchao01 已提交
589 590
    def calc_parameter_size(self, input_size, output_size):
        return output_size
Q
qijun 已提交
591

Z
zhangjinchao01 已提交
592 593 594
    def calc_parameter_dims(self, input_size, output_size):
        return [1, output_size]

D
dangqingqing 已提交
595

X
xuwei06 已提交
596 597 598 599 600 601 602 603 604 605 606 607 608 609
# ScalingProjection
@config_class
class ScalingProjection(Projection):
    type = 'scaling'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size

    def calc_parameter_size(self, input_size, output_size):
        return 1

    def calc_parameter_dims(self, input_size, output_size):
        return [1, 1]

Q
qijun 已提交
610

Z
zhangjinchao01 已提交
611 612 613 614 615 616
@config_class
class TableProjection(Projection):
    type = 'table'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
617

Z
zhangjinchao01 已提交
618 619 620
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

Q
qijun 已提交
621

Z
zhangjinchao01 已提交
622 623 624 625 626 627
@config_class
class FullMatrixProjection(Projection):
    type = 'fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
628

Z
zhangjinchao01 已提交
629 630 631
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

Q
qijun 已提交
632

Z
zhangjinchao01 已提交
633 634 635 636 637 638
@config_class
class TransposedFullMatrixProjection(Projection):
    type = 'trans_fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
639

Z
zhangjinchao01 已提交
640 641 642
    def calc_parameter_dims(self, input_size, output_size):
        return [output_size, input_size]

Q
qijun 已提交
643

Z
zhangjinchao01 已提交
644 645 646 647
@config_class
class ContextProjection(Projection):
    type = 'context'

Q
qijun 已提交
648 649
    def __init__(self, input_layer_name, context_start, context_length,
                 trainable_padding, **xargs):
Z
zhangjinchao01 已提交
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
        super(ContextProjection, self).__init__(input_layer_name, **xargs)
        self.proj_conf.context_start = context_start
        self.proj_conf.context_length = context_length
        self.proj_conf.trainable_padding = trainable_padding
        self._total_pad = max(0, -self.proj_conf.context_start) \
                          + max(0, self.proj_conf.context_start \
                                + self.proj_conf.context_length - 1)

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size * self.proj_conf.context_length

    def calc_parameter_size(self, input_size, output_size):
        if self.proj_conf.trainable_padding == False:
            return 0
        else:
            return input_size * self._total_pad

    def calc_parameter_dims(self, input_size, output_size):
        return [self._total_pad, input_size]

    _total_pad = 0


673 674 675 676
@config_class
class ConvProjection(Projection):
    type = 'conv'

Q
qijun 已提交
677 678 679 680 681
    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
682 683 684 685 686
        super(ConvProjection, self).__init__(input_layer_name, **xargs)

        if num_filters is not None:
            self.proj_conf.num_filters = num_filters

Q
qijun 已提交
687
        parse_conv(conv_conf, input_layer_name, self.proj_conf.conv_conf,
688
                   num_filters)
689
        # TODO: support rectangle input
Y
Yu Yang 已提交
690 691
        self.proj_conf.output_size = (self.proj_conf.conv_conf.output_x
                                      **2) * num_filters
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708

    def calc_output_size(self, input_layer_config):
        return self.proj_conf.output_size

    def calc_parameter_size(self, input_size, output_size):
        co = self.proj_conf.num_filters
        ci = self.proj_conf.conv_conf.channels
        fh = self.proj_conf.conv_conf.filter_size
        fw = self.proj_conf.conv_conf.filter_size_y
        return co * ci * fh * fw

    def calc_bias_size(self):
        return self.proj_conf.num_filters

    def calc_parameter_dims(self, input_size, output_size):
        return None

Q
qijun 已提交
709

Z
zhangjinchao01 已提交
710 711 712
# Define a operator for mixed layer
@config_class
class Operator(Cfg):
Q
qijun 已提交
713 714
    type = None  # subclass should set it correctly

Z
zhangjinchao01 已提交
715 716
    def __init__(
            self,
Q
qijun 已提交
717
            input_layer_names, ):
Z
zhangjinchao01 已提交
718 719 720 721 722 723 724 725 726 727
        self.add_keys(locals())
        self.operator_conf = OperatorConfig()
        self.operator_conf.type = self.type

    def check_dims(self):
        pass

    def calc_output_size(self, input_sizes):
        return 0

Q
qijun 已提交
728

Z
zhangjinchao01 已提交
729 730 731
@config_class
class DotMulOperator(Operator):
    type = 'dot_mul'
Q
qijun 已提交
732 733 734

    def __init__(self, input_layer_names, scale=None, **xargs):
        super(DotMulOperator, self).__init__(input_layer_names, **xargs)
Z
zhangjinchao01 已提交
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
        if scale is not None:
            self.operator_conf.dotmul_scale = scale

        config_assert(len(input_layer_names) == 2, "DotMul is binary operator")

    def check_dims(self):
        for i in range(2):
            config_assert(self.operator_conf.input_sizes[i] ==
                          self.operator_conf.output_size,
                          "DotMul input_size != output_size")

    def calc_output_size(self, input_sizes):
        return input_sizes[0]


@config_class
class ConvOperator(Operator):
    type = 'conv'
Q
qijun 已提交
753 754 755 756 757 758 759

    def __init__(self,
                 input_layer_names,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
        super(ConvOperator, self).__init__(input_layer_names, **xargs)
Z
zhangjinchao01 已提交
760 761 762
        if num_filters is not None:
            self.operator_conf.num_filters = num_filters

763 764
        parse_conv(conv_conf,
                   MakeLayerNameInSubmodel(input_layer_names[0]),
Q
qijun 已提交
765 766 767
                   self.operator_conf.conv_conf, num_filters)
        self.operator_conf.output_size = (self.operator_conf.conv_conf.output_x
                                          **2) * num_filters
Z
zhangjinchao01 已提交
768 769 770

        config_assert(len(input_layer_names) == 2, "Conv is binary operator")

771 772
    def calc_output_size(self, input_sizes):
        return self.operator_conf.output_size
Z
zhangjinchao01 已提交
773 774 775 776 777


# please refer to the comments in proto/ModelConfig.proto
@config_class
class Conv(Cfg):
Q
qijun 已提交
778 779 780 781 782 783 784 785 786 787 788 789 790
    def __init__(self,
                 filter_size,
                 channels,
                 padding=None,
                 stride=None,
                 groups=None,
                 filter_channels=None,
                 output_x=None,
                 img_size=None,
                 caffe_mode=True,
                 filter_size_y=None,
                 padding_y=None,
                 stride_y=None):
Z
zhangjinchao01 已提交
791 792
        self.add_keys(locals())
        if filter_size_y is None:
Q
qijun 已提交
793
            self.filter_size_y = filter_size
Z
zhangjinchao01 已提交
794
        if padding_y is None:
Q
qijun 已提交
795
            self.padding_y = padding
Z
zhangjinchao01 已提交
796
        if stride_y is None:
Q
qijun 已提交
797
            self.stride_y = stride
Z
zhangjinchao01 已提交
798
        if output_x is not None:
Q
qijun 已提交
799 800
            config_assert(output_x <= 0)

Z
zhangjinchao01 已提交
801

L
liaogang 已提交
802 803 804
# please refer to the comments in proto/ModelConfig.proto
@config_class
class BilinearInterp(Cfg):
Q
qijun 已提交
805
    def __init__(self, out_size_x=None, out_size_y=None, num_channels=None):
L
liaogang 已提交
806 807
        self.add_keys(locals())

Q
qijun 已提交
808

Z
zhangjinchao01 已提交
809 810 811
# please refer to the comments in proto/ModelConfig.proto
@config_class
class Pool(Cfg):
D
dangqingqing 已提交
812 813 814 815 816 817 818 819 820 821 822 823
    def __init__(
            self,
            pool_type,
            channels,
            size_x,
            size_y=None,
            img_width=None,
            start=None,
            stride=None,  # 1 by defalut in protobuf
            stride_y=None,
            padding=None,  # 0 by defalut in protobuf
            padding_y=None):
Z
zhangjinchao01 已提交
824
        self.add_keys(locals())
Q
qijun 已提交
825 826


Q
qijun 已提交
827 828
# please refer to the comments in proto/ModelConfig.proto
@config_class
Q
qijun 已提交
829
class SpatialPyramidPool(Cfg):
Q
qijun 已提交
830
    def __init__(self, pool_type, pyramid_height, channels, img_width=None):
Q
qijun 已提交
831
        self.add_keys(locals())
Z
zhangjinchao01 已提交
832

Q
qijun 已提交
833

Z
zhangjinchao01 已提交
834 835 836
# please refer to the comments in proto/ModelConfig.proto
@config_class
class Norm(Cfg):
Q
qijun 已提交
837 838 839 840 841 842 843 844 845
    def __init__(self,
                 norm_type,
                 channels,
                 size,
                 scale,
                 pow,
                 output_x=None,
                 img_size=None,
                 blocked=None):
Z
zhangjinchao01 已提交
846 847
        self.add_keys(locals())

Q
qijun 已提交
848

Z
zhangjinchao01 已提交
849 850 851
# please refer to the comments in proto/ModelConfig.proto
@config_class
class Image(Cfg):
Q
qijun 已提交
852
    def __init__(self, channels, img_size=None):
Z
zhangjinchao01 已提交
853 854
        self.add_keys(locals())

Q
qijun 已提交
855

Z
zhangjinchao01 已提交
856 857
@config_class
class BlockExpand(Cfg):
Q
qijun 已提交
858 859 860 861 862 863 864 865 866 867 868 869
    def __init__(self,
                 channels,
                 padding_x=0,
                 padding_y=0,
                 stride_x=0,
                 stride_y=0,
                 block_x=0,
                 block_y=0,
                 img_size_x=0,
                 img_size_y=0,
                 output_x=0,
                 output_y=0):
Z
zhangjinchao01 已提交
870 871
        self.add_keys(locals())

Q
qijun 已提交
872

873 874
@config_class
class MaxOut(Cfg):
Q
qijun 已提交
875
    def __init__(self, channels, groups, img_size_x=0, img_size_y=0):
876 877
        self.add_keys(locals())

Q
qijun 已提交
878

Z
zhangjinchao01 已提交
879 880 881 882 883 884 885 886 887 888 889 890 891
def DataBase(async_load_data=False,
             constant_slots=None,
             data_ratio=1,
             is_main_data=True,
             usage_ratio=None):
    # default: all sub dataproviders are treat as "main data".
    # see proto/DataConfig.proto for is_main_data
    data_config = DataConfig()

    data_config.async_load_data = async_load_data

    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
Q
qijun 已提交
892 893
    data_config.data_ratio = data_ratio
    data_config.is_main_data = is_main_data
Z
zhangjinchao01 已提交
894

Q
qijun 已提交
895
    usage_ratio = default(usage_ratio, settings_deprecated["usage_ratio"])
Z
zhangjinchao01 已提交
896 897 898 899 900 901
    config_assert(usage_ratio >= 0 and usage_ratio <= 1,
                  "The range of usage_ratio is [0, 1]")
    data_config.usage_ratio = usage_ratio

    return data_config

Q
qijun 已提交
902

Z
zhangjinchao01 已提交
903
@config_func
Q
qijun 已提交
904 905 906 907 908
def SimpleData(files=None,
               feat_dim=None,
               context_len=None,
               buffer_capacity=None,
               **xargs):
Z
zhangjinchao01 已提交
909 910 911 912 913 914 915 916 917 918
    data_config = DataBase(**xargs)
    data_config.type = 'simple'
    data_config.files = files
    data_config.feat_dim = feat_dim
    if context_len is not None:
        data_config.context_len = context_len
    if buffer_capacity:
        data_config.buffer_capacity = buffer_capacity
    return data_config

Q
qijun 已提交
919

Z
zhangjinchao01 已提交
920
@config_func
Q
qijun 已提交
921 922 923 924 925 926 927 928 929 930
def PyData(files=None,
           type=None,
           file_group_queue_capacity=None,
           load_data_module=None,
           load_data_object=None,
           load_data_args="",
           load_file_count=None,
           constant_slots=None,
           load_thread_num=None,
           **xargs):
Z
zhangjinchao01 已提交
931 932 933
    data_config = DataBase(**xargs)
    data_config.type = 'py'
    if load_data_module in g_py_module_name_list:
Q
qijun 已提交
934

Z
zhangjinchao01 已提交
935 936 937
        def get_path(module):
            m = __import__(load_data_module)
            return os.path.split(os.path.realpath(m.__file__))[0]
Q
qijun 已提交
938

Z
zhangjinchao01 已提交
939 940 941
        # python C-api is not thread safe, one module can only be import once,
        # so here we nedd to copy the module with different names if it has to be
        # imported several times.
Q
qijun 已提交
942 943
        module_new_name = "%s_copy_%d" % (load_data_module,
                                          len(g_py_module_name_list))
Z
zhangjinchao01 已提交
944
        g_py_module_name_list.append(module_new_name)
Q
qijun 已提交
945 946 947 948
        module_path = "%s/%s.py" % (get_path(load_data_module),
                                    load_data_module)
        new_module_path = "%s/%s.py" % (get_path(load_data_module),
                                        module_new_name)
Z
zhangjinchao01 已提交
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
        if os.path.isfile(module_path) == False:
            raise Exception("File %s is not exist." % module_path)
        shutil.copy2(module_path, new_module_path)
        load_data_module = module_new_name
    else:
        g_py_module_name_list.append(load_data_module)
    if load_data_module is not None and load_data_object is not None:
        data_config.load_data_module = load_data_module
        data_config.load_data_object = load_data_object
    else:
        raise ValueError('load_data_module, load_data_object is not defined.')
    data_config.load_data_args = load_data_args

    data_config.files = files or ''
    if file_group_queue_capacity is not None:
        data_config.file_group_conf.queue_capacity = file_group_queue_capacity
    if load_file_count is not None:
        data_config.file_group_conf.load_file_count = load_file_count
    if load_thread_num is not None:
        data_config.file_group_conf.load_thread_num = load_thread_num
    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    return data_config

Q
qijun 已提交
973

Z
zhangjinchao01 已提交
974
@config_func
Q
qijun 已提交
975 976 977 978 979 980 981
def ProtoData(files=None,
              type=None,
              file_group_queue_capacity=None,
              load_file_count=None,
              constant_slots=None,
              load_thread_num=None,
              **xargs):
Z
zhangjinchao01 已提交
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
    data_config = DataBase(**xargs)
    if type is None:
        data_config.type = 'proto'
    else:
        data_config.type = type
    data_config.files = files

