test_elementwise_pow_op.py 7.5 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
Q
Qiao Longfei 已提交
16 17
import unittest
import numpy as np
18
from op_test import OpTest, skip_check_grad_ci
19
import paddle.fluid as fluid
20
import paddle
Q
Qiao Longfei 已提交
21 22 23


class TestElementwisePowOp(OpTest):
24

Q
Qiao Longfei 已提交
25 26
    def setUp(self):
        self.op_type = "elementwise_pow"
27
        self.python_api = paddle.pow
Q
Qiao Longfei 已提交
28
        self.inputs = {
29 30
            'X': np.random.uniform(1, 2, [20, 5]).astype("float64"),
            'Y': np.random.uniform(1, 2, [20, 5]).astype("float64")
Q
Qiao Longfei 已提交
31 32 33 34
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
35 36 37 38
        if hasattr(self, 'attrs'):
            self.check_output(check_eager=False)
        else:
            self.check_output(check_eager=True)
Q
Qiao Longfei 已提交
39

40
    def test_check_grad_normal(self):
41 42 43 44
        if hasattr(self, 'attrs'):
            self.check_grad(['X', 'Y'], 'Out', check_eager=False)
        else:
            self.check_grad(['X', 'Y'], 'Out', check_eager=True)
45

Q
Qiao Longfei 已提交
46

47
class TestElementwisePowOp_big_shape_1(TestElementwisePowOp):
48

49 50
    def setUp(self):
        self.op_type = "elementwise_pow"
51
        self.python_api = paddle.pow
52
        self.inputs = {
53
            'X': np.random.uniform(1, 2, [10, 10]).astype("float64"),
Z
zhupengyang 已提交
54
            'Y': np.random.uniform(0.1, 1, [10, 10]).astype("float64")
55 56 57 58 59
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


class TestElementwisePowOp_big_shape_2(TestElementwisePowOp):
60

61 62
    def setUp(self):
        self.op_type = "elementwise_pow"
63
        self.python_api = paddle.pow
64
        self.inputs = {
65 66
            'X': np.random.uniform(1, 2, [10, 10]).astype("float64"),
            'Y': np.random.uniform(0.2, 2, [10, 10]).astype("float64")
67 68 69 70
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


71 72
@skip_check_grad_ci(
    reason="[skip shape check] Use y_shape(1) to test broadcast.")
Q
Qiao Longfei 已提交
73
class TestElementwisePowOp_scalar(TestElementwisePowOp):
74

Q
Qiao Longfei 已提交
75 76
    def setUp(self):
        self.op_type = "elementwise_pow"
77
        self.python_api = paddle.pow
Q
Qiao Longfei 已提交
78
        self.inputs = {
79 80
            'X': np.random.uniform(0.1, 1, [3, 3, 4]).astype(np.float64),
            'Y': np.random.uniform(0.1, 1, [1]).astype(np.float64)
81 82 83 84 85
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


class TestElementwisePowOp_tensor(TestElementwisePowOp):
86

87 88
    def setUp(self):
        self.op_type = "elementwise_pow"
89
        self.python_api = paddle.pow
90
        self.inputs = {
91 92
            'X': np.random.uniform(0.1, 1, [100]).astype("float64"),
            'Y': np.random.uniform(1, 3, [100]).astype("float64")
93 94 95 96 97
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


class TestElementwisePowOp_broadcast_0(TestElementwisePowOp):
98

99 100
    def setUp(self):
        self.op_type = "elementwise_pow"
101
        self.python_api = paddle.pow
102
        self.inputs = {
103 104
            'X': np.random.uniform(0.1, 1, [2, 1, 100]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
Q
Qiao Longfei 已提交
105 106 107 108
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


