test_elementwise_pow_op.py 8.5 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
Q
Qiao Longfei 已提交
16 17
import unittest
import numpy as np
18
from op_test import OpTest, skip_check_grad_ci
19
import paddle.fluid as fluid
20
import paddle
Q
Qiao Longfei 已提交
21 22


23 24 25 26 27 28
def pow_grad(x, y, dout):
    dx = dout * y * np.power(x, (y - 1))
    dy = dout * np.log(x) * np.power(x, y)
    return dx, dy


Q
Qiao Longfei 已提交
29
class TestElementwisePowOp(OpTest):
30

Q
Qiao Longfei 已提交
31 32
    def setUp(self):
        self.op_type = "elementwise_pow"
33
        self.python_api = paddle.pow
Q
Qiao Longfei 已提交
34
        self.inputs = {
35 36
            'X': np.random.uniform(1, 2, [20, 5]).astype("float64"),
            'Y': np.random.uniform(1, 2, [20, 5]).astype("float64")
Q
Qiao Longfei 已提交
37 38 39 40
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
41 42 43 44
        if hasattr(self, 'attrs'):
            self.check_output(check_eager=False)
        else:
            self.check_output(check_eager=True)
Q
Qiao Longfei 已提交
45

46
    def test_check_grad_normal(self):
47 48 49 50
        if hasattr(self, 'attrs'):
            self.check_grad(['X', 'Y'], 'Out', check_eager=False)
        else:
            self.check_grad(['X', 'Y'], 'Out', check_eager=True)
51

Q
Qiao Longfei 已提交
52

53
class TestElementwisePowOp_big_shape_1(TestElementwisePowOp):
54

55 56
    def setUp(self):
        self.op_type = "elementwise_pow"
57
        self.python_api = paddle.pow
58
        self.inputs = {
59
            'X': np.random.uniform(1, 2, [10, 10]).astype("float64"),
Z
zhupengyang 已提交
60
            'Y': np.random.uniform(0.1, 1, [10, 10]).astype("float64")
61 62 63 64 65
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


class TestElementwisePowOp_big_shape_2(TestElementwisePowOp):
66

67 68
    def setUp(self):
        self.op_type = "elementwise_pow"
69
        self.python_api = paddle.pow
70
        self.inputs = {
71 72
            'X': np.random.uniform(1, 2, [10, 10]).astype("float64"),
            'Y': np.random.uniform(0.2, 2, [10, 10]).astype("float64")
73 74 75 76
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


77 78
@skip_check_grad_ci(
    reason="[skip shape check] Use y_shape(1) to test broadcast.")
Q
Qiao Longfei 已提交
79
class TestElementwisePowOp_scalar(TestElementwisePowOp):
80

Q
Qiao Longfei 已提交
81 82
    def setUp(self):
        self.op_type = "elementwise_pow"
83
        self.python_api = paddle.pow
Q
Qiao Longfei 已提交
84
        self.inputs = {
85 86
            'X': np.random.uniform(0.1, 1, [3, 3, 4]).astype(np.float64),
            'Y': np.random.uniform(0.1, 1, [1]).astype(np.float64)
87 88 89 90 91
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


class TestElementwisePowOp_tensor(TestElementwisePowOp):
92

93 94
    def setUp(self):
        self.op_type = "elementwise_pow"
95
        self.python_api = paddle.pow
96
        self.inputs = {
97 98
            'X': np.random.uniform(0.1, 1, [100]).astype("float64"),
            'Y': np.random.uniform(1, 3, [100]).astype("float64")
99 100 101 102 103
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


class TestElementwisePowOp_broadcast_0(TestElementwisePowOp):
104

105 106
    def setUp(self):
        self.op_type = "elementwise_pow"
107
        self.python_api = paddle.pow
108
        self.inputs = {
109 110
            'X': np.random.uniform(0.1, 1, [2, 1, 100]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
Q
Qiao Longfei 已提交
111 112 113 114
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