    # When type="proto_group", one data provider contains at most
    # load_file_count files, and there are at most
    # (queue_capacity + load_thread_num + 1) data providers in memory
    if file_group_queue_capacity is not None:
        data_config.file_group_conf.queue_capacity = file_group_queue_capacity
    if load_file_count is not None:
        data_config.file_group_conf.load_file_count = load_file_count
    if load_thread_num is not None:
        data_config.file_group_conf.load_thread_num = load_thread_num
    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    return data_config

Q
qijun 已提交
1002

Z
zhangjinchao01 已提交
1003 1004
#real data for training is actually provided by "sub_data" data providers.
@config_func
Q
qijun 已提交
1005
def MultiData(sub_data=[]):
Z
zhangjinchao01 已提交
1006 1007 1008 1009 1010
    data_config = DataConfig()
    data_config.type = 'multi'
    data_config.sub_data_configs.extend(sub_data)
    return data_config

Q
qijun 已提交
1011

Z
zhangjinchao01 已提交
1012
@config_func
Q
qijun 已提交
1013 1014 1015 1016 1017 1018 1019
def Data(type,
         files=None,
         feat_dim=None,
         slot_dims=None,
         context_len=None,
         buffer_capacity=None,
         **xargs):
Z
zhangjinchao01 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054

    data_config = DataBase(**xargs)
    data_config.type = type
    data_config.files = files
    data_config.feat_dim = feat_dim
    data_config.slot_dims.extend(slot_dims)
    if context_len is not None:
        data_config.context_len = context_len
    data_config.buffer_capacity = buffer_capacity
    return data_config


@config_func
def TrainData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('data_config'),
                  'Only one TrainData definition is allowed')
    g_config.data_config.CopyFrom(data_config)
    g_config.data_config.for_test = False
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.data_config.async_load_data = async_load_data


@config_func
def TestData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('test_data_config'),
                  'Only one TestData definition is allowed')
    g_config.test_data_config.CopyFrom(data_config)
    g_config.test_data_config.for_test = True
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.test_data_config.async_load_data = async_load_data

Q
qijun 已提交
1055

L
liaogang 已提交
1056
def parse_bilinear(bilinear, input_layer_name, bilinear_conf):
Q
qijun 已提交
1057 1058 1059 1060
    bilinear_conf.out_size_x = bilinear.out_size_x
    bilinear_conf.out_size_y = bilinear.out_size_y
    bilinear_conf.num_channels = bilinear.num_channels

L
liaogang 已提交
1061

1062 1063 1064 1065
'''
caffe_mode: compute the output size using floor instead of ceil,
            which is consistent of caffe and CuDNN's convention.
'''
Q
qijun 已提交
1066 1067


1068 1069 1070 1071 1072 1073 1074
def cnn_output_size(img_size, filter_size, padding, stride, caffe_mode):
    output = (2 * padding + img_size - filter_size) / float(stride)
    if caffe_mode:
        return 1 + int(math.floor(output))
    else:
        return 1 + int(math.ceil(output))

Q
qijun 已提交
1075

1076 1077 1078 1079
'''
calcualte image_size based on output_size for convolution. 
It is the reverse function of cnn_output_size
'''
Q
qijun 已提交
1080 1081


1082 1083 1084 1085
def cnn_image_size(output_size, filter_size, padding, stride, caffe_mode):
    if caffe_mode:
        img_size = (output_size - 1) * stride + filter_size - 2 * padding
    else:
Q
qijun 已提交
1086
        img_size = (output_size - 2) * stride + filter_size - 2 * padding + 1
1087 1088
    return img_size

Q
qijun 已提交
1089

Z
zhangjinchao01 已提交
1090 1091
def parse_pool(pool, input_layer_name, pool_conf):
    pool_conf.pool_type = pool.pool_type
Q
qijun 已提交
1092 1093 1094
    config_assert(pool.pool_type in [
        'max-projection', 'avg-projection', 'cudnn-max-pool', 'cudnn-avg-pool'
    ], "pool-type %s is not in "
Z
zhangjinchao01 已提交
1095
                  "['max-projection', 'avg-projection', "
Q
qijun 已提交
1096
                  "'cudnn-max-pool', 'cudnn-avg-pool']" % pool.pool_type)
Z
zhangjinchao01 已提交
1097 1098 1099 1100 1101 1102

    pool_conf.channels = pool.channels
    pool_conf.size_x = pool.size_x
    pool_conf.stride = pool.stride

    pool_conf.size_y = default(pool.size_y, pool_conf.size_x)
Q
qijun 已提交
1103
    pool_conf.stride_y = default(pool.stride_y, pool_conf.stride)
Z
zhangjinchao01 已提交
1104 1105

    img_pixels = g_layer_map[input_layer_name].size / pool.channels
1106 1107
    # the img_width may be removed,
    # and it can be calculated automatically later.
Q
qijun 已提交
1108
    pool_conf.img_size = default(pool.img_width, int(img_pixels**0.5))
Z
zhangjinchao01 已提交
1109 1110
    pool_conf.img_size_y = img_pixels / pool_conf.img_size
    config_assert(pool_conf.img_size * pool_conf.img_size_y == img_pixels,
Q
qijun 已提交
1111 1112
                  "Incorrect input image size %d for input image pixels %d" %
                  (pool_conf.img_size, img_pixels))
Z
zhangjinchao01 已提交
1113

1114
    config_assert(not pool.start, "start is deprecated in pooling.")
Z
zhangjinchao01 已提交
1115

1116
    if pool.padding is not None:
D
dangqingqing 已提交
1117
        pool_conf.padding = pool.padding
1118
    pool_conf.padding_y = default(pool.padding_y, pool_conf.padding)
D
dangqingqing 已提交
1119 1120 1121 1122 1123 1124
    pool_conf.output_x = cnn_output_size(pool_conf.img_size, pool_conf.size_x,
                                         pool_conf.padding, pool_conf.stride,
                                         False)
    pool_conf.output_y = cnn_output_size(pool_conf.img_size_y, pool_conf.size_y,
                                         pool_conf.padding_y,
                                         pool_conf.stride_y, False)
Q
qijun 已提交
1125

Z
zhangjinchao01 已提交
1126

Q
qijun 已提交
1127 1128 1129
def parse_spp(spp, input_layer_name, spp_conf):
    spp_conf.pool_type = spp.pool_type
    config_assert(spp.pool_type in ['max-projection', 'avg-projection'],
Q
qijun 已提交
1130 1131
                  "pool-type %s is not in "
                  "['max-projection', 'avg-projection']" % spp.pool_type)
Q
qijun 已提交
1132 1133 1134 1135 1136
    spp_conf.pyramid_height = spp.pyramid_height
    spp_conf.channels = spp.channels

    img_pixels = g_layer_map[input_layer_name].size / spp_conf.channels

Q
qijun 已提交
1137
    spp_conf.img_size = default(spp.img_width, int(img_pixels**0.5))
Q
qijun 已提交
1138 1139
    spp_conf.img_size_y = img_pixels / spp_conf.img_size
    config_assert(spp_conf.img_size * spp_conf.img_size_y == img_pixels,
Q
qijun 已提交
1140 1141 1142
                  "Incorrect input image size %d for input image pixels %d" %
                  (spp_conf.img_size, img_pixels))

Q
qijun 已提交
1143

Z
zhangjinchao01 已提交
1144 1145 1146
def parse_image(image, input_layer_name, image_conf):
    image_conf.channels = image.channels
    image_pixels = g_layer_map[input_layer_name].size / image_conf.channels
Q
qijun 已提交
1147 1148 1149 1150 1151
    image_conf.img_size = int(image_pixels**0.5)
    config_assert((image_conf.img_size**2) == image_pixels,
                  "Incorrect input image size %d for input image pixels %d" %
                  (image_conf.img_size, image_pixels))

Z
zhangjinchao01 已提交
1152 1153 1154 1155

def parse_norm(norm, input_layer_name, norm_conf):
    norm_conf.norm_type = norm.norm_type
    config_assert(norm.norm_type in ['rnorm', 'cmrnorm-projection'],
Q
qijun 已提交
1156 1157
                  "norm-type %s is not in [rnorm, 'cmrnorm-projection']" %
                  norm.norm_type)
Z
zhangjinchao01 已提交
1158 1159 1160 1161 1162 1163 1164
    norm_conf.channels = norm.channels
    norm_conf.size = norm.size
    norm_conf.scale = norm.scale
    norm_conf.pow = norm.pow
    norm_conf.blocked = norm.blocked

    img_pixels = g_layer_map[input_layer_name].size / norm.channels
Q
qijun 已提交
1165 1166 1167 1168
    norm_conf.img_size = int(img_pixels**0.5)
    config_assert((norm_conf.img_size**2) == img_pixels,
                  "Incorrect input image size %d for input image pixels %d" %
                  (norm_conf.img_size, img_pixels))
Z
zhangjinchao01 已提交
1169 1170 1171 1172
    norm_conf.output_x = norm_conf.img_size
    if norm.norm_type in ['cmrnorm-projection']:
        norm_conf.scale /= norm.size
    else:
Q
qijun 已提交
1173 1174
        norm_conf.scale /= norm.size**2

1175

1176 1177 1178 1179
'''
caffe_mode: compute the output size using floor instead of ceil,
            which is consistent of caffe and CuDNN's convention.
'''
Q
qijun 已提交
1180 1181


1182
def parse_conv(conv, input_layer_name, conv_conf, num_filters, trans=False):
Z
zhangjinchao01 已提交
1183 1184 1185 1186 1187 1188 1189 1190 1191
    conv_conf.filter_size = conv.filter_size
    conv_conf.filter_size_y = conv.filter_size_y
    conv_conf.channels = conv.channels
    conv_conf.padding = conv.padding
    conv_conf.padding_y = conv.padding_y
    conv_conf.stride = conv.stride
    conv_conf.stride_y = conv.stride_y
    conv_conf.groups = conv.groups
    conv_conf.caffe_mode = conv.caffe_mode
Q
qijun 已提交
1192

1193
    if not trans:
1194 1195
        conv_conf.filter_channels = conv.channels / conv.groups

1196
        img_pixels = g_layer_map[input_layer_name].size / conv.channels
Q
qijun 已提交
1197 1198 1199 1200 1201 1202 1203 1204
        print('channels=%d size=%d' % (conv.channels,
                                       g_layer_map[input_layer_name].size))
        conv_conf.img_size = int(img_pixels**0.5)
        config_assert((conv_conf.img_size**2) == img_pixels, (
            "Input layer %s: Incorrect input image size %d for input " +
            "image pixels %d") %
                      (input_layer_name, conv_conf.img_size, img_pixels))

1205
        conv_conf.output_x = cnn_output_size(
Q
qijun 已提交
1206 1207
            conv_conf.img_size, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
1208
    else:
1209
        conv_conf.filter_channels = num_filters / conv.groups
Q
qijun 已提交
1210

1211
        outputSize = g_layer_map[input_layer_name].size / conv.channels
Q
qijun 已提交
1212 1213 1214 1215 1216 1217 1218
        print('channels=%d size=%d' % (conv.channels,
                                       g_layer_map[input_layer_name].size))
        conv_conf.output_x = int(outputSize**0.5)
        config_assert((conv_conf.output_x**2) == outputSize, (
            "Input layer %s: Incorrect input image size %d for input " +
            "image pixels %d") %
                      (input_layer_name, conv_conf.output_x, outputSize))
1219
        conv_conf.img_size = cnn_image_size(
Q
qijun 已提交
1220 1221 1222
            conv_conf.output_x, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)

1223

Z
zhangjinchao01 已提交
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
def parse_block_expand(block_expand, input_layer_name, block_expand_conf):
    block_expand_conf.channels = block_expand.channels
    block_expand_conf.stride_x = block_expand.stride_x
    block_expand_conf.stride_y = block_expand.stride_y
    block_expand_conf.padding_x = block_expand.padding_x
    block_expand_conf.padding_y = block_expand.padding_y
    block_expand_conf.block_x = block_expand.block_x
    block_expand_conf.block_y = block_expand.block_y
    block_expand_conf.img_size_x = block_expand.img_size_x
    block_expand_conf.img_size_y = block_expand.img_size_y
    if block_expand_conf.img_size_x == 0:
        block_expand_conf.output_x = 0
    else:
1237
        block_expand_conf.output_x = cnn_output_size(
1238
            block_expand.img_size_x, block_expand.block_x,
1239
            block_expand.padding_x, block_expand.stride_x, False)
Z
zhangjinchao01 已提交
1240 1241

    if block_expand_conf.img_size_y == 0:
1242
        block_expand_conf.output_y = 0
Z
zhangjinchao01 已提交
1243
    else:
1244
        block_expand_conf.output_y = cnn_output_size(
1245
            block_expand.img_size_y, block_expand.block_y,
1246
            block_expand.padding_y, block_expand.stride_y, False)
Z
zhangjinchao01 已提交
1247

Q
qijun 已提交
1248

1249 1250 1251 1252 1253
def parse_maxout(maxout, input_layer_name, maxout_conf):
    maxout_conf.channels = maxout.channels
    maxout_conf.groups = maxout.groups
    maxout_conf.img_size_x = maxout.img_size_x
    maxout_conf.img_size_y = maxout.img_size_y
1254

Q
qijun 已提交
1255

Z
zhangjinchao01 已提交
1256 1257 1258 1259 1260 1261
# Define an evaluator
@config_func
def Evaluator(
        name,
        type,
        inputs,
Q
qijun 已提交
1262 1263 1264 1265 1266 1267 1268 1269
        chunk_scheme=None,
        num_chunk_types=None,
        classification_threshold=None,
        positive_label=None,
        dict_file=None,
        result_file=None,
        num_results=None,
        delimited=None, ):
Z
zhangjinchao01 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
    evaluator = g_config.model_config.evaluators.add()
    evaluator.type = type
    evaluator.name = MakeLayerNameInSubmodel(name)
    if type_of(inputs) == str:
        inputs = [inputs]

    evaluator.input_layers.extend(
        [MakeLayerNameInSubmodel(name) for name in inputs])

    if chunk_scheme is not None:
        evaluator.chunk_scheme = chunk_scheme
        evaluator.num_chunk_types = num_chunk_types
    g_current_submodel.evaluator_names.append(evaluator.name)

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
    if classification_threshold is not None:
        evaluator.classification_threshold = classification_threshold
    if positive_label is not None:
        evaluator.positive_label = positive_label
    if dict_file is not None:
        evaluator.dict_file = dict_file

    if result_file is not None:
        evaluator.result_file = result_file
    if num_results is not None:
        evaluator.num_results = num_results
    if delimited is not None:
        evaluator.delimited = delimited
Z
zhangjinchao01 已提交
1297