109
class TestElementwisePowOp_broadcast_1(TestElementwisePowOp):
110

111 112
    def setUp(self):
        self.op_type = "elementwise_pow"
113
        self.python_api = paddle.pow
114
        self.inputs = {
115 116
            'X': np.random.uniform(0.1, 1, [2, 100, 1]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
117 118 119
        }
        self.attrs = {'axis': 1}
        self.outputs = {
120
            'Out': np.power(self.inputs['X'], self.inputs['Y'].reshape(100, 1))
121 122 123 124
        }


class TestElementwisePowOp_broadcast_2(TestElementwisePowOp):
125

126 127
    def setUp(self):
        self.op_type = "elementwise_pow"
128
        self.python_api = paddle.pow
129
        self.inputs = {
130 131
            'X': np.random.uniform(0.1, 1, [100, 3, 1]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
132 133 134
        }
        self.attrs = {'axis': 0}
        self.outputs = {
135 136
            'Out': np.power(self.inputs['X'],
                            self.inputs['Y'].reshape(100, 1, 1))
137 138 139 140
        }


class TestElementwisePowOp_broadcast_3(TestElementwisePowOp):
141

142 143
    def setUp(self):
        self.op_type = "elementwise_pow"
144
        self.python_api = paddle.pow
145
        self.inputs = {
146 147
            'X': np.random.uniform(0.1, 1, [2, 20, 5, 1]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [20, 5]).astype("float64")
148 149 150
        }
        self.attrs = {'axis': 1}
        self.outputs = {
151 152
            'Out': np.power(self.inputs['X'],
                            self.inputs['Y'].reshape(1, 20, 5, 1))
153 154 155
        }


156
class TestElementwisePowOp_broadcast_4(TestElementwisePowOp):
157

158 159
    def setUp(self):
        self.op_type = "elementwise_pow"
160
        self.python_api = paddle.pow
161
        self.inputs = {
162 163
            'X': np.random.uniform(0.1, 1, [2, 10, 3, 5]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [2, 10, 1, 5]).astype("float64")
164 165 166 167
        }
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}


168
class TestElementwisePowOpInt(OpTest):
169

170 171
    def setUp(self):
        self.op_type = "elementwise_pow"
172
        self.python_api = paddle.pow
173 174 175 176
        self.inputs = {'X': np.asarray([1, 3, 6]), 'Y': np.asarray([1, 1, 1])}
        self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
177 178 179 180
        if hasattr(self, 'attrs'):
            self.check_output(check_eager=False)
        else:
            self.check_output(check_eager=True)
181 182 183


class TestElementwisePowGradOpInt(unittest.TestCase):
184

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
    def setUp(self):
        self.x = np.asarray([1, 3, 6])
        self.y = np.asarray([1, 1, 1])
        self.res = self.x**self.y
        # dout = 1
        self.grad_res = np.asarray([1, 1, 1])
        # dx = dout * y * pow(x, y-1)
        self.grad_x = self.grad_res * self.y * (self.x
                                                **(self.y - 1)).astype("int")
        # dy = dout * log(x) * pow(x, y)
        self.grad_y = (self.grad_res * np.log(self.x) *
                       (self.x**self.y)).astype("int")
        print(self.grad_res, self.grad_x, self.grad_y)

    def test_grad(self):
200
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
201 202 203 204 205 206 207 208 209 210 211 212
        places = [fluid.CPUPlace()]
        if fluid.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            with fluid.dygraph.guard(place):
                x = fluid.dygraph.to_variable(self.x, zero_copy=False)
                y = fluid.dygraph.to_variable(self.y, zero_copy=False)
                print(x, y)
                x.stop_gradient = False
                y.stop_gradient = False
                res = x**y
                res.backward()
213 214 215
                np.testing.assert_array_equal(res.gradient(), self.grad_res)
                np.testing.assert_array_equal(x.gradient(), self.grad_x)
                np.testing.assert_array_equal(y.gradient(), self.grad_y)
216
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
217 218


Q
Qiao Longfei 已提交
219 220
if __name__ == '__main__':
    unittest.main()