115
class TestElementwisePowOp_broadcast_1(TestElementwisePowOp):
116

117 118
    def setUp(self):
        self.op_type = "elementwise_pow"
119
        self.python_api = paddle.pow
120
        self.inputs = {
121 122
            'X': np.random.uniform(0.1, 1, [2, 100, 1]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
123 124 125
        }
        self.attrs = {'axis': 1}
        self.outputs = {
126
            'Out': np.power(self.inputs['X'], self.inputs['Y'].reshape(100, 1))
127 128 129 130
        }


class TestElementwisePowOp_broadcast_2(TestElementwisePowOp):
131

132 133
    def setUp(self):
        self.op_type = "elementwise_pow"
134
        self.python_api = paddle.pow
135
        self.inputs = {
136 137
            'X': np.random.uniform(0.1, 1, [100, 3, 1]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
138 139 140
        }
        self.attrs = {'axis': 0}
        self.outputs = {
141 142
            'Out': np.power(self.inputs['X'],
                            self.inputs['Y'].reshape(100, 1, 1))
143 144 145 146
        }


class TestElementwisePowOp_broadcast_3(TestElementwisePowOp):
147

148 149
    def setUp(self):
        self.op_type = "elementwise_pow"
150
        self.python_api = paddle.pow
151
        self.inputs = {
152 153
            'X': np.random.uniform(0.1, 1, [2, 20, 5, 1]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [20, 5]).astype("float64")
154 155 156
        }
        self.attrs = {'axis': 1}
        self.outputs = {
157 158
            'Out': np.power(self.inputs['X'],
                            self.inputs['Y'].reshape(1, 20, 5, 1))
159 160 161
        }


162
class TestElementwisePowOp_broadcast_4(TestElementwisePowOp):
163

164 165
    def setUp(self):
        self.op_type = "elementwise_pow"
166
        self.python_api = paddle.pow
167
        self.inputs = {
168 169
            'X': np.random.uniform(0.1, 1, [2, 10, 3, 5]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [2, 10, 1, 5]).astype("float64")
170 171 172 173
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


174
class TestElementwisePowOpInt(OpTest):
175

176 177
    def setUp(self):
        self.op_type = "elementwise_pow"
178
        self.python_api = paddle.pow
179 180 181 182
        self.inputs = {'X': np.asarray([1, 3, 6]), 'Y': np.asarray([1, 1, 1])}
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
183 184 185 186
        if hasattr(self, 'attrs'):
            self.check_output(check_eager=False)
        else:
            self.check_output(check_eager=True)
187 188 189


class TestElementwisePowGradOpInt(unittest.TestCase):
190

191 192 193 194 195 196 197 198 199 200 201 202 203 204
    def setUp(self):
        self.x = np.asarray([1, 3, 6])
        self.y = np.asarray([1, 1, 1])
        self.res = self.x**self.y
        # dout = 1
        self.grad_res = np.asarray([1, 1, 1])
        # dx = dout * y * pow(x, y-1)
        self.grad_x = self.grad_res * self.y * (self.x
                                                **(self.y - 1)).astype("int")
        # dy = dout * log(x) * pow(x, y)
        self.grad_y = (self.grad_res * np.log(self.x) *
                       (self.x**self.y)).astype("int")

    def test_grad(self):
205
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
206 207 208 209 210 211 212 213 214 215 216
        places = [fluid.CPUPlace()]
        if fluid.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            with fluid.dygraph.guard(place):
                x = fluid.dygraph.to_variable(self.x, zero_copy=False)
                y = fluid.dygraph.to_variable(self.y, zero_copy=False)
                x.stop_gradient = False
                y.stop_gradient = False
                res = x**y
                res.backward()
217 218 219
                np.testing.assert_array_equal(res.gradient(), self.grad_res)
                np.testing.assert_array_equal(x.gradient(), self.grad_x)
                np.testing.assert_array_equal(y.gradient(), self.grad_y)
220
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
221 222


223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
class TestElementwisePowOpFP16(OpTest):

    def setUp(self):
        self.op_type = "elementwise_pow"
        self.python_api = paddle.pow
        self.inputs = {
            'X': np.random.uniform(1, 2, [20, 5]).astype("float16"),
            'Y': np.random.uniform(1, 2, [20, 5]).astype("float16")
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        if hasattr(self, 'attrs'):
            self.check_output(check_eager=False)
        else:
            self.check_output(check_eager=True)

    def test_check_grad(self):
        self.check_grad(['X', 'Y'],
                        'Out',
                        user_defined_grads=pow_grad(self.inputs['X'],
                                                    self.inputs['Y'],
                                                    1 / self.inputs['X'].size),
                        check_eager=True)


Q
Qiao Longfei 已提交
249 250
if __name__ == '__main__':
    unittest.main()