Q
qijun 已提交
1298

Z
zhangjinchao01 已提交
1299 1300 1301 1302 1303
class LayerBase(object):
    def __init__(
            self,
            name,
            type,
Q
qijun 已提交
1304
            size,  # size can be 0. In this case, subclass should set it.
Z
zhangjinchao01 已提交
1305 1306 1307 1308
            inputs,
            device=None,
            active_type="",
            drop_rate=0.,
1309
            coeff=None):
Z
zhangjinchao01 已提交
1310
        config_assert('@' not in name,
Q
qijun 已提交
1311
                      "layer name: %s contain special character @" % name)
Z
zhangjinchao01 已提交
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
        global g_current_submodel
        name = MakeLayerNameInSubmodel(name)

        config_assert(name not in g_layer_map,
                      'Duplicated layer name: %s' % name)

        self.inputs = copy.deepcopy(inputs)
        self.operators = []

        if self.inputs is None:
            self.inputs = []
        elif type_of(self.inputs) != list:
            self.inputs = [self.inputs]

        self.config = g_config.model_config.layers.add()
1327
        assert isinstance(self.config, LayerConfig)
Z
zhangjinchao01 已提交
1328 1329 1330
        self.config.name = name
        self.config.type = type
        self.config.active_type = active_type
1331 1332
        if coeff is not None:
            self.config.coeff = float(coeff)
Z
zhangjinchao01 已提交
1333 1334 1335 1336 1337 1338 1339
        if size != 0:
            self.config.size = size
        if drop_rate != 0:
            self.config.drop_rate = drop_rate

        if device is not None:
            self.config.device = device
1340
        elif g_default_device is not None:
Z
zhangjinchao01 已提交
1341 1342 1343 1344 1345 1346 1347 1348 1349
            self.config.device = g_default_device

        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            input_config = None
            input_layer_name = ''
            if type_of(input) == str:
                input_layer_name = input
                input_config = Input(
Q
qijun 已提交
1350 1351
                    input_layer_name=input,
                    parameter_name=gen_parameter_name(name, input_index))
Z
zhangjinchao01 已提交
1352 1353 1354 1355 1356 1357 1358 1359
                input_layer_name = input_config.input_layer_name
            elif isinstance(input, Input):
                input_layer_name = input.input_layer_name
                input_config = input
                if input_config.parameter_name is None:
                    input_config.parameter_name = \
                        gen_parameter_name(name, input_index)
            elif isinstance(input, Operator):
Q
qijun 已提交
1360
                self.operators.append(input)
Z
zhangjinchao01 已提交
1361 1362 1363 1364
                input.operator_conf.input_indices.append(input_index)
                input_config = Input(input.input_layer_names[0])
                input_layer_name = input_config.input_layer_name
            else:
Q
qijun 已提交
1365
                raise ValueError('Wrong type for inputs: %s' % type_of(input))
Z
zhangjinchao01 已提交
1366
            config_assert(input_layer_name in g_layer_map,
Q
qijun 已提交
1367 1368
                          "Unknown input layer '%s' for layer %s" %
                          (input_layer_name, name))
Z
zhangjinchao01 已提交
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
            self.inputs[input_index] = input_config
            layer_input = self.config.inputs.add()
            layer_input.input_layer_name = input_config.input_layer_name
            if input_config.input_layer_argument is not None:
                layer_input.input_layer_argument = \
                    input_config.input_layer_argument

        g_layer_map[name] = self.config

        g_current_submodel.layer_names.append(self.config.name)

    def get_input_layer(self, input_index):
        return g_layer_map[self.config.inputs[input_index].input_layer_name]

    # will return the bias created if not *for_self*
    def create_bias_parameter(
            self,
Q
qijun 已提交
1386
            bias,  # True/False or BiasCfg
Z
zhangjinchao01 已提交
1387
            size,
Q
qijun 已提交
1388 1389 1390
            dims=None,
            for_self=True,  # whether create bias for layer self
    ):
Z
zhangjinchao01 已提交
1391 1392 1393 1394 1395 1396

        if size == 0:
            return
        if dims is None:
            dims = [1, size]

Q
qijun 已提交
1397 1398 1399
        config_assert(
            type_of(bias) == bool or type_of(bias) == Bias,
            'Incorrect type for bias: %s' % type_of(bias))
Z
zhangjinchao01 已提交
1400 1401 1402 1403 1404 1405 1406 1407 1408

        if type_of(bias) == bool:
            if bias:
                bias = Bias()

        if type_of(bias) == Bias:
            if bias.parameter_name is None:
                bias.parameter_name = gen_bias_parameter_name(self.config.name)
            if bias.parameter_name not in g_parameter_map:
1409 1410
                assert isinstance(self.config, LayerConfig)

Z
zhangjinchao01 已提交
1411 1412 1413
                Parameter(
                    bias.parameter_name,
                    size,
Q
qijun 已提交
1414 1415
                    self.config.device
                    if self.config.HasField('device') else None,
Z
zhangjinchao01 已提交
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
                    dims,
                    bias.learning_rate,
                    bias.momentum,
                    decay_rate=bias.decay_rate,
                    decay_rate_l1=bias.decay_rate_l1,
                    initial_mean=bias.initial_mean,
                    initial_std=bias.initial_std,
                    initial_strategy=bias.initial_strategy,
                    initial_smart=bias.initial_smart,
                    num_batches_regularization=bias.num_batches_regularization,
                    sparse_remote_update=bias.sparse_remote_update,
Q
qijun 已提交
1427 1428
                    gradient_clipping_threshold=bias.
                    gradient_clipping_threshold,
Z
zhangjinchao01 已提交
1429
                    is_static=bias.is_static,
Q
qijun 已提交
1430
                    is_shared=bias.is_shared, )
Z
zhangjinchao01 已提交
1431 1432 1433 1434 1435
            if for_self:
                self.config.bias_parameter_name = bias.parameter_name
            else:
                return bias.parameter_name

Q
qijun 已提交
1436 1437 1438 1439 1440 1441
    def create_input_parameter(self,
                               input_index,
                               size,
                               dims=None,
                               sparse=None,
                               format=None):
Z
zhangjinchao01 已提交
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
        if dims is None:
            # TODO(yuyang18): print warning and callstack here!
            dims = list()

        if size == 0:
            return

        input_config = self.inputs[input_index]

        self.config.inputs[input_index].input_parameter_name = \
            input_config.parameter_name

        if input_config.parameter_name in g_parameter_map:
            para = g_parameter_map[input_config.parameter_name]
Q
qijun 已提交
1456 1457
            config_assert(size == para.size, (
                'Shared parameter "%s" does not ' + 'have same size: %s vs. %s')
Z
zhangjinchao01 已提交
1458 1459
                          % (input_config.parameter_name, para.size, size))

Q
qijun 已提交
1460 1461
            config_assert(dims == para.dims, (
                'Shared parameter "%s" does not ' + 'have same dims: %s vs. %s')
Z
zhangjinchao01 已提交
1462 1463 1464 1465 1466 1467
                          % (input_config.parameter_name, para.dims, dims))
            return

        Parameter(
            input_config.parameter_name,
            size,
1468
            self.config.device if self.config.HasField("device") else None,
Z
zhangjinchao01 已提交
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
            dims,
            input_config.learning_rate,
            input_config.momentum,
            decay_rate=input_config.decay_rate,
            decay_rate_l1=input_config.decay_rate_l1,
            initial_mean=input_config.initial_mean,
            initial_std=input_config.initial_std,
            initial_strategy=input_config.initial_strategy,
            initial_smart=input_config.initial_smart,
            num_batches_regularization=input_config.num_batches_regularization,
            sparse_remote_update=input_config.sparse_remote_update,
            sparse_update=input_config.sparse_update,
Q
qijun 已提交
1481 1482
            gradient_clipping_threshold=input_config.
            gradient_clipping_threshold,
Z
zhangjinchao01 已提交
1483 1484 1485 1486
            sparse=sparse,
            format=format,
            is_static=input_config.is_static,
            is_shared=input_config.is_shared,
Q
qijun 已提交
1487
            update_hooks=input_config.update_hooks)
Z
zhangjinchao01 已提交
1488 1489 1490 1491 1492 1493 1494 1495 1496

    def set_layer_size(self, size):
        if self.config.size == 0:
            self.config.size = size
        else:
            config_assert(self.config.size == size,
                          'Different inputs result in' +
                          'different layer size at layer %s' % self.config.name)

Q
qijun 已提交
1497

Z
zhangjinchao01 已提交
1498 1499
@config_layer('multi_class_cross_entropy_with_selfnorm')
class MultiClassCrossEntropySelfNormCostLayer(LayerBase):
Q
qijun 已提交
1500 1501 1502
    def __init__(self, name, inputs, softmax_selfnorm_alpha=0.1, **xargs):
        super(MultiClassCrossEntropySelfNormCostLayer, self).__init__(
            name, 'multi_class_cross_entropy_with_selfnorm', 0, inputs, **xargs)
Z
zhangjinchao01 已提交
1503 1504
        self.config.softmax_selfnorm_alpha = softmax_selfnorm_alpha

Q
qijun 已提交
1505

Z
zhangjinchao01 已提交
1506 1507
@config_layer('fc')
class FCLayer(LayerBase):
Q
qijun 已提交
1508
    def __init__(self, name, size, inputs, bias=True, **xargs):
Z
zhangjinchao01 已提交
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
        super(FCLayer, self).__init__(name, 'fc', size, inputs=inputs, **xargs)
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
            dims = [input_layer.size, self.config.size]
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"

            if sparse:
                psize = self.inputs[input_index].nnz
1519 1520
            else:
                sparse = None
Z
zhangjinchao01 已提交
1521

Q
qijun 已提交
1522 1523
            self.create_input_parameter(input_index, psize, dims, sparse,
                                        format)
Z
zhangjinchao01 已提交
1524 1525
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
1526

Z
zhangjinchao01 已提交
1527 1528
@config_layer('selective_fc')
class SelectiveFCLayer(LayerBase):
Q
qijun 已提交
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
    def __init__(self,
                 name,
                 size,
                 inputs,
                 bias=True,
                 selective_fc_pass_generation=False,
                 has_selected_colums=True,
                 selective_fc_full_mul_ratio=0.02,
                 selective_fc_parallel_plain_mul_thread_num=None,
                 **xargs):
Z
zhangjinchao01 已提交
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
        super(SelectiveFCLayer, self).__init__(
            name, 'selective_fc', size, inputs=inputs, **xargs)
        # user MUST know if selctive fc is used in training,
        # parameter matrices saved by this layer are automatically transposed,
        # BUT bias is not.

        # if selective_fc is used only in testing mode, and parameters for
        # this layer are trained by fully connected layers,
        # then TranposedFullMatrixProjectin MUST be used in training
        # to avoid manual transpose in testing.

        self.config.selective_fc_pass_generation = selective_fc_pass_generation
        self.config.has_selected_colums = has_selected_colums
        self.config.selective_fc_full_mul_ratio = selective_fc_full_mul_ratio
        if selective_fc_parallel_plain_mul_thread_num is not None:
            self.config.selective_fc_parallel_plain_mul_thread_num = selective_fc_parallel_plain_mul_thread_num

        input_num = len(self.inputs)
        if has_selected_colums:
            config_assert(input_num >= 2,
Q
qijun 已提交
1559 1560
                          ("if indices of selected columns are not specified, "
                           "selective_fc Layer has at least two inputs"))
Z
zhangjinchao01 已提交
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
            input_num -= 1

        for input_index in xrange(input_num):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
            dims = [input_layer.size, self.config.size]
            dims = dims[::-1]  # transpose the parameter
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"
            if sparse:
                psize = self.inputs[input_index].nnz

Q
qijun 已提交
1573 1574
            self.create_input_parameter(input_index, psize, dims, sparse,
                                        format)
Z
zhangjinchao01 已提交
1575 1576
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
1577

1578 1579
@config_layer('print')
class PrintLayer(LayerBase):
Q
qijun 已提交
1580
    def __init__(self, name, inputs):
1581 1582
        super(PrintLayer, self).__init__(name, 'print', 0, inputs)

Q
qijun 已提交
1583

Z
zhangjinchao01 已提交
1584 1585
@config_layer('data')
class DataLayer(LayerBase):
Q
qijun 已提交
1586 1587 1588 1589
    def __init__(self, name, size, device=None):
        super(DataLayer, self).__init__(
            name, 'data', size, inputs=[], device=device)

Z
zhangjinchao01 已提交
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616

'''
DataNormLayer: A layer for data normalization
Input: One and only one input layer is accepted. The input layer must
       be DataLayer with dense data type
Output: The normalization of the input data

Reference:
    LA Shalabi, Z Shaaban, B Kasasbeh. Data mining: A preprocessing engine

Example:
    Layer(
        name = "norm_input_layer",
        type = "data_norm",
        inputs = [Input("input_layer",
                        parameter_name = "_slot0.stats")],
        data_norm_strategy = "z-score",
    )

Note:
  (1) The parameter has been calculated in the preprocessing stage,
      and should be initialized by --init_model_path when training.
  (2) Three data normalization methoeds are considered
          z-score: y = (x-mean)/std
          min-max: y = (x-min)/(max-min)
          decimal-scaling: y = x/10^j, where j is the smallest integer such that max(|y|)<1
'''
Q
qijun 已提交
1617 1618


Z
zhangjinchao01 已提交
1619 1620
@config_layer('data_norm')
class DataNormLayer(LayerBase):
Q
qijun 已提交
1621
    def __init__(self, name, inputs, data_norm_strategy="z-score", device=None):
Z
zhangjinchao01 已提交
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
        super(DataNormLayer, self).__init__(
            name, 'data_norm', 0, inputs=inputs, device=device)
        self.config.data_norm_strategy = data_norm_strategy
        config_assert(len(inputs) == 1, 'DataNormLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
        para_size = 5 * input_layer.size
        para_dims = [5, input_layer.size]
        self.inputs[0].is_static = True
        self.create_input_parameter(0, para_size, para_dims)

Q
qijun 已提交
1633

Z
zhangjinchao01 已提交
1634 1635 1636
@config_layer('prelu')
class ParameterReluLayer(LayerBase):
    layer_type = 'prelu'
Q
qijun 已提交
1637 1638

    def __init__(self, name, inputs, partial_sum=1, **args):
Z
zhangjinchao01 已提交
1639 1640 1641 1642 1643 1644 1645 1646
        super(ParameterReluLayer, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **args)
        config_assert(len(self.inputs) == 1)
        config_assert(self.input_layer.size % partial_sum == 0)
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
        self.create_input_parameter(0, input_layer.size / partial_sum)

Q
qijun 已提交
1647

Z
zhangjinchao01 已提交
1648 1649 1650
@config_layer('conv')
class ConvLayerBase(LayerBase):
    layer_type = 'conv'
Q
qijun 已提交
1651 1652 1653 1654 1655 1656 1657 1658

    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
Z
zhangjinchao01 已提交
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
        super(ConvLayerBase, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

        # Automatically select cudnn_type for GPU and exconv for CPU
        # if set type=conv, but still reserve the way user specify
        # exconv or cudnn_conv manually.
        if self.layer_type == "cudnn_conv":
            config_assert(use_gpu, "cudnn_conv only support GPU")

        if (use_gpu == 1 and self.layer_type != "exconv" and
Q
qijun 已提交
1675
            (parallel_nn == 0 or self.config.device > -1)):
Z
zhangjinchao01 已提交
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
            self.layer_type = "cudnn_conv"
        else:
            self.layer_type = "exconv"
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
Q
qijun 已提交
1687 1688
            parse_conv(self.inputs[input_index].conv, input_layer.name,
                       self.config.inputs[input_index].conv_conf, num_filters)
Z
zhangjinchao01 已提交
1689 1690 1691 1692 1693
            conv_conf = self.config.inputs[input_index].conv_conf
            psize = self.calc_parameter_size(conv_conf)
            print("output size for %s is %d " % (name, conv_conf.output_x))
            self.create_input_parameter(input_index, psize)
            self.set_layer_size(
Q
qijun 已提交
1694
                (conv_conf.output_x**2) * self.config.num_filters)
Z
zhangjinchao01 已提交
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
        return self.config.num_filters * conv_conf.filter_channels \
                    * (conv_conf.filter_size * conv_conf.filter_size_y)

Q
qijun 已提交
1705

Z
zhangjinchao01 已提交
1706 1707 1708 1709
@config_layer('exconv')
class ConvLayer(ConvLayerBase):
    layer_type = 'exconv'

Q
qijun 已提交
1710

Z
zhangjinchao01 已提交
1711 1712 1713 1714
@config_layer('cudnn_conv')
class ConvLayer(ConvLayerBase):
    layer_type = 'cudnn_conv'

1715 1716 1717 1718

@config_layer('convt')
class ConvTransLayerBase(LayerBase):
    layer_type = 'convt'
Q
qijun 已提交
1719 1720 1721 1722 1723 1724 1725 1726

    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
1727
        super(ConvTransLayerBase, self).__init__(
1728 1729 1730 1731 1732 1733 1734 1735
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

1736 1737
        # cudnn_convt has not been implemented so use exconvt only
        self.layer_type = "exconvt"
1738 1739 1740 1741 1742 1743 1744 1745
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
1746
            parse_conv(
1747 1748
                self.inputs[input_index].conv,
                input_layer.name,
1749
                self.config.inputs[input_index].conv_conf,
1750
                num_filters,
1751
                trans=True)
1752 1753 1754 1755 1756
            conv_conf = self.config.inputs[input_index].conv_conf
            psize = self.calc_parameter_size(conv_conf)
            print("output size for %s is %d " % (name, conv_conf.output_x))
            self.create_input_parameter(input_index, psize)
            self.set_layer_size(
Q
qijun 已提交
1757
                (conv_conf.img_size**2) * self.config.num_filters)
1758 1759 1760 1761 1762 1763 1764

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
1765
        return conv_conf.channels * conv_conf.filter_channels \
1766 1767
                    * (conv_conf.filter_size * conv_conf.filter_size_y)

Q
qijun 已提交
1768

1769 1770 1771 1772
@config_layer('exconvt')
class ConvTransLayer(ConvTransLayerBase):
    layer_type = 'exconvt'

Q
qijun 已提交
1773

Z
zhangjinchao01 已提交
1774 1775
@config_layer('norm')
class NormLayer(LayerBase):
Q
qijun 已提交
1776 1777 1778
    def __init__(self, name, inputs, device=None):
        super(NormLayer, self).__init__(
            name, 'norm', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
1779 1780
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
Q
qijun 已提交
1781 1782
            parse_norm(self.inputs[input_index].norm, input_layer.name,
                       self.config.inputs[input_index].norm_conf)
Z
zhangjinchao01 已提交
1783
            norm_conf = self.config.inputs[input_index].norm_conf
Q
qijun 已提交
1784 1785
            self.set_layer_size((norm_conf.output_x**2) * norm_conf.channels)

Z
zhangjinchao01 已提交
1786 1787 1788

@config_layer('pool')
class PoolLayer(LayerBase):
Q
qijun 已提交
1789 1790 1791
    def __init__(self, name, inputs, device=None):
        super(PoolLayer, self).__init__(
            name, 'pool', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
1792 1793
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
Q
qijun 已提交
1794 1795
            parse_pool(self.inputs[input_index].pool, input_layer.name,
                       self.config.inputs[input_index].pool_conf)
Z
zhangjinchao01 已提交
1796
            pool_conf = self.config.inputs[input_index].pool_conf
Q
qijun 已提交
1797 1798 1799 1800 1801
            print("output size for %s is %d*%d " % (name, pool_conf.output_y,
                                                    pool_conf.output_x))
            self.set_layer_size(
                (pool_conf.output_x * pool_conf.output_y) * pool_conf.channels)

Z
zhangjinchao01 已提交
1802

Q
qijun 已提交
1803 1804
@config_layer('spp')
class SpatialPyramidPoolLayer(LayerBase):
Q
qijun 已提交
1805 1806 1807
    def __init__(self, name, inputs, device=None):
        super(SpatialPyramidPoolLayer, self).__init__(
            name, 'spp', 0, inputs=inputs, device=device)
Q
qijun 已提交
1808 1809
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
Q
qijun 已提交
1810 1811
            parse_spp(self.inputs[input_index].spp, input_layer.name,
                      self.config.inputs[input_index].spp_conf)
Q
qijun 已提交
1812 1813 1814 1815 1816
            spp_conf = self.config.inputs[input_index].spp_conf
            output_size = (pow(4, spp_conf.pyramid_height) - 1) / (4 - 1)
            print("output size for %s is %d " % (name, output_size))
            self.set_layer_size(output_size * spp_conf.channels)

Q
qijun 已提交
1817

Z
zhangjinchao01 已提交
1818 1819 1820
@config_layer('batch_norm')
class BatchNormLayer(LayerBase):
    layer_type = 'batch_norm'
Q
qijun 已提交
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831

    def __init__(self,
                 name,
                 inputs,
                 active_type="linear",
                 bias=True,
                 device=None,
                 use_global_stats=True,
                 moving_average_fraction=0.9,
                 batch_norm_type=None,
                 **xargs):
Z
zhangjinchao01 已提交
1832 1833 1834 1835
        if inputs is None:
            inputs = []
        elif not isinstance(inputs, list):
            inputs = [inputs]
Q
qijun 已提交
1836 1837
        config_assert(
            len(inputs) == 1, "BatchNormLayer must have one and only one input")
Z
zhangjinchao01 已提交
1838 1839 1840 1841 1842 1843 1844 1845
        # Create Input for moving mean and std,
        # in batch normalization layer.
        # These paras no need to update, so set is_static is true.
        # If not use is_static, even set learning_rate = 0, decay_rate = 0,
        # these paras will change if set average_window in configure.
        use_gpu = bool(int(g_command_config_args.get("use_gpu", 0)))
        is_shared = True if not use_gpu else False
        for i in xrange(2):
Q
qijun 已提交
1846 1847 1848 1849 1850 1851 1852
            inputs.append(
                Input(
                    inputs[0].input_layer_name,
                    initial_std=0.0,
                    initial_mean=0.0,
                    is_static=True,
                    is_shared=is_shared, ))
Z
zhangjinchao01 已提交
1853 1854 1855 1856 1857 1858 1859

        parallel_nn = bool(int(g_command_config_args.get("parallel_nn", 0)))
        cudnn_version = int(g_command_config_args.get("cudnn_version", 0))
        # Automatically select cudnn_batch_norm for GPU and batch_norm for CPU.
        # Also based on cudnn version.
        use_cudnn = use_gpu and batch_norm_type != "batch_norm" and \
            ((not parallel_nn) or self.config.device > -1) and \
1860
            cudnn_version >= 4007
Z
zhangjinchao01 已提交
1861
        self.layer_type = "cudnn_batch_norm" if use_cudnn else "batch_norm"
Q
qijun 已提交
1862 1863 1864 1865 1866 1867 1868 1869
        super(BatchNormLayer, self).__init__(
            name,
            self.layer_type,
            0,
            active_type=active_type,
            inputs=inputs,
            device=device,
            **xargs)
Z
zhangjinchao01 已提交
1870 1871 1872 1873 1874 1875

        if use_global_stats is not None:
            self.config.use_global_stats = use_global_stats
        if moving_average_fraction is not None:
            self.config.moving_average_fraction = moving_average_fraction

Q
qijun 已提交
1876 1877
        input_layer = self.get_input_layer(0)
        parse_image(self.inputs[0].image, input_layer.name,
Z
zhangjinchao01 已提交
1878 1879
                    self.config.inputs[0].image_conf)
        image_conf = self.config.inputs[0].image_conf
Q
qijun 已提交
1880
        self.set_layer_size((image_conf.img_size**2) * image_conf.channels)
Z
zhangjinchao01 已提交
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892

        psize = self.calc_parameter_size(image_conf)
        dims = [1, psize]
        self.create_input_parameter(0, psize)
        self.create_input_parameter(1, psize, dims)
        self.create_input_parameter(2, psize, dims)

        self.create_bias_parameter(bias, psize)

    def calc_parameter_size(self, image_conf):
        return image_conf.channels

Q
qijun 已提交
1893

Z
zhangjinchao01 已提交
1894 1895
@config_layer('trans')
class TransLayer(LayerBase):
Q
qijun 已提交
1896 1897 1898 1899 1900 1901
    def __init__(self, name, inputs, device=None):
        super(TransLayer, self).__init__(
            name, 'trans', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1,
            'TransLayer must have one and only one input')
Z
zhangjinchao01 已提交
1902 1903
        self.set_layer_size(self.get_input_layer(0).size)

Q
qijun 已提交
1904

Z
zhangjinchao01 已提交
1905 1906
@config_layer('resize')
class ResizeLayer(LayerBase):
Q
qijun 已提交
1907 1908 1909 1910 1911 1912 1913
    def __init__(self, name, size, inputs, device=None):
        super(ResizeLayer, self).__init__(
            name, 'resize', size=size, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1,
            'ResizeLayer must have one and only one input')

Z
zhangjinchao01 已提交
1914 1915 1916

@config_layer('blockexpand')
class BlockExpandLayer(LayerBase):
Q
qijun 已提交
1917 1918 1919
    def __init__(self, name, inputs, device=None):
        super(BlockExpandLayer, self).__init__(
            name, 'blockexpand', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
1920 1921
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
Q
qijun 已提交
1922 1923
            parse_block_expand(
                self.inputs[input_index].block_expand, input_layer.name,
Z
zhangjinchao01 已提交
1924
                self.config.inputs[input_index].block_expand_conf)
Q
qijun 已提交
1925 1926 1927 1928 1929 1930
            block_expand_conf = self.config.inputs[
                input_index].block_expand_conf
            self.set_layer_size(block_expand_conf.block_x *
                                block_expand_conf.block_y *
                                block_expand_conf.channels)

Z
zhangjinchao01 已提交
1931

1932 1933
@config_layer('maxout')
class MaxOutLayer(LayerBase):
Q
qijun 已提交
1934 1935 1936
    def __init__(self, name, inputs, **xargs):
        super(MaxOutLayer, self).__init__(
            name, 'maxout', 0, inputs=inputs, **xargs)
1937
        input_layer = self.get_input_layer(0)
Q
qijun 已提交
1938
        parse_maxout(self.inputs[0].maxout, input_layer.name,
1939 1940
                     self.config.inputs[0].maxout_conf)
        maxout_conf = self.config.inputs[0].maxout_conf
Q
qijun 已提交
1941 1942 1943
        self.set_layer_size(g_layer_map[input_layer.name].size /
                            maxout_conf.groups)

1944

Z
zhangjinchao01 已提交
1945 1946 1947 1948
# key: cost type
# value: cost class
g_cost_map = {}

Q
qijun 已提交
1949

Z
zhangjinchao01 已提交
1950 1951 1952
# define a cost layer without any parameters
def define_cost(class_name, cost_type):
    def init(cls, name, inputs, device=None, coeff=1.):
Q
qijun 已提交
1953 1954
        super(type(cls), cls).__init__(
            name, cost_type, 1, inputs, device=device, coeff=coeff)
Z
zhangjinchao01 已提交
1955

Q
qijun 已提交
1956
    cls = type(class_name, (LayerBase, ), dict(__init__=init))
Z
zhangjinchao01 已提交
1957 1958 1959
    global g_cost_map
    g_cost_map[cost_type] = cls

Q
qijun 已提交
1960

Z
zhangjinchao01 已提交
1961 1962 1963 1964 1965 1966 1967 1968
define_cost('MultiClassCrossEntropy', 'multi-class-cross-entropy')
define_cost('RankingCost', 'rank-cost')
define_cost('AucValidation', 'auc-validation')
define_cost('PnpairValidation', 'pnpair-validation')
define_cost('SumOfSquaresCostLayer', 'square_error')
define_cost('MultiBinaryLabelCrossEntropy', 'multi_binary_label_cross_entropy')
define_cost('SoftBinaryClassCrossEntropy', 'soft_binary_class_cross_entropy')
define_cost('HuberTwoClass', 'huber')
X
xuwei06 已提交
1969
define_cost('SumCost', 'sum_cost')
Z
zhangjinchao01 已提交
1970

Q
qijun 已提交
1971

Z
zhangjinchao01 已提交
1972 1973
@config_layer('hsigmoid')
class HierarchicalSigmoidLayer(LayerBase):
Q
qijun 已提交
1974
    def __init__(self, name, num_classes, inputs, device=None, bias=True):
Z
zhangjinchao01 已提交
1975 1976
        super(HierarchicalSigmoidLayer, self).__init__(
            name, 'hsigmoid', 1, inputs=inputs, device=device)
Q
qijun 已提交
1977 1978 1979
        config_assert(
            len(self.inputs) >= 2,
            'HierarchicalSigmoidLayer must have at least 2 inputs')
Z
zhangjinchao01 已提交
1980 1981 1982 1983 1984 1985 1986 1987
        self.config.num_classes = num_classes
        for input_index in xrange(len(self.inputs) - 1):
            input_layer = self.get_input_layer(input_index)
            psize = (num_classes - 1) * input_layer.size
            dims = [num_classes - 1, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes - 1)

Q
qijun 已提交
1988

Z
zhangjinchao01 已提交
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
'''
lambdaCost for lambdaRank LTR approach

Usage:
  Example: Layer(name = "cost", type = "lambda_cost", NDCG_num = 8,
             max_sort_size = -1, inputs = ["output", "score"])

  Input data: Samples of the same query should be loaded as a sequence,
          by ProtoDataProvider or PyDataProvider etc.. User should provide
          scores for each sample. The score slot should be the 2nd
          input of lambdaRank layer.

  NDCG_num = the size of NDCG, e.g., 5 for NDCG@5.
    Note: NDCG_num must be less than or equal to the minimum
          size of lists.

  max_sort_size = the size of partial sorting in calculating gradient.
    Note: If max_sort_size = -1, then for each list, the algorithm will
          sort the entire list to get gradient.
          In other cases, max_sort_size must be greater than or equal
          to NDCG_num.
          max_sort_size can be greater than the size of a list, in which
          case the algorithm will sort the entire list to get gradient.
'''
Q
qijun 已提交
2013 2014


Z
zhangjinchao01 已提交
2015 2016
@config_layer('lambda_cost')
class LambdaCost(LayerBase):
Q
qijun 已提交
2017
    def __init__(self, name, inputs, NDCG_num=5, max_sort_size=-1, device=None):
Z
zhangjinchao01 已提交
2018 2019
        super(LambdaCost, self).__init__(
            name, 'lambda_cost', 1, inputs=inputs, device=device)
Q
qijun 已提交
2020
        config_assert(len(self.inputs) == 2, 'lambdaCost must have 2 inputs')
Z
zhangjinchao01 已提交
2021 2022
        self.config.NDCG_num = NDCG_num
        if max_sort_size != -1:
Q
qijun 已提交
2023 2024 2025
            config_assert(
                NDCG_num <= max_sort_size,
                'NDCG_num must be less than or equal to max_sort_size')
Z
zhangjinchao01 已提交
2026 2027
        self.config.max_sort_size = max_sort_size

Q
qijun 已提交
2028

Z
zhangjinchao01 已提交
2029 2030
@config_layer('nce')
class NCELayer(LayerBase):
Q
qijun 已提交
2031 2032 2033 2034 2035 2036 2037 2038
    def __init__(self,
                 name,
                 num_classes,
                 inputs,
                 num_neg_samples=10,
                 neg_sampling_dist=None,
                 bias=True,
                 **xargs):
Z
zhangjinchao01 已提交
2039
        super(NCELayer, self).__init__(name, 'nce', 1, inputs=inputs, **xargs)
Q
qijun 已提交
2040 2041
        config_assert(
            len(self.inputs) >= 2, 'NCELayer must have at least 2 inputs')
Z
zhangjinchao01 已提交
2042 2043
        self.config.num_classes = num_classes
        if neg_sampling_dist is not None:
Q
qijun 已提交
2044 2045 2046 2047
            config_assert(
                len(neg_sampling_dist) == num_classes,
                'len(neg_sampling_dist)(%s) is not same as num_classes (%s)' %
                (len(neg_sampling_dist), num_classes))
Z
zhangjinchao01 已提交
2048
            s = sum(neg_sampling_dist)
Q
qijun 已提交
2049 2050 2051
            config_assert(
                abs(s - 1) < 1e-5,
                'The sum of neg_sampling_dist (%s) is not 1' % s)
Z
zhangjinchao01 已提交
2052 2053 2054 2055 2056

            self.config.neg_sampling_dist.extend(neg_sampling_dist)

        self.config.num_neg_samples = num_neg_samples
        num_real_inputs = len(self.inputs) - 1
Q
qijun 已提交
2057
        input_layer = self.get_input_layer(num_real_inputs)
Z
zhangjinchao01 已提交
2058 2059 2060 2061
        config_assert(input_layer.type == 'data',
                      'Expecting the last input layer of an nce layer to be '
                      'a data layer')

Q
qijun 已提交
2062 2063
        if (num_real_inputs > 1 and input_layer.size == 1 and
                self.get_input_layer(num_real_inputs - 1).type == 'data'):
Z
zhangjinchao01 已提交
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
            # This input layer is assumed to be a sample weight layer
            num_real_inputs -= 1

        for input_index in xrange(num_real_inputs):
            input_layer = self.get_input_layer(input_index)
            psize = num_classes * input_layer.size
            dims = [num_classes, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes)


@config_layer('addto')
class AddToLayer(LayerBase):
Q
qijun 已提交
2077
    def __init__(self, name, inputs, bias=True, **xargs):
Z
zhangjinchao01 已提交
2078 2079
        super(AddToLayer, self).__init__(
            name, 'addto', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2080
        config_assert(len(inputs) > 0, 'inputs cannot be empty for AddToLayer')
Z
zhangjinchao01 已提交
2081 2082 2083 2084 2085
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2086

Z
zhangjinchao01 已提交
2087 2088
@config_layer('agent')
class AgentLayer(LayerBase):
Q
qijun 已提交
2089 2090 2091 2092
    def __init__(self, name, size, device=None):
        super(AgentLayer, self).__init__(
            name, 'agent', size, inputs=[], device=device)

Z
zhangjinchao01 已提交
2093 2094 2095

@config_layer('sequence_agent')
class SequenceAgentLayer(LayerBase):
Q
qijun 已提交
2096
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2097 2098 2099
        super(SequenceAgentLayer, self).__init__(
            name, 'sequence_agent', size, inputs=[], device=device)

Q
qijun 已提交
2100

Z
zhangjinchao01 已提交
2101 2102
@config_layer('gather_agent')
class GatherAgentLayer(LayerBase):
Q
qijun 已提交
2103
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2104 2105 2106
        super(GatherAgentLayer, self).__init__(
            name, 'gather_agent', size, inputs=[], device=device)

Q
qijun 已提交
2107

Z
zhangjinchao01 已提交
2108 2109
@config_layer('scatter_agent')
class ScatterAgentLayer(LayerBase):
Q
qijun 已提交
2110
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2111 2112 2113
        super(ScatterAgentLayer, self).__init__(
            name, 'scatter_agent', size, inputs=[], device=device)

Q
qijun 已提交
2114

Z
zhangjinchao01 已提交
2115 2116
@config_layer('sequence_gather_agent')
class SequenceGatherAgentLayer(LayerBase):
Q
qijun 已提交
2117
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2118
        super(SequenceGatherAgentLayer, self).__init__(
Q
qijun 已提交
2119 2120
            name, 'sequence_gather_agent', size, inputs=[], device=device)

Z
zhangjinchao01 已提交
2121 2122 2123

@config_layer('sequence_scatter_agent')
class SequenceScatterAgentLayer(LayerBase):
Q
qijun 已提交
2124
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2125
        super(SequenceScatterAgentLayer, self).__init__(
Q
qijun 已提交
2126 2127
            name, 'sequence_scatter_agent', size, inputs=[], device=device)

Z
zhangjinchao01 已提交
2128 2129 2130

@config_layer('multiplex')
class MultiplexLayer(LayerBase):
Q
qijun 已提交
2131 2132 2133 2134 2135
    def __init__(self, name, inputs, size, device=None):
        super(MultiplexLayer, self).__init__(
            name, 'multiplex', size, inputs=inputs, device=device)
        config_assert(
            len(inputs) > 2, 'MultiplexLayer should have more than 2 inputs.')
Z
zhangjinchao01 已提交
2136
        for i in range(1, len(inputs)):
Q
qijun 已提交
2137 2138 2139 2140 2141
            config_assert(
                self.get_input_layer(i).size == size,
                "All the input layers except the first one should"
                "have the same size as the MultiplexLayer.")

Z
zhangjinchao01 已提交
2142 2143

@config_func
Q
qijun 已提交
2144 2145 2146
def Link(
        name,
        has_subseq=False, ):
Z
zhangjinchao01 已提交
2147 2148 2149 2150 2151
    link_config = LinkConfig()
    link_config.link_name = name
    link_config.has_subseq = has_subseq
    return link_config

Q
qijun 已提交
2152

Z
zhangjinchao01 已提交
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
# memory for recurrent layer group.
# *name* and *size* are actual layer's name and size.
# will return name of the memory,
# use this name if you assign the memory as other layer's input
#
# boot frame of memory is zeroed by default,
# or initialize by boot layer output if *boot_layer* set,
# or initialize by trainable bias if *boot_bias* set,
# or initialize by a constant id if *boot_with_const_id* set
#
# Memory can be a sequence if *is_sequence* set, this type of memory
# can only be initailized by a *boot_layer* which is a sequence.
#
@config_func
Q
qijun 已提交
2167 2168 2169 2170 2171 2172 2173 2174
def Memory(
        name,
        size,
        is_sequence=False,
        boot_layer=None,
        boot_bias=False,
        boot_bias_active_type="",
        boot_with_const_id=None, ):
Z
zhangjinchao01 已提交
2175 2176 2177 2178 2179 2180
    agent_name = name + "+delay1"
    if is_sequence:
        agent_layer = SequenceAgentLayer(agent_name, size)
    else:
        agent_layer = AgentLayer(agent_name, size)
    config_assert(g_current_submodel.is_recurrent_layer_group,
Q
qijun 已提交
2181
                  'Memory should be used in recurrent layer group only')
Z
zhangjinchao01 已提交
2182 2183 2184 2185
    memory = g_current_submodel.memories.add()
    memory.layer_name = MakeLayerNameInSubmodel(name)
    memory.link_name = MakeLayerNameInSubmodel(agent_name)
    memory.is_sequence = is_sequence
Q
qijun 已提交
2186
    options = sum((boot_layer is not None, bool(boot_bias),
Z
zhangjinchao01 已提交
2187
                   boot_with_const_id is not None))
Q
qijun 已提交
2188 2189 2190 2191
    config_assert(
        options <= 1,
        'take one option at most from boot_layer, boot_bias, or boot_with_const_id'
    )
Z
zhangjinchao01 已提交
2192 2193 2194
    if boot_layer is not None:
        boot_layer = MakeLayerNameInParentSubmodel(boot_layer)
        config_assert(boot_layer in g_layer_map,
Q
qijun 已提交
2195 2196
                      'boot_layer "%s" does not correspond to a layer name' %
                      boot_layer)
Z
zhangjinchao01 已提交
2197 2198 2199
        memory.boot_layer_name = boot_layer
    elif boot_bias:
        memory.boot_bias_parameter_name = agent_layer.create_bias_parameter(
Q
qijun 已提交
2200
            boot_bias, size, for_self=False)
Z
zhangjinchao01 已提交
2201 2202 2203 2204 2205
        memory.boot_bias_active_type = boot_bias_active_type
    elif boot_with_const_id is not None:
        memory.boot_with_const_id = boot_with_const_id
    return agent_name

Q
qijun 已提交
2206

Z
zhangjinchao01 已提交
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
# Generator for recurrent layer group, to use it:
#  1. define a id layer as output of layer group
#  2. define a memory of this id layer, and assign a boot id(begin of sequence)
#  3. define a eos check layer and fill its name in generator's *eos_layer_name*
# Sequence generation will stop when eos check return 1 or *max_num_frames* reached.
# If *beam_size* is greater than one, generator will use beam search.
#   in beam search, if *num_results_per_sample* set, one sample sequence can output
#   multiple results each with a probility.
@config_func
def Generator(
        max_num_frames,
Q
qijun 已提交
2218 2219 2220 2221
        eos_layer_name="eos_check",
        num_results_per_sample=1,
        beam_size=1,
        log_prob=None, ):
Z
zhangjinchao01 已提交
2222 2223 2224 2225 2226 2227 2228 2229 2230
    generator_config = GeneratorConfig()
    generator_config.max_num_frames = max_num_frames
    generator_config.eos_layer_name = eos_layer_name
    generator_config.num_results_per_sample = num_results_per_sample
    generator_config.beam_size = beam_size
    if log_prob is not None:
        generator_config.log_prob = log_prob
    return generator_config

Q
qijun 已提交
2231

Z
zhangjinchao01 已提交
2232 2233
@config_layer('expand')
class ExpandLayer(LayerBase):
Q
qijun 已提交
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
                 device=None,
                 bias=False):
        super(ExpandLayer, self).__init__(
            name, 'expand', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 2, 'ExpandLayer takes 2 and only 2 inputs')
        self.config.trans_type = trans_type
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
        self.set_layer_size(self.get_input_layer(0).size)
        self.create_bias_parameter(bias, self.config.size)

Z
zhangjinchao01 已提交
2250 2251 2252

@config_layer('featmap_expand')
class FeatMapExpandLayer(LayerBase):
Q
qijun 已提交
2253 2254 2255 2256 2257 2258
    def __init__(self, name, inputs, device=None, num_filters=None, bias=False):
        super(FeatMapExpandLayer, self).__init__(
            name, 'featmap_expand', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1, 'ExpandLayer takes 1 and only 1 inputs')
        if num_filters is not None:
Z
zhangjinchao01 已提交
2259
            self.config.num_filters = num_filters
Q
qijun 已提交
2260
        else:
Z
zhangjinchao01 已提交
2261
            logger.fatal("FeatMapExpandLayer must specify num_filters.")
Q
qijun 已提交
2262
        self.set_layer_size(self.get_input_layer(0).size * num_filters)
Z
zhangjinchao01 已提交
2263 2264 2265 2266


@config_layer('max')
class MaxLayer(LayerBase):
Q
qijun 已提交
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
                 active_type='linear',
                 device=None,
                 bias=False,
                 output_max_index=None):
        super(MaxLayer, self).__init__(
            name, 'max', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2277
        config_assert(len(self.inputs) == 1, 'MaxLayer must have 1 input')
Q
qijun 已提交
2278 2279
        self.config.trans_type = trans_type
        self.config.active_type = active_type
Z
zhangjinchao01 已提交
2280 2281 2282 2283
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)
2284 2285
        if output_max_index is not None:
            self.config.output_max_index = output_max_index
Z
zhangjinchao01 已提交
2286 2287 2288 2289


@config_layer('maxid')
class MaxIdLayer(LayerBase):
Q
qijun 已提交
2290
    def __init__(self, name, inputs, beam_size=None, device=None):
Z
zhangjinchao01 已提交
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
        super(MaxIdLayer, self).__init__(
            name, 'maxid', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'MaxIdLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)

        if beam_size is None:
            global g_current_submodel
            if g_current_submodel.HasField("generator"):
                self.config.beam_size = g_current_submodel.generator.beam_size
        else:
            self.config.beam_size = beam_size


@config_layer('eos_id')
class EosIdLayer(LayerBase):
Q
qijun 已提交
2308
    def __init__(self, name, inputs, eos_id, device=None):
Z
zhangjinchao01 已提交
2309 2310 2311
        super(EosIdLayer, self).__init__(
            name, 'eos_id', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'EosIdLayer must have 1 input')
Q
qijun 已提交
2312
        self.set_layer_size(2)  # boolean output
Z
zhangjinchao01 已提交
2313 2314
        self.config.eos_id = eos_id

Q
qijun 已提交
2315

Z
zhangjinchao01 已提交
2316 2317
@config_layer('seqlastins')
class SequenceLastInstanceLayer(LayerBase):
Q
qijun 已提交
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
    def __init__(self,
                 name,
                 inputs,
                 active_type='linear',
                 trans_type='non-seq',
                 device=None,
                 bias=False):
        super(SequenceLastInstanceLayer, self).__init__(
            name,
            'seqlastins',
            0,
            inputs=inputs,
            device=device,
            active_type=active_type)
        config_assert(
            len(inputs) == 1, 'SequenceLastInstanceLayer must have 1 input')
        self.config.trans_type = trans_type
Z
zhangjinchao01 已提交
2335 2336 2337 2338 2339
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2340

Z
zhangjinchao01 已提交
2341 2342 2343 2344 2345 2346 2347 2348 2349
@config_layer('seqfirstins')
class SequenceFirstInstanceLayer(SequenceLastInstanceLayer):
    def __init__(
            self,
            name,
            inputs,
            active_type='linear',
            trans_type='non-seq',
            device=None,
Q
qijun 已提交
2350 2351 2352 2353 2354 2355 2356 2357
            bias=False, ):
        super(SequenceFirstInstanceLayer, self).__init__(
            name,
            inputs=inputs,
            active_type=active_type,
            device=device,
            bias=bias)
        self.config.trans_type = trans_type
Z
zhangjinchao01 已提交
2358 2359
        self.config.select_first = True

Q
qijun 已提交
2360

Z
zhangjinchao01 已提交
2361 2362
@config_layer('seqconcat')
class SequenceConcatLayer(LayerBase):
Q
qijun 已提交
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
    def __init__(self,
                 name,
                 inputs,
                 active_type='linear',
                 device=None,
                 bias=False):
        super(SequenceConcatLayer, self).__init__(
            name,
            'seqconcat',
            0,
            inputs=inputs,
            device=device,
            active_type=active_type)
        config_assert(
            len(inputs) == 2, 'SequenceConcatLayer must have 2 inputs')
Z
zhangjinchao01 已提交
2378 2379 2380 2381 2382
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2383

Z
zhangjinchao01 已提交
2384 2385
@config_layer('seqreshape')
class SequenceReshapeLayer(LayerBase):
Q
qijun 已提交
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_type='linear',
                 device=None,
                 bias=False):
        super(SequenceReshapeLayer, self).__init__(
            name,
            'seqreshape',
Z
zhangjinchao01 已提交
2396
            size,
Q
qijun 已提交
2397 2398 2399 2400 2401
            inputs=inputs,
            device=device,
            active_type=active_type)
        config_assert(
            len(inputs) == 1, 'SequenceReshapeLayer must have 1 inputs')
Z
zhangjinchao01 已提交
2402 2403 2404
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

Q
qijun 已提交
2405

Z
zhangjinchao01 已提交
2406 2407
@config_layer('subseq')
class SubSequenceLayer(LayerBase):
Q
qijun 已提交
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
    def __init__(self,
                 name,
                 inputs,
                 active_type='linear',
                 device=None,
                 bias=False):
        super(SubSequenceLayer, self).__init__(
            name,
            'subseq',
            0,
            inputs=inputs,
            device=device,
            active_type=active_type)
Z
zhangjinchao01 已提交
2421 2422 2423 2424 2425 2426
        config_assert(len(inputs) == 3, 'SubSequenceLayer must have 3 inputs')
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

Q
qijun 已提交
2427

Z
zhangjinchao01 已提交
2428 2429
@config_layer('out_prod')
class OuterProdLayer(LayerBase):
Q
qijun 已提交
2430 2431 2432
    def __init__(self, name, inputs, device=None):
        super(OuterProdLayer, self).__init__(
            name, 'out_prod', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2433 2434 2435 2436 2437
        config_assert(len(inputs) == 2, 'OuterProdLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer0.size * input_layer1.size)

Q
qijun 已提交
2438

Z
zhangjinchao01 已提交
2439 2440
@config_layer('power')
class PowerLayer(LayerBase):
Q
qijun 已提交
2441 2442 2443
    def __init__(self, name, inputs, device=None):
        super(PowerLayer, self).__init__(
            name, 'power', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2444 2445 2446 2447
        config_assert(len(inputs) == 2, 'PowerLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
Q
qijun 已提交
2448 2449 2450
        config_assert(1 == input_layer0.size,
                      'The left input is the exponent and should be of size 1')

Z
zhangjinchao01 已提交
2451 2452 2453

@config_layer('slope_intercept')
class SlopeInterceptLayer(LayerBase):
Q
qijun 已提交
2454 2455 2456
    def __init__(self, name, inputs, slope=1.0, intercept=0.0, device=None):
        super(SlopeInterceptLayer, self).__init__(
            name, 'slope_intercept', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2457 2458 2459 2460 2461 2462
        self.config.slope = slope
        self.config.intercept = intercept
        config_assert(len(inputs) == 1, 'SlopeInterceptLayer must have 1 input')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
2463

Z
zhangjinchao01 已提交
2464 2465
@config_layer('scaling')
class ScalingLayer(LayerBase):
Q
qijun 已提交
2466 2467 2468
    def __init__(self, name, inputs, device=None):
        super(ScalingLayer, self).__init__(
            name, 'scaling', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2469 2470 2471 2472
        config_assert(len(inputs) == 2, 'ScalingLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
Q
qijun 已提交
2473 2474 2475
        config_assert(1 == input_layer0.size,
                      'The left input should be of size 1')

Z
zhangjinchao01 已提交
2476 2477 2478

@config_layer('conv_shift')
class ConvShiftLayer(LayerBase):
Q
qijun 已提交
2479 2480 2481
    def __init__(self, name, inputs, device=None):
        super(ConvShiftLayer, self).__init__(
            name, 'conv_shift', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2482 2483 2484 2485
        config_assert(len(inputs) == 2, 'ConvShiftLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
2486

Z
zhangjinchao01 已提交
2487 2488
@config_layer('convex_comb')
class ConvexCombinationLayer(LayerBase):
Q
qijun 已提交
2489
    def __init__(self, name, size, inputs, device=None):
Z
zhangjinchao01 已提交
2490
        super(ConvexCombinationLayer, self).__init__(
Q
qijun 已提交
2491 2492 2493
            name, 'convex_comb', size, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 2, 'ConvexCombinationLayer must have 2 inputs')
2494 2495 2496
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
            'Wrong input size for ConvexCombinationLayer')
Z
zhangjinchao01 已提交
2497 2498
        self.set_layer_size(size)

Q
qijun 已提交
2499

Z
zhangjinchao01 已提交
2500 2501
@config_layer('interpolation')
class InterpolationLayer(LayerBase):
Q
qijun 已提交
2502
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
2503 2504
        super(InterpolationLayer, self).__init__(
            name, 'interpolation', 0, inputs=inputs, device=device)
Q
qijun 已提交
2505 2506
        config_assert(
            len(self.inputs) == 3, 'InterpolationLayer must have 3 inputs')
Z
zhangjinchao01 已提交
2507 2508 2509 2510 2511 2512 2513 2514
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        input_layer2 = self.get_input_layer(2)
        self.set_layer_size(input_layer1.size)
        config_assert(input_layer0.size == 1, 'weight should be of size 1')
        config_assert(input_layer1.size == input_layer2.size,
                      'the two vector inputs should be of the same size')

Q
qijun 已提交
2515

L
liaogang 已提交
2516 2517
@config_layer('bilinear_interp')
class BilinearInterpLayer(LayerBase):
Q
qijun 已提交
2518
    def __init__(self, name, inputs, **xargs):
L
liaogang 已提交
2519
        super(BilinearInterpLayer, self).__init__(
L
liaogang 已提交
2520
            name, 'bilinear_interp', 0, inputs=inputs, **xargs)
L
liaogang 已提交
2521
        input_layer = self.get_input_layer(0)
Q
qijun 已提交
2522 2523
        parse_bilinear(self.inputs[0].bilinear_interp, input_layer.name,
                       self.config.inputs[0].bilinear_interp_conf)
L
liaogang 已提交
2524
        conf = self.inputs[0].bilinear_interp
Q
qijun 已提交
2525 2526 2527
        self.set_layer_size(conf.out_size_x * conf.out_size_y *
                            conf.num_channels)

L
liaogang 已提交
2528

Z
zhangjinchao01 已提交
2529 2530
@config_layer('sum_to_one_norm')
class SumToOneNormLayer(LayerBase):
Q
qijun 已提交
2531
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
2532
        super(SumToOneNormLayer, self).__init__(
Q
qijun 已提交
2533 2534 2535
            name, 'sum_to_one_norm', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1, 'SumToOneNormLayer must have 1 input')
Z
zhangjinchao01 已提交
2536 2537 2538
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
2539

Z
zhangjinchao01 已提交
2540 2541
@config_layer('cos_vm')
class CosSimVecMatLayer(LayerBase):
Q
qijun 已提交
2542
    def __init__(self, name, size, inputs, cos_scale=1.0, device=None):
Z
zhangjinchao01 已提交
2543
        super(CosSimVecMatLayer, self).__init__(
Q
qijun 已提交
2544
            name, 'cos_vm', size, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
2545
        self.config.cos_scale = cos_scale
Q
qijun 已提交
2546 2547
        config_assert(
            len(self.inputs) == 2, 'CosSimVecMatLayer must have 2 inputs')
2548 2549 2550
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
            'Wrong input size for CosSimVecMatLayer')
Z
zhangjinchao01 已提交
2551

Q
qijun 已提交
2552

Z
zhangjinchao01 已提交
2553 2554
@config_layer('sampling_id')
class SamplingIdLayer(LayerBase):
Q
qijun 已提交
2555
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
2556 2557
        super(SamplingIdLayer, self).__init__(
            name, 'sampling_id', 0, inputs=inputs, device=device)
Q
qijun 已提交
2558 2559
        config_assert(
            len(self.inputs) == 1, 'SamplingIdLayer must have 1 input')
Z
zhangjinchao01 已提交
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)


# AverageLayer: "average" for each sample within a sequence.
# average_stratrgy: set to one of the following:
# 'average': plain average.
# 'sum': sum each sample instead of average (which is divide by sample_num).
# 'squarerootn': sum each sample, but divide by sqrt(sample_num).
@config_layer('average')
class AverageLayer(LayerBase):
Q
qijun 已提交
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
    def __init__(self,
                 name,
                 inputs,
                 average_strategy='average',
                 trans_type='non-seq',
                 active_type='linear',
                 device=None,
                 bias=False):
        super(AverageLayer, self).__init__(
            name,
            'average',
            0,
            inputs=inputs,
            device=device,
            active_type=active_type)
Z
zhangjinchao01 已提交
2587
        self.config.average_strategy = average_strategy
Q
qijun 已提交
2588
        self.config.trans_type = trans_type
Z
zhangjinchao01 已提交
2589 2590 2591 2592 2593 2594
        config_assert(len(inputs) == 1, 'AverageLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2595

Z
zhangjinchao01 已提交
2596 2597
@config_layer('cos')
class CosSimLayer(LayerBase):
Q
qijun 已提交
2598
    def __init__(self, name, inputs, cos_scale=5, device=None):
Z
zhangjinchao01 已提交
2599 2600 2601 2602 2603 2604
        super(CosSimLayer, self).__init__(
            name, 'cos', 1, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 2, 'CosSimLayer must have 2 inputs')
        config_assert(
            self.get_input_layer(0).size == self.get_input_layer(1).size,
            'inputs of CosSimLayer must have same dim')
2605
        self.config.cos_scale = cos_scale
Z
zhangjinchao01 已提交
2606 2607 2608 2609


@config_layer('tensor')
class TensorLayer(LayerBase):
Q
qijun 已提交
2610 2611 2612
    def __init__(self, name, size, inputs, device=None, bias=True, **xargs):
        super(TensorLayer, self).__init__(
            name, 'tensor', size, inputs=inputs, device=device, **xargs)
Z
zhangjinchao01 已提交
2613 2614
        config_assert(len(self.inputs) == 2, 'TensorLayer must have 2 inputs')
        config_assert(size > 0, 'size must be positive')
Q
qijun 已提交
2615 2616
        config_assert(inputs[1].parameter_name == None,
                      'second parameter should be None.')
Z
zhangjinchao01 已提交
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        psize = size * input_layer0.size * input_layer1.size
        dims = [input_layer0.size, input_layer1.size, size]
        self.create_input_parameter(0, psize, dims)
        self.create_bias_parameter(bias, size)


@config_layer('mixed')
class MixedLayer(LayerBase):
Q
qijun 已提交
2627 2628 2629 2630 2631 2632 2633
    def __init__(self,
                 name,
                 inputs,
                 size=0,
                 bias=True,
                 error_clipping_threshold=None,
                 **xargs):
Z
zhangjinchao01 已提交
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
        config_assert(inputs, 'inputs cannot be empty')
        super(MixedLayer, self).__init__(
            name, 'mixed', size, inputs=inputs, **xargs)
        operator_input_index = []
        for operator in self.operators:
            operator_conf = operator.operator_conf
            for i in xrange(1, len(operator.input_layer_names)):
                input_index = len(self.config.inputs)
                operator_conf.input_indices.append(input_index)
                input_config = Input(operator.input_layer_names[i])
                self.inputs.append(input_config)
                layer_input = self.config.inputs.add()
                layer_input.input_layer_name = input_config.input_layer_name
            for input_index in operator_conf.input_indices:
                input_layer = self.get_input_layer(input_index)
                operator_conf.input_sizes.append(input_layer.size)
                operator_input_index.append(input_index)
2651
            if self.config.size == 0:
Z
zhangjinchao01 已提交
2652 2653 2654
                size = operator.calc_output_size(operator_conf.input_sizes)
                if size != 0:
                    self.set_layer_size(size)
2655
            else:
2656 2657
                sz = operator.calc_output_size(operator_conf.input_sizes)
                if sz != 0:
Q
qijun 已提交
2658 2659 2660 2661
                    config_assert(
                        sz == self.config.size,
                        "different inputs have different size: %s vs. %s" %
                        (sz, self.config.size))
Z
zhangjinchao01 已提交
2662 2663 2664 2665
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            if input_index not in operator_input_index:
Q
qijun 已提交
2666 2667 2668
                config_assert(
                    isinstance(input, Projection),
                    "input should be projection or operation")
2669
            if self.config.size == 0 and isinstance(input, Projection):
Z
zhangjinchao01 已提交
2670 2671 2672
                size = input.calc_output_size(input_layer)
                if size != 0:
                    self.set_layer_size(size)
2673
            elif isinstance(input, Projection):
Q
qijun 已提交
2674 2675 2676 2677 2678 2679
                sz = input.calc_output_size(input_layer)
                if sz != 0:
                    config_assert(
                        sz == self.config.size,
                        "different inputs have different size: %s vs. %s" %
                        (sz, self.config.size))
Z
zhangjinchao01 已提交
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
        config_assert(size != 0, "size is not set")

        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            if isinstance(input, Projection):
                input_layer = self.get_input_layer(input_index)
                input.proj_conf.input_size = input_layer.size
                input.proj_conf.output_size = size

                input_config = self.config.inputs[input_index]
                input_config.proj_conf.CopyFrom(input.proj_conf)
Q
qijun 已提交
2691 2692
                input_config.proj_conf.name = gen_parameter_name(name,
                                                                 input_index)
Z
zhangjinchao01 已提交
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
                psize = input.calc_parameter_size(input_layer.size, size)
                dims = input.calc_parameter_dims(input_layer.size, size)
                self.create_input_parameter(input_index, psize, dims)

        for operator in self.operators:
            operator_conf = operator.operator_conf
            operator_conf.output_size = self.config.size
            operator.check_dims()
            record_operator_conf = self.config.operator_confs.add()
            record_operator_conf.CopyFrom(operator_conf)

2704 2705 2706 2707 2708 2709
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()
Z
zhangjinchao01 已提交
2710

2711 2712 2713
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
Z
zhangjinchao01 已提交
2714

2715 2716
        if error_clipping_threshold is not None:
            self.config.error_clipping_threshold = error_clipping_threshold
Z
zhangjinchao01 已提交
2717

Q
qijun 已提交
2718

Z
zhangjinchao01 已提交
2719 2720
# like MixedLayer, but no bias parameter
@config_func
Q
qijun 已提交
2721
def ExpressionLayer(name, inputs, **xargs):
Z
zhangjinchao01 已提交
2722 2723
    MixedLayer(name, inputs, bias=False, **xargs)

Q
qijun 已提交
2724

Z
zhangjinchao01 已提交
2725 2726
@config_layer('concat')
class ConcatenateLayer(LayerBase):
Q
qijun 已提交
2727
    def __init__(self, name, inputs, bias=False, **xargs):
Z
zhangjinchao01 已提交
2728
        config_assert(inputs, 'inputs cannot be empty')
2729
        config_assert(not bias, 'ConcatenateLayer cannot support bias.')
Z
zhangjinchao01 已提交
2730 2731 2732 2733 2734 2735
        super(ConcatenateLayer, self).__init__(
            name, 'concat', 0, inputs=inputs, **xargs)
        size = 0
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
Q
qijun 已提交
2736
            if self.config.size == 0:
Z
zhangjinchao01 已提交
2737 2738 2739 2740
                size += input_layer.size

        self.set_layer_size(size)

Q
qijun 已提交
2741

Z
zhangjinchao01 已提交
2742 2743 2744
# like concat layer, but each input layer was processed by a Projection.
@config_layer('concat2')
class ConcatenateLayer2(LayerBase):
Q
qijun 已提交
2745
    def __init__(self, name, inputs, bias=False, **xargs):
Z
zhangjinchao01 已提交
2746 2747 2748
        config_assert(inputs, 'inputs cannot be empty')
        super(ConcatenateLayer2, self).__init__(
            name, 'concat2', 0, inputs=inputs, **xargs)
2749 2750

        if isinstance(self.inputs[0], ConvProjection):
Q
qijun 已提交
2751 2752 2753 2754 2755 2756
            for input_index in xrange(len(self.inputs) - 1):
                input = self.inputs[input_index + 1]
                config_assert(
                    isinstance(input, ConvProjection),
                    "The first input of ConcatenateLayer2 is ConvProjection, "
                    "the other inputs should also be ConvProjection.")
2757

Z
zhangjinchao01 已提交
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
        size = 0
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            output_size = input.calc_output_size(input_layer)
            config_assert(output_size != 0, "proj output size is not set")
            size += output_size

        self.set_layer_size(size)

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            input.proj_conf.input_size = input_layer.size
            input.proj_conf.output_size = input.calc_output_size(input_layer)

            input_config = self.config.inputs[input_index]
            input_config.proj_conf.CopyFrom(input.proj_conf)
            input_config.proj_conf.name = gen_parameter_name(name, input_index)
            psize = input.calc_parameter_size(input.proj_conf.input_size,
Q
qijun 已提交
2778
                                              input.proj_conf.output_size)
Z
zhangjinchao01 已提交
2779
            dims = input.calc_parameter_dims(input.proj_conf.input_size,
Q
qijun 已提交
2780
                                             input.proj_conf.output_size)
Z
zhangjinchao01 已提交
2781 2782
            self.create_input_parameter(input_index, psize, dims)

2783 2784 2785 2786 2787 2788 2789
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()

2790 2791 2792
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
2793

Q
qijun 已提交
2794

Z
zhangjinchao01 已提交
2795 2796
@config_layer('recurrent')
class RecurrentLayer(LayerBase):
Q
qijun 已提交
2797
    def __init__(self, name, inputs, reversed=False, bias=True, **xargs):
Y
Yu Yang 已提交
2798 2799
        super(RecurrentLayer, self).__init__(name, 'recurrent', 0, inputs,
                                             **xargs)
Z
zhangjinchao01 已提交
2800 2801 2802 2803 2804 2805 2806 2807 2808
        config_assert(len(self.inputs) == 1, 'RecurrentLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        size = input_layer.size
        self.set_layer_size(size)
        self.config.reversed = reversed
        dims = [size, size]
        self.create_input_parameter(0, size * size, dims)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2809

Z
zhangjinchao01 已提交
2810 2811
@config_layer('lstmemory')
class LstmLayer(LayerBase):
Q
qijun 已提交
2812 2813 2814 2815 2816 2817 2818 2819
    def __init__(self,
                 name,
                 inputs,
                 reversed=False,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
Z
zhangjinchao01 已提交
2820 2821 2822 2823 2824 2825 2826 2827
        super(LstmLayer, self).__init__(name, 'lstmemory', 0, inputs, **xargs)
        config_assert(len(self.inputs) == 1, 'LstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 4
        config_assert(input_layer.size % 4 == 0, "size % 4 should be 0!")
        size = input_layer.size / 4
        self.set_layer_size(size)
        self.config.reversed = reversed
Q
qijun 已提交
2828
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
2829 2830 2831 2832 2833
        self.config.active_state_type = active_state_type
        self.create_input_parameter(0, size * size * 4, [size, size, 4])
        #bias includes 3 kinds of peephole, 4 + 3 = 7
        self.create_bias_parameter(bias, size * 7)

Q
qijun 已提交
2834

Z
zhangjinchao01 已提交
2835 2836
@config_layer('lstm_step')
class LstmStepLayer(LayerBase):
Q
qijun 已提交
2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
        super(LstmStepLayer, self).__init__(name, 'lstm_step', size, inputs,
                                            **xargs)
Z
zhangjinchao01 已提交
2847 2848 2849
        config_assert(len(inputs) == 2, 'LstmStepLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
Q
qijun 已提交
2850 2851 2852 2853 2854
        config_assert(input_layer0.size == 4 * size,
                      'input_layer0.size != 4 * layer.size')
        config_assert(input_layer1.size == size,
                      'input_layer1.size != layer.size')
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
2855 2856 2857
        self.config.active_state_type = active_state_type
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
2858

Z
zhangjinchao01 已提交
2859 2860 2861
# get the specific output from the input layer.
@config_layer('get_output')
class GetOutputLayer(LayerBase):
Q
qijun 已提交
2862 2863 2864 2865
    def __init__(self, name, size, inputs):
        super(GetOutputLayer, self).__init__(name, 'get_output', size, inputs)
        config_assert(
            len(self.inputs) == 1, 'GetOutputLayer must have 1 inputs')
Z
zhangjinchao01 已提交
2866 2867 2868 2869
        inputs = self.inputs[0]
        config_assert(inputs.input_layer_argument,
                      'input_layer_argument cannot be empty')

Q
qijun 已提交
2870

Z
zhangjinchao01 已提交
2871 2872
@config_layer('mdlstmemory')
class MDLstmLayer(LayerBase):
Q
qijun 已提交
2873 2874 2875 2876 2877 2878 2879 2880
    def __init__(self,
                 name,
                 inputs,
                 directions=True,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
Y
Yu Yang 已提交
2881 2882
        super(MDLstmLayer, self).__init__(name, 'mdlstmemory', 0, inputs,
                                          **xargs)
Z
zhangjinchao01 已提交
2883 2884 2885 2886
        config_assert(len(self.inputs) == 1, 'MDLstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        dim_num = len(directions)
        #check input_layer.size is divided by (3+dim_num)
Y
Yu Yang 已提交
2887 2888
        config_assert(input_layer.size % (3 + dim_num) == 0,
                      "size % (dim_num) should be 0!")
Q
qijun 已提交
2889
        size = input_layer.size / (3 + dim_num)
Z
zhangjinchao01 已提交
2890
        self.set_layer_size(size)
Q
qijun 已提交
2891
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
2892 2893 2894
        self.config.active_state_type = active_state_type
        for i in xrange(len(directions)):
            self.config.directions.append(int(directions[i]))
Y
Yu Yang 已提交
2895 2896
        self.create_input_parameter(0, size * size * (3 + dim_num),
                                    [size, size, 3 + dim_num])
Z
zhangjinchao01 已提交
2897
        #bias includes 3 kinds of peephole, 3+dim_num+2+dim_num
Q
qijun 已提交
2898 2899
        self.create_bias_parameter(bias, size * (5 + 2 * dim_num))

Z
zhangjinchao01 已提交
2900 2901 2902

@config_layer('gated_recurrent')
class GatedRecurrentLayer(LayerBase):
Q
qijun 已提交
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
    def __init__(self,
                 name,
                 inputs,
                 reversed=False,
                 active_gate_type="sigmoid",
                 bias=True,
                 **xargs):
        super(GatedRecurrentLayer, self).__init__(name, 'gated_recurrent', 0,
                                                  inputs, **xargs)
        config_assert(
            len(self.inputs) == 1, 'GatedRecurrentLayer must have 1 input')
Z
zhangjinchao01 已提交
2914 2915 2916 2917 2918 2919
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 3
        config_assert(input_layer.size % 3 == 0, "size % 3 should be 0!")
        size = input_layer.size / 3
        self.set_layer_size(size)
        self.config.reversed = reversed
Q
qijun 已提交
2920
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
2921 2922 2923
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
2924

Z
zhangjinchao01 已提交
2925 2926
@config_layer('gru_step')
class GruStepLayer(LayerBase):
Q
qijun 已提交
2927 2928 2929 2930 2931 2932 2933
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_gate_type="sigmoid",
                 bias=True,
                 **xargs):
Y
Yu Yang 已提交
2934 2935
        super(GruStepLayer, self).__init__(name, 'gru_step', size, inputs,
                                           **xargs)
Z
zhangjinchao01 已提交
2936 2937 2938
        config_assert(len(self.inputs) == 2, 'GruStepLayer must have 2 input')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
Q
qijun 已提交
2939 2940 2941 2942 2943
        config_assert(input_layer0.size == 3 * size,
                      'input_layer0.size != 3 * layer.size')
        config_assert(input_layer1.size == size,
                      'input_layer1.size != layer.size')
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
2944 2945 2946
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
2947

Z
zhangjinchao01 已提交
2948 2949 2950 2951 2952 2953 2954
'''
 A layer for calculating the cost of sequential conditional random field model.
 Example: CRFLayer(name="crf_cost", size=label_num,
                   inputs=["output", "label", "weight"])
          where "weight" is optional, one weight for each sequence
 @param coeff: weight of the layer
'''
Q
qijun 已提交
2955 2956


Z
zhangjinchao01 已提交
2957 2958
@config_layer('crf')
class CRFLayer(LayerBase):
Q
qijun 已提交
2959
    def __init__(self, name, size, inputs, coeff=1.0, device=None):
Z
zhangjinchao01 已提交
2960
        super(CRFLayer, self).__init__(name, 'crf', size, inputs, device=device)
Q
qijun 已提交
2961 2962
        config_assert(2 <= len(self.inputs) <= 3,
                      'CRFLayer must have 2 or 3 inputs')
Z
zhangjinchao01 已提交
2963 2964 2965
        self.create_input_parameter(0, size * (size + 2), [size, size + 2])
        self.config.coeff = coeff

Q
qijun 已提交
2966

Z
zhangjinchao01 已提交
2967 2968 2969 2970 2971 2972 2973 2974
'''
 A layer for calculating the decoding sequence of sequential conditional
 random field model.
 The decoding sequence is stored in output_.ids
 If a second input is provided, it is treated as the ground-truth label, and
 this layer will also calculate error, output_.value[i] is 1 for incorrect
 decoding or 0 for correct decoding
'''
Q
qijun 已提交
2975 2976


Z
zhangjinchao01 已提交
2977 2978
@config_layer('crf_decoding')
class CRFDecodingLayer(LayerBase):
Q
qijun 已提交
2979
    def __init__(self, name, size, inputs, device=None):
Z
zhangjinchao01 已提交
2980 2981 2982 2983 2984 2985 2986
        super(CRFDecodingLayer, self).__init__(
            name, 'crf_decoding', size, inputs, device=device)
        config_assert(
            len(self.inputs) <= 2,
            'CRFDecodingLayer cannot have more than 2 inputs')
        self.create_input_parameter(0, size * (size + 2), [size, size + 2])

Q
qijun 已提交
2987

Z
zhangjinchao01 已提交
2988 2989
@config_layer('ctc')
class CTCLayer(LayerBase):
Q
qijun 已提交
2990
    def __init__(self, name, size, inputs, norm_by_times=False, device=None):
Z
zhangjinchao01 已提交
2991 2992 2993 2994
        super(CTCLayer, self).__init__(name, 'ctc', size, inputs, device=device)
        self.config.norm_by_times = norm_by_times
        config_assert(len(self.inputs) == 2, 'CTCLayer must have 2 inputs')

Q
qijun 已提交
2995

Z
zhangjinchao01 已提交
2996 2997
@config_layer('recurrent_layer_group')
class RecurrentLayerGroup(LayerBase):
Q
qijun 已提交
2998
    def __init__(self, name, device=None):
Z
zhangjinchao01 已提交
2999 3000 3001 3002 3003 3004
        super(RecurrentLayerGroup, self).__init__(
            name, 'recurrent_layer_group', 0, inputs=[], device=device)


# Deprecated, use a new layer specific class instead
@config_func
Q
qijun 已提交
3005
def Layer(name, type, **xargs):
Z
zhangjinchao01 已提交
3006 3007 3008 3009
    layers = {}
    layers.update(g_cost_map)
    layers.update(g_layer_type_map)
    layer_func = layers.get(type)
Q
qijun 已提交
3010
    config_assert(layer_func, "layer type '%s' not supported." % type)
X
xuwei06 已提交
3011
    return layer_func(name, **xargs)
Z
zhangjinchao01 已提交
3012

Q
qijun 已提交
3013

Z
zhangjinchao01 已提交
3014
@config_func
Q
qijun 已提交
3015
def ParameterHook(type, **kwargs):
Z
zhangjinchao01 已提交
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
    if type == 'pruning':
        mask_filename = kwargs.get('mask_filename', None)
        assert mask_filename is not None
        hook = ParameterUpdaterHookConfig()
        hook.type = type
        hook.purning_mask_filename = mask_filename
        return hook
    else:
        return None


@config_func
Q
qijun 已提交
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
def Parameter(name,
              size,
              device,
              dims,
              learning_rate=None,
              momentum=None,
              decay_rate=None,
              decay_rate_l1=None,
              initial_mean=None,
              initial_std=None,
              initial_strategy=None,
              initial_smart=None,
              num_batches_regularization=None,
              sparse_remote_update=None,
              sparse_update=None,
              gradient_clipping_threshold=None,
              sparse=None,
              format=None,
              need_compact=None,
              is_static=None,
              is_shared=None,
              update_hooks=None):
Z
zhangjinchao01 已提交
3050 3051 3052 3053 3054 3055 3056

    config_assert(name not in g_parameter_map,
                  'Duplicated parameter name: ' + name)

    para = g_config.model_config.parameters.add()
    para.name = name
    para.size = size
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
    if device is not None:
        para.device = int(device)
    para.dims.extend(dims)

    if learning_rate is not None:
        para.learning_rate = float(learning_rate)

    momentum = default(momentum, g_default_momentum)
    if momentum is not None:
        para.momentum = float(momentum)

Z
zhangjinchao01 已提交
3068 3069
    config_assert(not momentum or not decay_rate_l1,
                  "momentum and decay_rate_l1 cannot both be non-zero")
3070 3071 3072 3073 3074

    decay_rate = default(decay_rate, g_default_decay_rate)
    if decay_rate is not None:
        para.decay_rate = decay_rate

Z
zhangjinchao01 已提交
3075 3076 3077 3078
    if decay_rate_l1 is not None:
        para.decay_rate_l1 = decay_rate_l1
    para.initial_std = default(initial_std, g_default_initial_std)
    para.initial_mean = default(initial_mean, g_default_initial_mean)
3079

Q
qijun 已提交
3080 3081
    num_batches_regularization = default(num_batches_regularization,
                                         g_default_num_batches_regularization)
3082 3083 3084
    if num_batches_regularization is not None:
        para.num_batches_regularization = int(num_batches_regularization)

Z
zhangjinchao01 已提交
3085 3086 3087 3088 3089 3090
    if sparse_remote_update is not None:
        para.sparse_remote_update = sparse_remote_update
        if sparse_remote_update:
            g_config.opt_config.use_sparse_remote_updater = True
    if sparse_update is not None:
        para.sparse_update = sparse_update
Q
qijun 已提交
3091 3092
    gradient_clipping_threshold = default(gradient_clipping_threshold,
                                          g_default_gradient_clipping_threshold)
3093 3094
    if gradient_clipping_threshold is not None:
        para.gradient_clipping_threshold = gradient_clipping_threshold
Q
qijun 已提交
3095 3096
    para.initial_strategy = default(initial_strategy,
                                    g_default_initial_strategy)
Z
zhangjinchao01 已提交
3097 3098 3099 3100 3101 3102
    para.initial_smart = default(initial_smart, g_default_initial_smart)
    if para.initial_smart:
        para.initial_mean = 0.
        if len(para.dims) != 0:
            para.initial_std = 1. / math.sqrt(para.dims[0])
        else:
Q
qijun 已提交
3103 3104 3105
            print(
                "Use initial_smart, but dims not set. Initial_smart may not be used in this layer"
            )
Z
zhangjinchao01 已提交
3106 3107 3108 3109
            traceback.print_exc()
            para.initial_std = 1. / math.sqrt(para.size)
    if g_default_compact_func is not None:
        sparse, format, need_compact = g_default_compact_func(para.name)
3110 3111 3112 3113 3114 3115 3116

    if sparse is not None:
        para.is_sparse = sparse
    if format is not None:
        para.format = format
    if need_compact is not None:
        para.need_compact = need_compact
Z
zhangjinchao01 已提交
3117 3118 3119 3120
    if is_static is not None:
        para.is_static = is_static
    config_assert(not para.sparse_remote_update or not para.is_static,
                  "sparse_remote_update and is_static cannot both be true")
3121 3122
    if is_shared is not None:
        para.is_shared = is_shared
Z
zhangjinchao01 已提交
3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143

    update_hooks = default(update_hooks, g_default_update_hooks)

    if update_hooks is not None:
        if hasattr(update_hooks, '__call__'):
            update_hooks = update_hooks(para.name)

        if isinstance(update_hooks, list):
            for hook in update_hooks:
                para.update_hooks.extend([hook])
        else:
            para.update_hooks.extend(update_hooks)

    g_parameter_map[name] = para


@config_func
def default_initial_std(val):
    global g_default_initial_std
    g_default_initial_std = val

Q
qijun 已提交
3144

Z
zhangjinchao01 已提交
3145 3146 3147 3148 3149
@config_func
def default_initial_mean(val):
    global g_default_initial_mean
    g_default_initial_mean = val

Q
qijun 已提交
3150

Z
zhangjinchao01 已提交
3151 3152 3153 3154 3155
@config_func
def default_initial_strategy(val):
    global g_default_initial_strategy
    g_default_initial_strategy = val

Q
qijun 已提交
3156

Z
zhangjinchao01 已提交
3157 3158 3159 3160 3161
@config_func
def default_initial_smart(val):
    global g_default_initial_smart
    g_default_initial_smart = val

Q
qijun 已提交
3162

Z
zhangjinchao01 已提交
3163 3164 3165 3166 3167
@config_func
def default_momentum(val):
    global g_default_momentum
    g_default_momentum = val

Q
qijun 已提交
3168

Z
zhangjinchao01 已提交
3169 3170 3171 3172 3173
@config_func
def default_decay_rate(val):
    global g_default_decay_rate
    g_default_decay_rate = val

Q
qijun 已提交
3174

Z
zhangjinchao01 已提交
3175 3176 3177 3178 3179
@config_func
def default_num_batches_regularization(val):
    global g_default_num_batches_regularization
    g_default_num_batches_regularization = val

Q
qijun 已提交
3180

Z
zhangjinchao01 已提交
3181 3182 3183 3184 3185
@config_func
def default_gradient_clipping_threshold(val):
    global g_default_gradient_clipping_threshold
    g_default_gradient_clipping_threshold = val

Q
qijun 已提交
3186

Z
zhangjinchao01 已提交
3187 3188 3189 3190 3191
@config_func
def default_device(val):
    global g_default_device
    g_default_device = val

Q
qijun 已提交
3192

Z
zhangjinchao01 已提交
3193 3194 3195 3196 3197
@config_func
def default_update_hooks(val):
    global g_default_update_hooks
    g_default_update_hooks = val

Q
qijun 已提交
3198

Z
zhangjinchao01 已提交
3199 3200 3201 3202 3203
@config_func
def default_compact_func(val):
    global g_default_compact_func
    g_default_compact_func = val

Q
qijun 已提交
3204

Z
zhangjinchao01 已提交
3205 3206 3207 3208 3209
def make_importer(config_dir, config_args):
    def Import(config_file, local_args={}):
        if not config_file.startswith('/'):
            config_file = config_dir + '/' + config_file
            g_config.config_files.append(config_file)
Q
qijun 已提交
3210 3211 3212
        execfile(config_file,
                 make_config_environment(config_file, config_args), local_args)

Z
zhangjinchao01 已提交
3213 3214
    return Import

Q
qijun 已提交
3215

Z
zhangjinchao01 已提交
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
settings = dict(
    batch_size=None,
    mini_batch_size=None,
    algorithm='async_sgd',
    async_lagged_grad_discard_ratio=1.5,
    learning_method='momentum',
    num_batches_per_send_parameter=None,
    num_batches_per_get_parameter=None,
    center_parameter_update_method=None,
    learning_rate=1.,
    learning_rate_decay_a=0.,
    learning_rate_decay_b=0.,
    learning_rate_schedule='poly',
    learning_rate_args='',
    l1weight=0.1,
    l2weight=0.,
    l2weight_zero_iter=0,
    c1=0.0001,
    backoff=0.5,
    owlqn_steps=10,
    max_backoff=5,
    average_window=0,
    do_average_in_cpu=False,
    max_average_window=None,
    ada_epsilon=1e-6,
    ada_rou=0.95,
    delta_add_rate=1.0,
    shrink_parameter_value=0,
Q
qijun 已提交
3244 3245 3246
    adam_beta1=0.9,
    adam_beta2=0.999,
    adam_epsilon=1e-8, )
Z
zhangjinchao01 已提交
3247

Q
qijun 已提交
3248
settings_deprecated = dict(usage_ratio=1., )
Z
zhangjinchao01 已提交
3249 3250 3251 3252

trainer_settings = dict(
    save_dir="./output/model",
    init_model_path=None,
Q
qijun 已提交
3253 3254
    start_pass=0, )

Z
zhangjinchao01 已提交
3255 3256 3257 3258 3259

@config_func
def Settings(**args):
    for k, v in args.iteritems():
        if k == "usage_ratio":
Q
qijun 已提交
3260 3261
            logger.warning(
                "Deprecated: define usage_ratio in DataConfig instead")
Z
zhangjinchao01 已提交
3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
            if g_config.HasField("data_config"):
                g_config.data_config.__setattr__(k, v)
            settings_deprecated[k] = v
            continue
        elif k in settings:
            settings[k] = v
        elif k in trainer_settings:
            trainer_settings[k] = v
        else:
            logger.fatal('Unkown setting: %s' % k)

Q
qijun 已提交
3273

Z
zhangjinchao01 已提交
3274 3275 3276 3277
@config_func
def cluster_config(**args):
    pass

Q
qijun 已提交
3278

Z
zhangjinchao01 已提交
3279 3280 3281 3282 3283 3284 3285 3286 3287
@config_func
def EnableSubmodelSuffix(flag=True):
    """
    If enabled, the layer and evaluator names in submodel will be automatically
    appended with @submodel_name
    """
    global g_add_submodel_suffix
    g_add_submodel_suffix = flag

Q
qijun 已提交
3288

Z
zhangjinchao01 已提交
3289 3290 3291 3292
def make_config_environment(config_file, config_args):
    def make_setter(k):
        def setter(v):
            logger.fatal("Obsolete: use Settings(%s=%s, ...) instead" % (k, v))
Q
qijun 已提交
3293

Z
zhangjinchao01 已提交
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
        return setter

    funcs = {}
    funcs.update(g_config_funcs)

    for k in settings.iterkeys():
        funcs[k] = make_setter(k)
    for k in settings_deprecated.iterkeys():
        funcs[k] = make_setter(k)
    config_dir = os.path.dirname(config_file)
    if not config_dir:
        config_dir = '.'

    funcs.update(
        Import=make_importer(config_dir, config_args),
Q
qijun 已提交
3309
        get_config_arg=make_get_config_arg(config_args), )
Z
zhangjinchao01 已提交
3310 3311 3312 3313 3314

    funcs.update(g_extended_config_funcs)

    return funcs

Q
qijun 已提交
3315

Z
zhangjinchao01 已提交
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
def make_get_config_arg(config_args):
    def get_config_arg(name, type, default=None):
        if type == bool:
            s = config_args.get(name)
            if not s:
                return default
            if s == 'True' or s == '1' or s == 'true':
                return True
            if s == 'False' or s == '0' or s == 'false':
                return False
            raise ValueError('Value of config_arg %s is not boolean' % name)
        else:
            return type(config_args.get(name, default))

    return get_config_arg

Q
qijun 已提交
3332

Z
zhangjinchao01 已提交
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
def importlib(name):
    __import__(name)
    return sys.modules[name]


def find_caller():
    stack = traceback.extract_stack()
    for s in stack[-4::-1]:
        if not s[0].endswith('config_parser.py'):
            return s[0], s[1], s[2]
    return "(unknown file)", 0, "(unknown function)"

Q
qijun 已提交
3345

Z
zhangjinchao01 已提交
3346 3347 3348 3349
def my_fatal(s):
    logger.critical(s)
    raise Exception()

Q
qijun 已提交
3350

Z
zhangjinchao01 已提交
3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
def parse_config(config_file, config_arg_str):
    '''
    @param config_arg_str: a string of the form var1=val1,var2=val2. It will be
    passed to config script as a dictionary CONFIG_ARGS
    '''
    init_config_environment()

    config_args = {}

    logger.findCaller = find_caller
    logger.fatal = my_fatal

    g_config.model_config.type = "nn"
    if config_arg_str:
        config_args = dict([f.split('=') for f in config_arg_str.split(',')])

    global g_command_config_args
    g_command_config_args.update(config_args)

    extension_module_name = config_args.get('extension_module_name')
    if extension_module_name:
        global g_extended_config_funcs
        extension_module = importlib(extension_module_name)
        g_extended_config_funcs = extension_module.get_config_funcs(g_config)

    g_config.model_config.type = 'nn'

    global g_current_submodel, g_root_submodel
    g_root_submodel = g_config.model_config.sub_models.add()
    g_root_submodel.name = 'root'
    g_root_submodel.is_recurrent_layer_group = False
    g_current_submodel = g_root_submodel

    execfile(config_file, make_config_environment(config_file, config_args))
    for k, v in settings.iteritems():
        if v is None:
            continue
Q
qijun 已提交
3388
        g_config.opt_config.__setattr__(k, v)
Z
zhangjinchao01 已提交
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414

    for k, v in trainer_settings.iteritems():
        if v is None:
            continue
        g_config.__setattr__(k, v)

    for name in g_config.model_config.input_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
        assert (g_layer_map[name].type == "data" or g_layer_map[name].type == "data_trim"), \
            'The type of input layer "%s" is not "data"' % name
    for name in g_config.model_config.output_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
    return g_config


def parse_config_and_serialize(config_file, config_arg_str):
    try:
        config = parse_config(config_file, config_arg_str)
        #logger.info(config)
        return config.SerializeToString()
    except:
        traceback.print_exc()
        raise

Q
qijun 已提交
3415

Z
zhangjinchao01 已提交
3416 3417 3418 3419 3420 3421 3422 3423
if __name__ == '__main__':
    try:
        config = parse_config(sys.argv[1], '')
        config.SerializeToString()
        __real_print__(str(config))
    except:
        traceback.print_exc()
        raise